SlideShare a Scribd company logo
1 of 18
Process Optimization
Term assignment
Submitted to : Prof . Amit Kumar
By : (Group VI)
19bch049 - Punit patel
19bch050 - Raj patel
19bch051 - Riya patel
19bch052 - Sahil patel
19bch053 - Yash patel
Bracketing Method
 In bracketing methods, the method starts with an interval that
contains the root and a procedure is used to obtain a smaller interval
containing the root.
 Such methods are always convergent.
 Examples of bracketing methods:
 Bisection method
 False position method
Bisection Method
ABOUT BISECTION METHOD
 Assumptions:
Given an interval [a, b]
f(x) is continuous on [a, b]
f(a) and f(b) have opposite signs.
 These assumptions ensure the existence of at least one zero in the interval [a, b] and the
bisection method can be used to obtain a smaller interval that contains the zero.
 For that we perform the following steps:
1. Compute the mid point c = (a + b) / 2
2. Evaluate f(c)
3. If f(a) f(c) < 0 then new interval [a, c]
If f(a) f(c) > 0 then new interval [c, b]
4. Repeat the procedure until we get convergence.
a
b
f(a)
f(b)
c
a C1 C2
CONTD..
 If f(c) > 0, let anew = a and bnew = c and repeat
process.
 If f(c) < 0, let anew = c and bnew = b and repeat
process.
 This reassignment ensures the root is always
bracketed!! initial point ‘a’
root ‘d’
initial point ‘b’
a
c b
d
 Bisection is an iterative process, where the initial interval is halved
until the size of the interval decreases below some predefined
tolerance :|a - b|   or f(x) falls below a tolerance :|f(c ) – f(c-1)| 
.
Example 1: Determine the real root of
𝒇 𝒙 = 𝟓𝒙𝟑
− 𝟓𝒙𝟐
+ 𝟔𝒙 − 𝟐 = 𝟎 using Bisection Method.
Solution: Lets find the interval first,
𝑥 = 0 ⟹ 𝑓 0 = −2
𝑥 = 1 ⟹ 𝑓 1 = 4
∴ 𝑥 ∈ [0, 1]
Lets start the Bisection iterations now,
𝑥1 =
0+1
2
= 0.5, 𝑓 𝑥1 = 𝑓 0.5 = 0.375 > 0∴ 𝑥 ∈ [0, 0.5]
𝑥2 =
0 + 0.5
2
= 0.25, 𝑓 𝑥2 = 𝑓 0.25 =-0.7344 < 0
∴ 𝑥 ∈ [0.25, 0.5]
𝑥3 =
0.25 + 0.5
2
= 0.375, 𝑓 𝑥3 = 𝑓 0.375 =-0.1895<0
∴ 𝑥 ∈ [0.375, 0.5]
< 0
> 0
𝑥4 =
0.375 + 0.5
2
= 0.4375, 𝑓 𝑥4 = 𝑓 0.4375 = 0.0867 > 0∴ 𝑥 ∈ [0.375, 0.4375]
𝑥5 =
0.375 + 0.4375
2
