SlideShare ist ein Scribd-Unternehmen logo

Tips for data science competitions

Owen Zhang
Owen Zhang
Owen ZhangResearch Data Scientist um Hedge Fund

An updated version of my earlier presentation.

Tips for data science competitions

1 von 32
Downloaden Sie, um offline zu lesen
Winning Data Science
Competitions
Some (hopefully) useful pointers
Owen Zhang
Data Scientist
A plug for myself
Current
● Chief Product Officer
Previous
● VP, Science
A plug for myself
Current
● Chief Product Officer
Previous
● VP, Science
1st / 330,336
176,181 points
Agenda
● Structure of a Data Science Competition
● Philosophical considerations
● Sources of competitive advantage
● Some tools/techniques
● Three cases -- Amazon Allstate LM
● Apply what we learn out of competitions
Technique
Strategy
Philosophy
Data Science Competitions remind us that the purpose of a
predictive model is to predict on data that we have NOT seen.
Training Public LB
(validation)
Private LB
(holdout)
Build model using Training Data to
predict outcomes on Private LB Data
Structure of a Data Science Competition
Quick but sometimes misleading feedback
A little “philosophy”
● There are many ways to overfit
● Beware of “multiple comparison fallacy”
○ There is a cost in “peeking at the answer”,
○ Usually the first idea (if it works) is the best
“Think” more, “try” less
Anzeige

Recomendados

General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsMark Peng
 
Winning data science competitions, presented by Owen Zhang
Winning data science competitions, presented by Owen ZhangWinning data science competitions, presented by Owen Zhang
Winning data science competitions, presented by Owen ZhangVivian S. Zhang
 
Model selection and tuning at scale
Model selection and tuning at scaleModel selection and tuning at scale
Model selection and tuning at scaleOwen Zhang
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature EngineeringHJ van Veen
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
KaggleのテクニックYasunori Ozaki
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリングmlm_kansai
 
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...
[DL輪読会]Revisiting Deep Learning Models for Tabular Data  (NeurIPS 2021) 表形式デー...[DL輪読会]Revisiting Deep Learning Models for Tabular Data  (NeurIPS 2021) 表形式デー...
[DL輪読会]Revisiting Deep Learning Models for Tabular Data (NeurIPS 2021) 表形式デー...Deep Learning JP
 
Tips and tricks to win kaggle data science competitions
Tips and tricks to win kaggle data science competitionsTips and tricks to win kaggle data science competitions
Tips and tricks to win kaggle data science competitionsDarius Barušauskas
 

Más contenido relacionado

Was ist angesagt?

Feature Engineering
Feature EngineeringFeature Engineering
Feature EngineeringSri Ambati
 
探索と活用の戦略 ベイズ最適化と多腕バンディット
探索と活用の戦略 ベイズ最適化と多腕バンディット探索と活用の戦略 ベイズ最適化と多腕バンディット
探索と活用の戦略 ベイズ最適化と多腕バンディットH Okazaki
 
TalkingData AdTracking Fraud Detection Challenge (1st place solution)
TalkingData AdTracking  Fraud Detection Challenge (1st place solution)TalkingData AdTracking  Fraud Detection Challenge (1st place solution)
TalkingData AdTracking Fraud Detection Challenge (1st place solution)Takanori Hayashi
 
表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」
表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」
表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」西岡 賢一郎
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?Masanao Ochi
 
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~RyuichiKanoh
 
Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15
Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15
Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15MLconf
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイDeep Learning JP
 
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
遺伝的アルゴリズム(Genetic Algorithm)を始めよう!遺伝的アルゴリズム(Genetic Algorithm)を始めよう!
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!Kazuhide Okamura
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
 
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeTakami Sato
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門hoxo_m
 
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)Keiku322
 
ニューラルネットと深層学習の歴史
ニューラルネットと深層学習の歴史ニューラルネットと深層学習の歴史
ニューラルネットと深層学習の歴史Akinori Abe
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントShohei Hido
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)Satoshi Hara
 