= 0.4063, 𝑓 𝑥5 = 𝑓 0.4063 = -0.0522 < 0
∴ 𝑥 ∈ [0.4063, 0.4375]
𝑥6 =
0.4063 + 0.4375
2
= 0.4219,𝑓 𝑥6 = 𝑓 0.4219 = 0.0169 > 0
∴ 𝑥 ∈ [0.4063, 0.4219]
𝑥7 =
0.4063 + 0.4219
2
= 0.4141,𝑓 𝑥7 = 𝑓 0.4141 = -0.0177 < 0
∴ 𝑥 ∈ [0.4141, 0.4219]
𝑥8 =
0.4141 + 0.4219
2
= 0.418, 𝑓 𝑥8 = 𝑓 0.418 = -0.00044 < 0
∴ 𝑥 ∈ [0.418, 0.4219]
𝑥9 =
0.418 + 0.4219
2
= 0.42, 𝑓 𝑥9 = 𝑓 0.42 = 0.0084 > 0 ∴ 𝑥 ∈ [0.42, 0.4219]
|0.42 – 0.4219| = 0.0019 ≈ 0
∴ 𝒙 = 𝟎. 𝟒𝟐 is one of the approximate real root of the given equation
correct up to 2 decimal places.
Example 2: Determine the negative real root of 𝒇 𝒙 = 𝒙𝟑
+ 𝟐𝟏𝒙 + 35 using Bisection Method correct up to 2
decimal places.
Solution: Lets find the interval first, 𝑥 = 0 ⟹ 𝑓 0 = 35
𝑥 = −1 ⟹ 𝑓 −1 =13
∴ 𝑥 ∈ [−2, −1]
Lets start the Bisection iterations now,
𝑥1 =
−2−1
2
= −1.5, 𝑓 𝑥1 = 𝑓 −1.5 = 0.125 > 0 ∴ 𝑥 ∈ [−2, −1.5]
𝑥2 =
−2 − 1.5
2
= −1.75, 𝑓 𝑥2 = 𝑓 −1.75 = -7.12 < 0
∴ 𝑥 ∈ [−1.75, −1.5]
𝑥3 =
−1.75 − 1.5
2
= −1.625, 𝑓 𝑥3 = 𝑓 −1.625 = -3.42 < 0
∴ 𝑥 ∈ [−1.625, −1.5]
> 0
> 0
𝑥 = −2 ⟹ 𝑓 −2 = -15
< 0
𝑥4 =
−1.625 − 1.5
2
= −1.563, 𝑓 𝑥4 = 𝑓 −1.563 = -1.641 < 0 ∴ 𝑥 ∈ [−1.563, −1.5]
𝑥5 =
−1.563 − 1.5
2
= −1.532, 𝑓 𝑥5 = 𝑓 −1.532 = -0.768 < 0 ∴ 𝑥 ∈ [−1.532, −1.5]
𝑥6 =
−1.532 − 1.5
2
= −1.516, 𝑓 𝑥6 = 𝑓 −1.516 = -0.32 < 0 ∴ 𝑥 ∈ [−1.516, −1.5]
𝑥7 =
−1.516 − 1.5
2
= −1.508, 𝑓 𝑥7 = 𝑓 −1.508 = -0.097 < 0∴ 𝑥 ∈ [−1.508, −1.5]
𝑥8 =
−1.508 − 1.5
2
= −1.504, 𝑓 𝑥8 = 𝑓 −1.504 = 0.014 > 0 ∴ 𝑥 ∈ [−1.508, −1.504]
|(-1.508) – (-1.504)| = 0.004 ≈ 0
∴ 𝒙 = −𝟏.504 is one of the approximate negative real root of the give
correct up to 2 decimal places.
False Position Method
(Regula -Falsi)
ABOUT REGULA-FALSI METHOD
This technique is similar to the bisection
method except that the next iteration is
taken as the line of interception between
the pair of x-values and the x-axis rather
than at the midpoint.
(a, f(a))
(b, f(b))
By two point line
formula,
𝒚 − 𝒚𝟏
𝒚𝟏 − 𝒚𝟐
=
𝒙 − 𝒙𝟏
𝒙𝟏 − 𝒙𝟐
⟹
𝒇(𝒙) − 𝒇(𝒂)
𝒇(𝒂) − 𝒇(𝒃)
=
𝒙 − 𝒂
𝒂 − 𝒃
⟹
−𝒇(𝒂)
𝒇(𝒂) − 𝒇(𝒃)
=
𝒙𝟏 − 𝒂
𝒂 − 𝒃
𝒇𝒐𝒓 𝒙 = 𝒙𝟏, 𝒇 𝒙 = 𝟎 ⟹ 𝒙𝟏 = 𝒂 −
(𝒂 − 𝒃)𝒇(𝒂)
𝒇(𝒂) − 𝒇(𝒃)
⟹ 𝒙𝟏 =
−𝒂𝒇(𝒃) + 𝒃𝒇(𝒂)
𝒇(𝒂) − 𝒇(𝒃)
⟹ 𝒙𝟏 =
𝒂𝒇 𝒃 − 𝒃𝒇(𝒂)
𝒇(𝒃) − 𝒇(𝒂)
Iterative formula for