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法智文 中野
 

Was ist angesagt? (20)

Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
 
探索と活用の戦略 ベイズ最適化と多腕バンディット
探索と活用の戦略 ベイズ最適化と多腕バンディット探索と活用の戦略 ベイズ最適化と多腕バンディット
探索と活用の戦略 ベイズ最適化と多腕バンディット
 
TalkingData AdTracking Fraud Detection Challenge (1st place solution)
TalkingData AdTracking  Fraud Detection Challenge (1st place solution)TalkingData AdTracking  Fraud Detection Challenge (1st place solution)
TalkingData AdTracking Fraud Detection Challenge (1st place solution)
 
表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」
表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」
表形式データで高性能な予測モデルを構築する「DNNとXGBoostのアンサンブル学習」
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
 
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
 
Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15
Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15
Misha Bilenko, Principal Researcher, Microsoft at MLconf SEA - 5/01/15
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
遺伝的アルゴリズム(Genetic Algorithm)を始めよう!遺伝的アルゴリズム(Genetic Algorithm)を始めよう!
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision TreeNIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
NIPS2017読み会 LightGBM: A Highly Efficient Gradient Boosting Decision Tree
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
 
ニューラルネットと深層学習の歴史
ニューラルネットと深層学習の歴史ニューラルネットと深層学習の歴史
ニューラルネットと深層学習の歴史
 
あなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイントあなたの業務に機械学習を活用する5つのポイント
あなたの業務に機械学習を活用する5つのポイント
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
ベルヌーイ分布における超パラメータ推定のための経験ベイズ法
 
能動学習セミナー
能動学習セミナー能動学習セミナー
能動学習セミナー
 

Destacado

10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle Competitions10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle CompetitionsDataRobot
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data ScientistDaniel Tunkelang
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in PythonImry Kissos
 
A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)Prof. Dr. Diego Kuonen
 
Hadoop and Machine Learning
Hadoop and Machine LearningHadoop and Machine Learning
Hadoop and Machine Learningjoshwills
 
Data By The People, For The People
Data By The People, For The PeopleData By The People, For The People
Data By The People, For The PeopleDaniel Tunkelang
 
10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning SystemsXavier Amatriain
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Data Science London
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientistryanorban
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013Philip Zheng
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...Sebastian Raschka
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDevashish Shanker
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningVarad Meru
 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesPier Luca Lanzi
 
Myths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsMyths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsDavid Pittman
 
Tutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsTutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsNhatHai Phan
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networksSi Haem
 
Introduction to Big Data/Machine Learning
Introduction to Big Data/Machine LearningIntroduction to Big Data/Machine Learning
Introduction to Big Data/Machine LearningLars Marius Garshol
 
Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural networkDEEPASHRI HK
 
Artificial Intelligence Presentation
Artificial Intelligence PresentationArtificial Intelligence Presentation
Artificial Intelligence Presentationlpaviglianiti
 

Destacado (20)

10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle Competitions10 R Packages to Win Kaggle Competitions
10 R Packages to Win Kaggle Competitions
 
How to Interview a Data Scientist
How to Interview a Data ScientistHow to Interview a Data Scientist
How to Interview a Data Scientist
 
Hands-on Deep Learning in Python
Hands-on Deep Learning in PythonHands-on Deep Learning in Python
Hands-on Deep Learning in Python
 
A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)A Statistician's View on Big Data and Data Science (Version 1)
A Statistician's View on Big Data and Data Science (Version 1)
 
Hadoop and Machine Learning
Hadoop and Machine LearningHadoop and Machine Learning
Hadoop and Machine Learning
 
Data By The People, For The People
Data By The People, For The PeopleData By The People, For The People
Data By The People, For The People
 
10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems
 
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?Big Data [sorry] & Data Science: What Does a Data Scientist Do?
Big Data [sorry] & Data Science: What Does a Data Scientist Do?
 
How to Become a Data Scientist
How to Become a Data ScientistHow to Become a Data Scientist
How to Become a Data Scientist
 
A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013A tutorial on deep learning at icml 2013
A tutorial on deep learning at icml 2013
 
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...An Introduction to Supervised Machine Learning and Pattern Classification: Th...
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
 
Deep Learning for Natural Language Processing
Deep Learning for Natural Language ProcessingDeep Learning for Natural Language Processing
Deep Learning for Natural Language Processing
 
Introduction to Mahout and Machine Learning
Introduction to Mahout and Machine LearningIntroduction to Mahout and Machine Learning
Introduction to Mahout and Machine Learning
 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification Rules
 
Myths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data ScientistsMyths and Mathemagical Superpowers of Data Scientists
Myths and Mathemagical Superpowers of Data Scientists
 
Tutorial on Deep learning and Applications
Tutorial on Deep learning and ApplicationsTutorial on Deep learning and Applications
Tutorial on Deep learning and Applications
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
 
Introduction to Big Data/Machine Learning
Introduction to Big Data/Machine LearningIntroduction to Big Data/Machine Learning
Introduction to Big Data/Machine Learning
 
Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
 
Artificial Intelligence Presentation
Artificial Intelligence PresentationArtificial Intelligence Presentation
Artificial Intelligence Presentation
 

Ähnlich wie Tips for data science competitions

Winning Data Science Competitions (Owen Zhang) - 2014 Boston Data Festival
Winning Data Science Competitions (Owen Zhang)  - 2014 Boston Data FestivalWinning Data Science Competitions (Owen Zhang)  - 2014 Boston Data Festival
Winning Data Science Competitions (Owen Zhang) - 2014 Boston Data Festivalfreshdatabos
 
Winning data science competitions
Winning data science competitionsWinning data science competitions
Winning data science competitionsOwen Zhang
 
PyData Global: Thrifty Machine Learning
PyData Global: Thrifty Machine LearningPyData Global: Thrifty Machine Learning
PyData Global: Thrifty Machine LearningRebecca Bilbro
 
Kaggle and data science
Kaggle and data scienceKaggle and data science
Kaggle and data scienceAkira Shibata
 
Bimbo Final Project Presentation
Bimbo Final Project PresentationBimbo Final Project Presentation
Bimbo Final Project PresentationCan Köklü
 
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle ContestDA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle ContestBerker Kozan
 
Production-Ready BIG ML Workflows - from zero to hero
Production-Ready BIG ML Workflows - from zero to heroProduction-Ready BIG ML Workflows - from zero to hero
Production-Ready BIG ML Workflows - from zero to heroDaniel Marcous
 
CD in Machine Learning Systems
CD in Machine Learning SystemsCD in Machine Learning Systems
CD in Machine Learning SystemsThoughtworks
 
BSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 SessionsBSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 SessionsBigML, Inc
 
"What we learned from 5 years of building a data science software that actual...
"What we learned from 5 years of building a data science software that actual..."What we learned from 5 years of building a data science software that actual...
"What we learned from 5 years of building a data science software that actual...Dataconomy Media
 
Kdd 2013 talk-converted
Kdd 2013 talk-convertedKdd 2013 talk-converted
Kdd 2013 talk-convertedkb10june
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1BigML, Inc
 
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning SystemsXavier Amatriain
 
AI hype or reality
AI  hype or realityAI  hype or reality
AI hype or realityAwantik Das
 
Limits of Machine Learning
Limits of Machine LearningLimits of Machine Learning
Limits of Machine LearningAlexey Grigorev
 
VSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsVSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsBigML, Inc
 
BIG2016- Lessons Learned from building real-life user-focused Big Data systems
BIG2016- Lessons Learned from building real-life user-focused Big Data systemsBIG2016- Lessons Learned from building real-life user-focused Big Data systems
BIG2016- Lessons Learned from building real-life user-focused Big Data systemsXavier Amatriain
 