Method of False Position
X
f(x)
Root
a
b
𝒙𝟏 𝒙𝟐
CONTD..
Assumptions:
Given an interval [a, b]
f(x) is continuous on [a, b]
f(a) and f(b) have opposite signs.
 These assumptions ensure the existence of at least one zero in the interval [a, b] and
the false position method can be used to obtain a smaller interval that contains the
zero.
 For that we perform the following steps:
1. Compute the in between point on x-axis,
2. Evaluate f(𝒙𝟏)
3. If f(a) f(𝒙𝟏) < 0 then new interval [a, 𝒙𝟏]
If f(a) f(𝒙𝟏) > 0 then new interval [𝒙𝟏, b]
4. Repeat the procedure until 𝒇(𝒙𝒊) < tolerance value.
𝒙𝟏 =
𝒂𝒇 𝒃 − 𝒃𝒇(𝒂)
𝒇(𝒃) − 𝒇(𝒂)
Solution: Lets find the interval first,
𝑥 = 0 ⟹ 𝑓 0 = −2 < 0
𝑥 = 1 ⟹ 𝑓 1 = 4 > 0
∴ 𝑥 ∈ [0, 1]
Lets start the iterations now,
Example 1: Determine the real root of
𝒇 𝒙 = 𝟓𝒙𝟑 − 𝟓𝒙𝟐 + 𝟔𝒙 − 𝟐 = 𝟎 using Method of False
Position.
𝒙𝟏 =
𝒂𝒇 𝒃 − 𝒃𝒇(𝒂)
𝒇(𝒃) − 𝒇(𝒂)
=
𝟎𝒇 𝟏 − 𝟏𝒇(𝟎)
𝒇(𝟏) − 𝒇(𝟎)
=
𝟎 − 𝟏(−𝟐)
𝟒 − (−𝟐)
=
𝟐
𝟔
= 𝟎. 𝟑𝟑𝟑
𝒇 𝒙𝟏 = 𝒇 𝟎. 𝟑𝟑𝟑 = -0.372 < 0 ∴ 𝒙 ∈ [𝟎. 𝟑𝟑𝟑, 𝟏]
𝒙𝟐 =
𝒙𝟏𝒇 𝒃 − 𝒃𝒇(𝒙𝟏)
𝒇(𝒃) − 𝒇(𝒙𝟏)
=
𝟎. 𝟑𝟑𝟑𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟑𝟑𝟑)
𝒇(𝟏) − 𝒇(𝟎. 𝟑𝟑𝟑)
=
𝟎. 𝟑𝟑𝟑(𝟒) − 𝟏(−𝟎. 𝟑𝟕𝟐)
𝟒 − (−𝟎. 𝟑𝟕𝟐)
= 𝟎. 𝟑𝟖𝟗𝟖
𝒇 𝒙𝟐 = 𝒇 𝟎. 𝟑𝟖𝟗𝟖 = -0.125 < 0 ∴ 𝒙 ∈ [𝟎. 𝟑𝟖𝟗𝟖, 𝟏]
𝒙𝟑 =
𝒙𝟐𝒇 𝒃 − 𝒃𝒇(𝒙𝟐)
𝒇(𝒃) − 𝒇(𝒙𝟐) =
𝟎. 𝟑𝟖𝟗𝟖𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟑𝟖𝟗𝟖)
𝒇(𝟏) − 𝒇(𝟎. 𝟑𝟖𝟗𝟖)
=
𝟎. 𝟑𝟖𝟗𝟖(𝟒) − 𝟏(−𝟎. 𝟏𝟐𝟓)
𝟒 − (−𝟎. 𝟏𝟐𝟓) = 𝟎.4083
𝒇 𝒙𝟑 = 𝒇 𝟎. 𝟒𝟎𝟖𝟑 = -0.043 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟎𝟖𝟑, 𝟏]
𝒙𝟒 =
𝒙𝟑𝒇 𝒃 − 𝒃𝒇(𝒙𝟑)
𝒇(𝒃) − 𝒇(𝒙𝟑)
=
𝟎. 𝟒𝟎𝟖𝟑𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟎𝟖𝟑)
𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟎𝟖𝟑)
=
𝟎. 𝟒𝟎𝟖𝟑(𝟒) − 𝟏(−𝟎. 𝟎𝟒𝟑)
𝟒 − (−𝟎. 𝟎𝟒𝟑)
= 𝟎.415
𝒇 𝒙𝟒 = 𝒇 𝟎. 𝟒𝟏𝟓 = -0.014 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟓, 𝟏]
𝒙𝟓 =
𝒙𝟒𝒇 𝒃 − 𝒃𝒇(𝒙𝟒)
𝒇(𝒃) − 𝒇(𝒙𝟒)
=
𝟎. 𝟒𝟏𝟓𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟏𝟓)
𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟏𝟓)
=
𝟎. 𝟒𝟏𝟓(𝟒) − 𝟏(−𝟎. 𝟎𝟏𝟒)
𝟒 − (−𝟎. 𝟎𝟏𝟒)
= 𝟎.417
𝒇 𝒙𝟓 = 𝒇 𝟎. 𝟒𝟏𝟕 = -0.005 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟕, 𝟏]
𝒙𝟔 =
𝒙𝟓𝒇 𝒃 − 𝒃𝒇(𝒙𝟓)
𝒇(𝒃) − 𝒇(𝒙𝟓)
=