Ähnlich wie Tips for data science competitions (20)

Winning Data Science Competitions (Owen Zhang) - 2014 Boston Data Festival
Winning Data Science Competitions (Owen Zhang)  - 2014 Boston Data FestivalWinning Data Science Competitions (Owen Zhang)  - 2014 Boston Data Festival
Winning Data Science Competitions (Owen Zhang) - 2014 Boston Data Festival
 
Winning data science competitions
Winning data science competitionsWinning data science competitions
Winning data science competitions
 
PyData Global: Thrifty Machine Learning
PyData Global: Thrifty Machine LearningPyData Global: Thrifty Machine Learning
PyData Global: Thrifty Machine Learning
 
Beat the Benchmark.
Beat the Benchmark.Beat the Benchmark.
Beat the Benchmark.
 
Beat the Benchmark.
Beat the Benchmark.Beat the Benchmark.
Beat the Benchmark.
 
Kaggle and data science
Kaggle and data scienceKaggle and data science
Kaggle and data science
 
Bimbo Final Project Presentation
Bimbo Final Project PresentationBimbo Final Project Presentation
Bimbo Final Project Presentation
 
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle ContestDA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
 
Production-Ready BIG ML Workflows - from zero to hero
Production-Ready BIG ML Workflows - from zero to heroProduction-Ready BIG ML Workflows - from zero to hero
Production-Ready BIG ML Workflows - from zero to hero
 
CD in Machine Learning Systems
CD in Machine Learning SystemsCD in Machine Learning Systems
CD in Machine Learning Systems
 
BSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 SessionsBSSML16 L5. Summary Day 1 Sessions
BSSML16 L5. Summary Day 1 Sessions
 
"What we learned from 5 years of building a data science software that actual...
"What we learned from 5 years of building a data science software that actual..."What we learned from 5 years of building a data science software that actual...
"What we learned from 5 years of building a data science software that actual...
 
Kdd 2013 talk-converted
Kdd 2013 talk-convertedKdd 2013 talk-converted
Kdd 2013 talk-converted
 
VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1VSSML16 LR1. Summary Day 1
VSSML16 LR1. Summary Day 1
 
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
 
AI hype or reality
AI  hype or realityAI  hype or reality
AI hype or reality
 
Demystifying Xgboost
Demystifying XgboostDemystifying Xgboost
Demystifying Xgboost
 
Limits of Machine Learning
Limits of Machine LearningLimits of Machine Learning
Limits of Machine Learning
 
VSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 SessionsVSSML17 Review. Summary Day 1 Sessions
VSSML17 Review. Summary Day 1 Sessions
 
BIG2016- Lessons Learned from building real-life user-focused Big Data systems
BIG2016- Lessons Learned from building real-life user-focused Big Data systemsBIG2016- Lessons Learned from building real-life user-focused Big Data systems
BIG2016- Lessons Learned from building real-life user-focused Big Data systems
 

Último

SABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as referenceSABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as referencepriyansabari355
 
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...Daniele Malitesta
 
Big Data Foundations Level 1-IBM SkillsBuild
Big Data Foundations Level 1-IBM SkillsBuildBig Data Foundations Level 1-IBM SkillsBuild
Big Data Foundations Level 1-IBM SkillsBuildOshri Bitton
 
chatgpt-prompts (1).pdf
chatgpt-prompts (1).pdfchatgpt-prompts (1).pdf
chatgpt-prompts (1).pdfMuntherMurjan1
 
SABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a referenceSABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a referencepriyansabari355
 
Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)CUO VEERANAN VEERANAN
 
Oppotus - Malaysians on Malaysia 4Q 2023.pdf
Oppotus - Malaysians on Malaysia 4Q 2023.pdfOppotus - Malaysians on Malaysia 4Q 2023.pdf
Oppotus - Malaysians on Malaysia 4Q 2023.pdfOppotus
 
GDSC Machine Learning Session Presentation
GDSC Machine Learning Session PresentationGDSC Machine Learning Session Presentation
GDSC Machine Learning Session Presentationgdsclavasa
 
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...Cyber Security Experts
 
Hashing and File Structures in Data Structure.pdf
Hashing and File Structures in Data Structure.pdfHashing and File Structures in Data Structure.pdf
Hashing and File Structures in Data Structure.pdfJaithoonBibi
 
Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023stephizcoolio
 
Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...
Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...
Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...Mesum Raza Hemani
 
Artificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptxArtificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptxVighnesh Shashtri
 
PredictuVu ProposalV1.pptx
PredictuVu ProposalV1.pptxPredictuVu ProposalV1.pptx
PredictuVu ProposalV1.pptxKapilSinghal47
 
Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...
Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...
Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...AkbarHidayatullah11
 

Último (17)

Optimizing GenAI apps, by N. El Mawass and Maria Knorps
Optimizing GenAI apps, by N. El Mawass and Maria KnorpsOptimizing GenAI apps, by N. El Mawass and Maria Knorps
Optimizing GenAI apps, by N. El Mawass and Maria Knorps
 
SABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as referenceSABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as reference
 
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
[IRTalks@The University of Glasgow] A Topology-aware Analysis of Graph Collab...
 
Big Data Foundations Level 1-IBM SkillsBuild
Big Data Foundations Level 1-IBM SkillsBuildBig Data Foundations Level 1-IBM SkillsBuild
Big Data Foundations Level 1-IBM SkillsBuild
 
chatgpt-prompts (1).pdf
chatgpt-prompts (1).pdfchatgpt-prompts (1).pdf
chatgpt-prompts (1).pdf
 
SABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a referenceSABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a reference
 
Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)
 
Oppotus - Malaysians on Malaysia 4Q 2023.pdf
Oppotus - Malaysians on Malaysia 4Q 2023.pdfOppotus - Malaysians on Malaysia 4Q 2023.pdf
Oppotus - Malaysians on Malaysia 4Q 2023.pdf
 
GDSC Machine Learning Session Presentation
GDSC Machine Learning Session PresentationGDSC Machine Learning Session Presentation
GDSC Machine Learning Session Presentation
 
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
 
DELHI URBANIZATION
DELHI URBANIZATIONDELHI URBANIZATION
DELHI URBANIZATION
 
Hashing and File Structures in Data Structure.pdf
Hashing and File Structures in Data Structure.pdfHashing and File Structures in Data Structure.pdf
Hashing and File Structures in Data Structure.pdf
 
Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023
 
Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...
Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...
Tableau User Group - Khi > First Meetup! Movies + Data Hands-On Vizathon (11t...
 
Artificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptxArtificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptx
 
PredictuVu ProposalV1.pptx
PredictuVu ProposalV1.pptxPredictuVu ProposalV1.pptx
PredictuVu ProposalV1.pptx
 
Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...
Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...
Morris H. DeGroot, Mark J. Schervish - Probability and Statistics (4th Editio...
 