𝟎. 𝟒𝟏𝟕𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟏𝟕)
𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟏𝟕)
=
𝟎. 𝟒𝟏𝟕(𝟒) − 𝟏(−𝟎. 𝟎𝟎𝟓)
𝟒 − (−𝟎. 𝟎𝟎𝟓)
= 𝟎.4177
𝒇 𝒙𝟔 = 𝒇 𝟎. 𝟒𝟏𝟕𝟕 = -0.0018 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟕𝟕, 𝟏]
𝒙𝟕 =
𝒙𝟔𝒇 𝒃 − 𝒃𝒇(𝒙𝟔)
𝒇(𝒃) − 𝒇(𝒙𝟔)
=
𝟎. 𝟒𝟏𝟕𝟕𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟏𝟕𝟕)
𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟏𝟕𝟕)
=
𝟎. 𝟒𝟏𝟕𝟕(𝟒) − 𝟏(−𝟎. 𝟎𝟎𝟏𝟖)
𝟒 − (−𝟎. 𝟎𝟎𝟏𝟖)
= 𝟎.4179
𝒇 𝒙𝟕 = 𝒇 𝟎. 𝟒𝟏𝟕𝟗 = -0.0009 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟕𝟗, 𝟏]
∴ 𝒙 = 𝟎. 𝟒𝟏𝟕𝟗 is one of the approximate real root of the given equatio
correct up to 3 decimal places.
|f(0.4179)| = 0.0009 ≈ 0
Example 2: Determine the real root of 𝒍𝒏 𝒙𝟒 = 𝟎. 𝟕 using
Regula – Falsi Method correct up to three decimal places.
Solution: Lets find the interval for,
𝑥 = 1 ⟹ 𝑓 1 = −0.7
𝑥 = 2 ⟹ 𝑓 2 = 2.073
∴ 𝑥 ∈ [1, 2]
Lets start the iterations now,
𝒇 𝒙 = 𝒍𝒏 𝒙𝟒 − 𝟎. 𝟕
𝒙𝟏 =
𝒂𝒇 𝒃 − 𝒃𝒇(𝒂)
𝒇(𝒃) − 𝒇(𝒂)
=
𝟏𝒇 𝟐 − 𝟐𝒇(𝟏)
𝒇(𝟐) − 𝒇(𝟏)
=
𝟐. 𝟎𝟕𝟑 − 𝟐(−𝟎. 𝟕)
𝟐. 𝟎𝟕𝟑 − (−𝟎. 𝟕)
= 𝟏. 𝟐𝟓𝟐
𝒇 𝒙𝟏 = 𝒇 𝟏. 𝟐𝟓𝟐 = 0.199 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟐𝟓𝟐]
< 0
> 0
𝒙𝟐 =
𝒂𝒇 𝒙𝟏 − 𝒙𝟏𝒇(𝒂)
𝒇(𝒙𝟏) − 𝒇(𝒂)
=
𝟏𝒇 𝟏. 𝟐𝟓𝟐 − 𝟏. 𝟐𝟓𝟐𝒇(𝟏)
𝒇(𝟏. 𝟐𝟓𝟐) − 𝒇(𝟏)
=
𝟎. 𝟏𝟗𝟗 − 𝟏. 𝟐𝟓𝟐(−𝟎. 𝟕)
𝟎. 𝟏𝟗𝟗 − (−𝟎. 𝟕)
= 𝟏.196
𝒇 𝒙𝟐 = 𝒇 𝟏. 𝟏𝟗𝟔 = 0.016 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟔]
𝒙𝟑 =
𝒂𝒇 𝒙𝟐 − 𝒙𝟐𝒇(𝒂)
𝒇(𝒙𝟐) − 𝒇(𝒂)
=
𝟏𝒇 𝟏. 𝟏𝟗𝟔 − 𝟏. 𝟏𝟗𝟔𝒇(𝟏)
𝒇(𝟏. 𝟏𝟗𝟔) − 𝒇(𝟏)
=
𝟎. 𝟎𝟏𝟔 − 𝟏. 𝟏𝟗𝟔(−𝟎. 𝟕)
𝟎. 𝟎𝟏𝟔 − (−𝟎. 𝟕)
= 𝟏.192
𝒇 𝒙𝟑 = 𝒇 𝟏. 𝟏𝟗𝟐 = 0.0025 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟐]
𝒙𝟒 =
𝒂𝒇 𝒙𝟑 − 𝒙𝟑𝒇(𝒂)
𝒇(𝒙𝟑) − 𝒇(𝒂)
=
𝟏𝒇 𝟏. 𝟏𝟗𝟐 − 𝟏. 𝟏𝟗𝟐𝒇(𝟏)
𝒇(𝟏. 𝟏𝟗𝟐) − 𝒇(𝟏)
=
𝟎. 𝟎𝟎𝟐𝟓 − 𝟏. 𝟏𝟗𝟐(−𝟎. 𝟕)
𝟎. 𝟎𝟎𝟐𝟓 − (−𝟎. 𝟕)
= 𝟏.1913
𝒇 𝒙𝟒 = 𝒇 𝟏. 𝟏𝟗𝟏𝟑 = 0.00002 > 0∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟏𝟑]
𝒙𝟓 =
𝒂𝒇 𝒙𝟒 − 𝒙𝟒𝒇(𝒂)
𝒇(𝒙𝟒) − 𝒇(𝒂)
=
𝟏𝒇 𝟏. 𝟏𝟗𝟏𝟑 − 𝟏. 𝟏𝟗𝟏𝟑𝒇(𝟏)
𝒇(𝟏. 𝟏𝟗𝟐) − 𝒇(𝟏)
=
𝟎. 𝟎𝟎𝟎𝟎𝟐 − 𝟏. 𝟏𝟗𝟏𝟑(−𝟎. 𝟕)
𝟎. 𝟎𝟎𝟎𝟎𝟐 − (−𝟎. 𝟕)
= 𝟏.19129
𝒇 𝒙𝟓 = 𝒇 𝟏. 𝟏𝟗𝟏𝟐𝟗 = 0.00001 > 0
∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟏𝟐𝟗]
∴ 𝒙 = 𝟏. 𝟏𝟗𝟏𝟐𝟗 is the approximate real root of the given equation correct up to 3
PO_groupVI_Term assignment.pptx

More Related Content

Similar to PO_groupVI_Term assignment.pptx

engineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vengineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-v
Kundan Kumar
 

Similar to PO_groupVI_Term assignment.pptx (20)

Laplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptxLaplace & Inverse Transform convoltuion them.pptx
Laplace & Inverse Transform convoltuion them.pptx
 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .
 
Gen Math topic 1.pptx
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptx
 
Aed.pptx
Aed.pptxAed.pptx
Aed.pptx
 
Numeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdades
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-VEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-V
 
engineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vengineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-v
 
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Math
MathMath
Math
 
NA_Lecture-7.pdf
NA_Lecture-7.pdfNA_Lecture-7.pdf
NA_Lecture-7.pdf
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsxClass-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
Class-10-Mathematics-Chapter-1-CBSE-NCERT.ppsx
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysis
 

Recently uploaded

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 

Recently uploaded (20)

Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 

PO_groupVI_Term assignment.pptx

  • 1. Process Optimization Term assignment Submitted to : Prof . Amit Kumar By : (Group VI) 19bch049 - Punit patel 19bch050 - Raj patel 19bch051 - Riya patel 19bch052 - Sahil patel 19bch053 - Yash patel
  • 2. Bracketing Method  In bracketing methods, the method starts with an interval that contains the root and a procedure is used to obtain a smaller interval containing the root.  Such methods are always convergent.  Examples of bracketing methods:  Bisection method  False position method
  • 4. ABOUT BISECTION METHOD  Assumptions: Given an interval [a, b] f(x) is continuous on [a, b] f(a) and f(b) have opposite signs.  These assumptions ensure the existence of at least one zero in the interval [a, b] and the bisection method can be used to obtain a smaller interval that contains the zero.  For that we perform the following steps: 1. Compute the mid point c = (a + b) / 2 2. Evaluate f(c) 3. If f(a) f(c) < 0 then new interval [a, c] If f(a) f(c) > 0 then new interval [c, b] 4. Repeat the procedure until we get convergence. a b f(a) f(b) c a C1 C2