Tips for data science competitions

  • 1. Winning Data Science Competitions Some (hopefully) useful pointers Owen Zhang Data Scientist
  • 2. A plug for myself Current ● Chief Product Officer Previous ● VP, Science
  • 3. A plug for myself Current ● Chief Product Officer Previous ● VP, Science 1st / 330,336 176,181 points
  • 4. Agenda ● Structure of a Data Science Competition ● Philosophical considerations ● Sources of competitive advantage ● Some tools/techniques ● Three cases -- Amazon Allstate LM ● Apply what we learn out of competitions Technique Strategy Philosophy
  • 5. Data Science Competitions remind us that the purpose of a predictive model is to predict on data that we have NOT seen. Training Public LB (validation) Private LB (holdout) Build model using Training Data to predict outcomes on Private LB Data Structure of a Data Science Competition Quick but sometimes misleading feedback
  • 6. A little “philosophy” ● There are many ways to overfit ● Beware of “multiple comparison fallacy” ○ There is a cost in “peeking at the answer”, ○ Usually the first idea (if it works) is the best “Think” more, “try” less
  • 7. Sources of Competitive Advantage (the Secret Sauce) ● Luck ● Discipline (once bitten twice shy) ○ Proper validation framework ● Effort ● (Some) Domain knowledge ● Feature engineering ● The “right” model structure ● Machine/statistical learning packages ● Coding/data manipulation efficiency The right tool is very important Be Disciplined + Work Hard + Learn from everyone + Luck
  • 8. Good Validation is MORE IMPORTANT than Good Model ● Simple Training/Validation split is NOT enough ○ When you looked at your validation result for the Nth time, you are training models on it ● If possible, have “holdout” dataset that you do not touch at all during model building process ○ This includes feature extraction, etc.
  • 9. A Typical Modeling Project ● What if holdout result is bad? ○ Be brave and scrap the project Identify Opportunity Find/Prep Data Split Data and Hide Holdout Build Model Validate Model Test Model with holdout Implement Model
  • 10. Make Validation Dataset as Realistic as Possible ● Usually this means “out-of-time” validation. ○ You are free to use “in-time” random split to build models, tune parameters, etc ○ But hold out data should be out-of-time ● Exception to the rule: cross validation when data extremely small ○ But keep in mind that your model won’t perform as well in reality ○ The more times you “tweak” your model, the bigger the gap.
  • 11. Kaggle Competitions -- Typical Data Partitioning Training Public LB Private LB X Y Training Public LB Private LB X Y Training Public LB Private LB Time Time Time Training Public LB Private LB Time X Y X Y X Y X Y ● When should we use Public LB feedback to tune our models?
  • 12. Kaggle Competitions -- Use PLB as Training? Training Public LB Private LB X Y Training Public LB Private LB X Y Training Public LB Private LB Time Time Time Training Public LB Private LB Time X Y X Y X Y X Y YES YES M U ST N O
  • 13. Tools/techniques -- GBM ● My confession: I (over)use GBM ○ When in doubt, use GBM ● GBM automatically approximate ○ Non-linear transformations ○ Subtle and deep interactions ● GBM gracefully treats missing values ● GBM is invariant to monotonic transformation of features
  • 14. GBDT Hyper Parameter Tuning Hyper Parameter Tuning Approach Range Note # of Trees Fixed value 100-1000 Depending on datasize Learning Rate Fixed => Fine Tune [2 - 10] / # of Trees Depending on # trees Row Sampling Grid Search [.5, .75, 1.0] Column Sampling Grid Search [.4, .6, .8, 1.0] Min Leaf Weight Fixed => Fine Tune 3/(% of rare events) Rule of thumb Max Tree Depth Grid Search [4, 6, 8, 10] Min Split Gain Fixed 0 Keep it 0 Best GBDT implementation today: https://github.com/tqchen/xgboost by Tianqi Chen (U of Washington)
  • 15. Tools/techniques -- data preprocessing for GBDT ● High cardinality features ○ These are very commonly encountered -- zip code, injury type, ICD9, text, etc. ○ Convert into numerical with preprocessing -- out-of-fold average, counts, etc. ○ Use Ridge regression (or similar) and ■ use out-of-fold prediction as input to GBM ■ or blend ○ Be brave, use N-way interactions ■ I used 7-way interaction in the Amazon competition. ● GBM with out-of-fold treatment of high-cardinality feature performs very well