  • 5. CONTD..  If f(c) > 0, let anew = a and bnew = c and repeat process.  If f(c) < 0, let anew = c and bnew = b and repeat process.  This reassignment ensures the root is always bracketed!! initial point ‘a’ root ‘d’ initial point ‘b’ a c b d  Bisection is an iterative process, where the initial interval is halved until the size of the interval decreases below some predefined tolerance :|a - b|   or f(x) falls below a tolerance :|f(c ) – f(c-1)|  .
  • 6. Example 1: Determine the real root of 𝒇 𝒙 = 𝟓𝒙𝟑 − 𝟓𝒙𝟐 + 𝟔𝒙 − 𝟐 = 𝟎 using Bisection Method. Solution: Lets find the interval first, 𝑥 = 0 ⟹ 𝑓 0 = −2 𝑥 = 1 ⟹ 𝑓 1 = 4 ∴ 𝑥 ∈ [0, 1] Lets start the Bisection iterations now, 𝑥1 = 0+1 2 = 0.5, 𝑓 𝑥1 = 𝑓 0.5 = 0.375 > 0∴ 𝑥 ∈ [0, 0.5] 𝑥2 = 0 + 0.5 2 = 0.25, 𝑓 𝑥2 = 𝑓 0.25 =-0.7344 < 0 ∴ 𝑥 ∈ [0.25, 0.5] 𝑥3 = 0.25 + 0.5 2 = 0.375, 𝑓 𝑥3 = 𝑓 0.375 =-0.1895<0 ∴ 𝑥 ∈ [0.375, 0.5] < 0 > 0
  • 7. 𝑥4 = 0.375 + 0.5 2 = 0.4375, 𝑓 𝑥4 = 𝑓 0.4375 = 0.0867 > 0∴ 𝑥 ∈ [0.375, 0.4375] 𝑥5 = 0.375 + 0.4375 2 = 0.4063, 𝑓 𝑥5 = 𝑓 0.4063 = -0.0522 < 0 ∴ 𝑥 ∈ [0.4063, 0.4375] 𝑥6 = 0.4063 + 0.4375 2 = 0.4219,𝑓 𝑥6 = 𝑓 0.4219 = 0.0169 > 0 ∴ 𝑥 ∈ [0.4063, 0.4219] 𝑥7 = 0.4063 + 0.4219 2 = 0.4141,𝑓 𝑥7 = 𝑓 0.4141 = -0.0177 < 0 ∴ 𝑥 ∈ [0.4141, 0.4219] 𝑥8 = 0.4141 + 0.4219 2 = 0.418, 𝑓 𝑥8 = 𝑓 0.418 = -0.00044 < 0 ∴ 𝑥 ∈ [0.418, 0.4219] 𝑥9 = 0.418 + 0.4219 2 = 0.42, 𝑓 𝑥9 = 𝑓 0.42 = 0.0084 > 0 ∴ 𝑥 ∈ [0.42, 0.4219] |0.42 – 0.4219| = 0.0019 ≈ 0 ∴ 𝒙 = 𝟎. 𝟒𝟐 is one of the approximate real root of the given equation correct up to 2 decimal places.
  • 8. Example 2: Determine the negative real root of 𝒇 𝒙 = 𝒙𝟑 + 𝟐𝟏𝒙 + 35 using Bisection Method correct up to 2 decimal places. Solution: Lets find the interval first, 𝑥 = 0 ⟹ 𝑓 0 = 35 𝑥 = −1 ⟹ 𝑓 −1 =13 ∴ 𝑥 ∈ [−2, −1] Lets start the Bisection iterations now, 𝑥1 = −2−1 2 = −1.5, 𝑓 𝑥1 = 𝑓 −1.5 = 0.125 > 0 ∴ 𝑥 ∈ [−2, −1.5] 𝑥2 = −2 − 1.5 2 = −1.75, 𝑓 𝑥2 = 𝑓 −1.75 = -7.12 < 0 ∴ 𝑥 ∈ [−1.75, −1.5] 𝑥3 = −1.75 − 1.5 2 = −1.625, 𝑓 𝑥3 = 𝑓 −1.625 = -3.42 < 0 ∴ 𝑥 ∈ [−1.625, −1.5] > 0 > 0 𝑥 = −2 ⟹ 𝑓 −2 = -15 < 0
  • 9. 𝑥4 = −1.625 − 1.5 2 = −1.563, 𝑓 𝑥4 = 𝑓 −1.563 = -1.641 < 0 ∴ 𝑥 ∈ [−1.563, −1.5] 𝑥5 = −1.563 − 1.5 2 = −1.532, 𝑓 𝑥5 = 𝑓 −1.532 = -0.768 < 0 ∴ 𝑥 ∈ [−1.532, −1.5] 𝑥6 = −1.532 − 1.5 2 = −1.516, 𝑓 𝑥6 = 𝑓 −1.516 = -0.32 < 0 ∴ 𝑥 ∈ [−1.516, −1.5] 𝑥7 = −1.516 − 1.5 2 = −1.508, 𝑓 𝑥7 = 𝑓 −1.508 = -0.097 < 0∴ 𝑥 ∈ [−1.508, −1.5] 𝑥8 = −1.508 − 1.5 2 = −1.504, 𝑓 𝑥8 = 𝑓 −1.504 = 0.014 > 0 ∴ 𝑥 ∈ [−1.508, −1.504] |(-1.508) – (-1.504)| = 0.004 ≈ 0 ∴ 𝒙 = −𝟏.504 is one of the approximate negative real root of the give correct up to 2 decimal places.
  • 11. ABOUT REGULA-FALSI METHOD This technique is similar to the bisection method except that the next iteration is taken as the line of interception between the pair of x-values and the x-axis rather than at the midpoint. (a, f(a)) (b, f(b)) By two point line formula, 𝒚 − 𝒚𝟏 𝒚𝟏 − 𝒚𝟐 = 𝒙 − 𝒙𝟏 𝒙𝟏 − 𝒙𝟐 ⟹ 𝒇(𝒙) − 𝒇(𝒂) 𝒇(𝒂) − 𝒇(𝒃) = 𝒙 − 𝒂 𝒂 − 𝒃 ⟹ −𝒇(𝒂) 𝒇(𝒂) − 𝒇(𝒃) = 𝒙𝟏 − 𝒂 𝒂 − 𝒃 𝒇𝒐𝒓 𝒙 = 𝒙𝟏, 𝒇 𝒙 = 𝟎 ⟹ 𝒙𝟏 = 𝒂 − (𝒂 − 𝒃)𝒇(𝒂) 𝒇(𝒂) − 𝒇(𝒃) ⟹ 𝒙𝟏 = −𝒂𝒇(𝒃) + 𝒃𝒇(𝒂) 𝒇(𝒂) − 𝒇(𝒃) ⟹ 𝒙𝟏 = 𝒂𝒇 𝒃 − 𝒃𝒇(𝒂) 𝒇(𝒃) − 𝒇(𝒂) Iterative formula for Method of False Position X f(x) Root a b 𝒙𝟏 𝒙𝟐
  • 12. CONTD.. Assumptions: Given an interval [a, b] f(x) is continuous on [a, b] f(a) and f(b) have opposite signs.  These assumptions ensure the existence of at least one zero in the interval [a, b] and the false position method can be used to obtain a smaller interval that contains the zero.  For that we perform the following steps: 1. Compute the in between point on x-axis, 2. Evaluate f(𝒙𝟏) 3. If f(a) f(𝒙𝟏) < 0 then new interval [a, 𝒙𝟏] If f(a) f(𝒙𝟏) > 0 then new interval [𝒙𝟏, b] 4. Repeat the procedure until 𝒇(𝒙𝒊) < tolerance value. 𝒙𝟏 = 𝒂𝒇 𝒃 − 𝒃𝒇(𝒂) 𝒇(𝒃) − 𝒇(𝒂)
  • 13. Solution: Lets find the interval first, 𝑥 = 0 ⟹ 𝑓 0 = −2 < 0 𝑥 = 1 ⟹ 𝑓 1 = 4 > 0 ∴ 𝑥 ∈ [0, 1] Lets start the iterations now, Example 1: Determine the real root of 𝒇 𝒙 = 𝟓𝒙𝟑 − 𝟓𝒙𝟐 + 𝟔𝒙 − 𝟐 = 𝟎 using Method of False Position. 𝒙𝟏 = 𝒂𝒇 𝒃 − 𝒃𝒇(𝒂) 𝒇(𝒃) − 𝒇(𝒂) = 𝟎𝒇 𝟏 − 𝟏𝒇(𝟎) 𝒇(𝟏) − 𝒇(𝟎) = 𝟎 − 𝟏(−𝟐) 𝟒 − (−𝟐) = 𝟐 𝟔 = 𝟎. 𝟑𝟑𝟑 𝒇 𝒙𝟏 = 𝒇 𝟎. 𝟑𝟑𝟑 = -0.372 < 0 ∴ 𝒙 ∈ [𝟎. 𝟑𝟑𝟑, 𝟏]
  • 14. 𝒙𝟐 = 𝒙𝟏𝒇 𝒃 − 𝒃𝒇(𝒙𝟏) 𝒇(𝒃) − 𝒇(𝒙𝟏) = 𝟎. 𝟑𝟑𝟑𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟑𝟑𝟑) 𝒇(𝟏) − 𝒇(𝟎. 𝟑𝟑𝟑) = 𝟎. 𝟑𝟑𝟑(𝟒) − 𝟏(−𝟎. 𝟑𝟕𝟐) 𝟒 − (−𝟎. 𝟑𝟕𝟐) = 𝟎. 𝟑𝟖𝟗𝟖 𝒇 𝒙𝟐 = 𝒇 𝟎. 𝟑𝟖𝟗𝟖 = -0.125 < 0 ∴ 𝒙 ∈ [𝟎. 𝟑𝟖𝟗𝟖, 𝟏] 𝒙𝟑 = 𝒙𝟐𝒇 𝒃 − 𝒃𝒇(𝒙𝟐) 𝒇(𝒃) − 𝒇(𝒙𝟐) = 𝟎. 𝟑𝟖𝟗𝟖𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟑𝟖𝟗𝟖) 𝒇(𝟏) − 𝒇(𝟎. 𝟑𝟖𝟗𝟖) = 𝟎. 𝟑𝟖𝟗𝟖(𝟒) − 𝟏(−𝟎. 𝟏𝟐𝟓) 𝟒 − (−𝟎. 𝟏𝟐𝟓) = 𝟎.4083 𝒇 𝒙𝟑 = 𝒇 𝟎. 𝟒𝟎𝟖𝟑 = -0.043 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟎𝟖𝟑, 𝟏] 𝒙𝟒 = 𝒙𝟑𝒇 𝒃 − 𝒃𝒇(𝒙𝟑) 𝒇(𝒃) − 𝒇(𝒙𝟑) = 𝟎. 𝟒𝟎𝟖𝟑𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟎𝟖𝟑) 𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟎𝟖𝟑) = 𝟎. 𝟒𝟎𝟖𝟑(𝟒) − 𝟏(−𝟎. 𝟎𝟒𝟑) 𝟒 − (−𝟎. 𝟎𝟒𝟑) = 𝟎.415 𝒇 𝒙𝟒 = 𝒇 𝟎. 𝟒𝟏𝟓 = -0.014 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟓, 𝟏] 𝒙𝟓 = 𝒙𝟒𝒇 𝒃 − 𝒃𝒇(𝒙𝟒) 𝒇(𝒃) − 𝒇(𝒙𝟒) = 𝟎. 𝟒𝟏𝟓𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟏𝟓) 𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟏𝟓) = 𝟎. 𝟒𝟏𝟓(𝟒) − 𝟏(−𝟎. 𝟎𝟏𝟒) 𝟒 − (−𝟎. 𝟎𝟏𝟒) = 𝟎.417 𝒇 𝒙𝟓 = 𝒇 𝟎. 𝟒𝟏𝟕 = -0.005 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟕, 𝟏]
  • 15. 𝒙𝟔 = 𝒙𝟓𝒇 𝒃 − 𝒃𝒇(𝒙𝟓) 𝒇(𝒃) − 𝒇(𝒙𝟓) = 𝟎. 𝟒𝟏𝟕𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟏𝟕) 𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟏𝟕) = 𝟎. 𝟒𝟏𝟕(𝟒) − 𝟏(−𝟎. 𝟎𝟎𝟓) 𝟒 − (−𝟎. 𝟎𝟎𝟓) = 𝟎.4177 𝒇 𝒙𝟔 = 𝒇 𝟎. 𝟒𝟏𝟕𝟕 = -0.0018 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟕𝟕, 𝟏] 𝒙𝟕 = 𝒙𝟔𝒇 𝒃 − 𝒃𝒇(𝒙𝟔) 𝒇(𝒃) − 𝒇(𝒙𝟔) = 𝟎. 𝟒𝟏𝟕𝟕𝒇 𝟏 − 𝟏𝒇(𝟎. 𝟒𝟏𝟕𝟕) 𝒇(𝟏) − 𝒇(𝟎. 𝟒𝟏𝟕𝟕) = 𝟎. 𝟒𝟏𝟕𝟕(𝟒) − 𝟏(−𝟎. 𝟎𝟎𝟏𝟖) 𝟒 − (−𝟎. 𝟎𝟎𝟏𝟖) = 𝟎.4179 𝒇 𝒙𝟕 = 𝒇 𝟎. 𝟒𝟏𝟕𝟗 = -0.0009 < 0 ∴ 𝒙 ∈ [𝟎. 𝟒𝟏𝟕𝟗, 𝟏] ∴ 𝒙 = 𝟎. 𝟒𝟏𝟕𝟗 is one of the approximate real root of the given equatio correct up to 3 decimal places. |f(0.4179)| = 0.0009 ≈ 0
  • 16. Example 2: Determine the real root of 𝒍𝒏 𝒙𝟒 = 𝟎. 𝟕 using Regula – Falsi Method correct up to three decimal places. Solution: Lets find the interval for, 𝑥 = 1 ⟹ 𝑓 1 = −0.7 𝑥 = 2 ⟹ 𝑓 2 = 2.073 ∴ 𝑥 ∈ [1, 2] Lets start the iterations now, 𝒇 𝒙 = 𝒍𝒏 𝒙𝟒 − 𝟎. 𝟕 𝒙𝟏 = 𝒂𝒇 𝒃 − 𝒃𝒇(𝒂) 𝒇(𝒃) − 𝒇(𝒂) = 𝟏𝒇 𝟐 − 𝟐𝒇(𝟏) 𝒇(𝟐) − 𝒇(𝟏) = 𝟐. 𝟎𝟕𝟑 − 𝟐(−𝟎. 𝟕) 𝟐. 𝟎𝟕𝟑 − (−𝟎. 𝟕) = 𝟏. 𝟐𝟓𝟐 𝒇 𝒙𝟏 = 𝒇 𝟏. 𝟐𝟓𝟐 = 0.199 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟐𝟓𝟐] < 0 > 0
  • 17. 𝒙𝟐 = 𝒂𝒇 𝒙𝟏 − 𝒙𝟏𝒇(𝒂) 𝒇(𝒙𝟏) − 𝒇(𝒂) = 𝟏𝒇 𝟏. 𝟐𝟓𝟐 − 𝟏. 𝟐𝟓𝟐𝒇(𝟏) 𝒇(𝟏. 𝟐𝟓𝟐) − 𝒇(𝟏) = 𝟎. 𝟏𝟗𝟗 − 𝟏. 𝟐𝟓𝟐(−𝟎. 𝟕) 𝟎. 𝟏𝟗𝟗 − (−𝟎. 𝟕) = 𝟏.196 𝒇 𝒙𝟐 = 𝒇 𝟏. 𝟏𝟗𝟔 = 0.016 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟔] 𝒙𝟑 = 𝒂𝒇 𝒙𝟐 − 𝒙𝟐𝒇(𝒂) 𝒇(𝒙𝟐) − 𝒇(𝒂) = 𝟏𝒇 𝟏. 𝟏𝟗𝟔 − 𝟏. 𝟏𝟗𝟔𝒇(𝟏) 𝒇(𝟏. 𝟏𝟗𝟔) − 𝒇(𝟏) = 𝟎. 𝟎𝟏𝟔 − 𝟏. 𝟏𝟗𝟔(−𝟎. 𝟕) 𝟎. 𝟎𝟏𝟔 − (−𝟎. 𝟕) = 𝟏.192 𝒇 𝒙𝟑 = 𝒇 𝟏. 𝟏𝟗𝟐 = 0.0025 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟐] 𝒙𝟒 = 𝒂𝒇 𝒙𝟑 − 𝒙𝟑𝒇(𝒂) 𝒇(𝒙𝟑) − 𝒇(𝒂) = 𝟏𝒇 𝟏. 𝟏𝟗𝟐 − 𝟏. 𝟏𝟗𝟐𝒇(𝟏) 𝒇(𝟏. 𝟏𝟗𝟐) − 𝒇(𝟏) = 𝟎. 𝟎𝟎𝟐𝟓 − 𝟏. 𝟏𝟗𝟐(−𝟎. 𝟕) 𝟎. 𝟎𝟎𝟐𝟓 − (−𝟎. 𝟕) = 𝟏.1913 𝒇 𝒙𝟒 = 𝒇 𝟏. 𝟏𝟗𝟏𝟑 = 0.00002 > 0∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟏𝟑] 𝒙𝟓 = 𝒂𝒇 𝒙𝟒 − 𝒙𝟒𝒇(𝒂) 𝒇(𝒙𝟒) − 𝒇(𝒂) = 𝟏𝒇 𝟏. 𝟏𝟗𝟏𝟑 − 𝟏. 𝟏𝟗𝟏𝟑𝒇(𝟏) 𝒇(𝟏. 𝟏𝟗𝟐) − 𝒇(𝟏) = 𝟎. 𝟎𝟎𝟎𝟎𝟐 − 𝟏. 𝟏𝟗𝟏𝟑(−𝟎. 𝟕) 𝟎. 𝟎𝟎𝟎𝟎𝟐 − (−𝟎. 𝟕) = 𝟏.19129 𝒇 𝒙𝟓 = 𝒇 𝟏. 𝟏𝟗𝟏𝟐𝟗 = 0.00001 > 0 ∴ 𝒙 ∈ [𝟏, 𝟏. 𝟏𝟗𝟏𝟐𝟗] ∴ 𝒙 = 𝟏. 𝟏𝟗𝟏𝟐𝟗 is the approximate real root of the given equation correct up to 3

Editor's Notes

  1. 6
  2. 8