  • 16. Technical Tricks -- Stacking ● Basic idea -- use one model’s output as the next model’s input ● It is NOT a good idea to use in sample prediction for stacking ○ The problem is over-fitting ○ The more “over-fit” prediction1 is , the more weight it will get in Model 2 Text Features Model 2 GBM Prediction 1 Model 1 Ridge Regression Final Prediction Num Features
  • 17. Technical Tricks -- Stacking -- OOS / CV ● Use out of sample predictions ○ Take half of the training data to build model 1 ○ Apply model 1 on the rest of the training data, use the output as input to model 2 ● Use cross-validation partitioning when data limited ○ Partition training data into K partitions ○ For each of the K partition, compute “prediction 1” by building a model with OTHER partitions
  • 18. Technical Tricks -- feature engineering in GBM ● GBM only APPROXIMATE interactions and non- linear transformations ● Strong interactions benefit from being explicitly defined ○ Especially ratios/sums/differences among features ● GBM cannot capture complex features such as “average sales in the previous period for this type of product”
  • 19. Technical Tricks -- Glmnet ● From a methodology perspective, the opposite of GBM ● Captures (log/logistic) linear relationship ● Work with very small # of rows (a few hundred or even less) ● Complements GBM very well in a blend ● Need a lot of more work ○ missing values, outliers, transformations (log?), interactions ● The sparsity assumption -- L1 vs L2
  • 20. Technical Tricks -- Text mining ● tau package in R ● Python’s sklearn ● L2 penalty a must ● N-grams work well. ● Don’t forget the “trivial features”: length of text, number of words, etc. ● Many “text-mining” competitions on kaggle are actually dominated by structured fields -- KDD2014
  • 21. Technical Tricks -- Blending ● All models are wrong, but some are useful (George Box) ○ The hope is that they are wrong in different ways ● When in doubt, use average blender ● Beware of temptation to overfit public leaderboard ○ Use public LB + training CV ● The strongest individual model does not necessarily make the best blend ○ Sometimes intentionally built weak models are good blending candidates -- Liberty Mutual Competition
  • 22. Technical Tricks -- blending continued ● Try to build “diverse” models ○ Different tools -- GBM, Glmnet, RF, SVM, etc. ○ Different model specifications -- Linear, lognormal, poisson, 2 stage, etc. ○ Different subsets of features ○ Subsampled observations ○ Weighted/unweighted ○ … ● But, do not “peek at answers” (at least not too much)
  • 23. Apply what we learn outside of competitions ● Competitions give us really good models, but we also need to ○ Select the right problem and structure it correctly ○ Find good (at least useful) data ○ Make sure models are used the right way Competitions help us ● Understand how much “signal” exists in the data ● Identify flaws in data or data creation process ● Build generalizable models ● Broaden our technical horizon ● …
  • 24. Case 1 -- Amazon User Access competition ● One of the most popular competitions on Kaggle to date ○ 1687 teams ● Use anonymized features to predict if employee access request would be granted or denied ● All categorical features ○ Resource ID / Mgr ID / User ID / Dept ID … ○ Many features have high cardinality ● But I want to use GBM
  • 25. Case 1 -- Amazon User Access competition ● Encode categorical features using observation counts ○ This is even available for holdout data! ● Encode categorical features using average response ○ Average all but one (example on next slide) ○ Add noise to the training features ● Build different kind of trees + ENET ○ GBM + ERT + ENET + RF + GBM2 + ERT2 ● I didn't know VW (or similar), otherwise might have got better results. ● https://github.com/owenzhang/Kaggle-AmazonChallenge2013
  • 26. Case 1 -- Amazon User Access competition “Leave-one-out” encoding of categorical features: Split User ID Y mean(Y) random Exp_UID Training A1 0 .667 1.05 0.70035 Training A1 1 .333 .97 0.32301 Training A1 1 .333 .98 0.32634 Training A1 0 .667 1.02 0.68034 Test A1 - .5 1 .5 Test A1 - .5 1 .5 Training A2 0
  • 27. Case 2 -- Allstate User Purchase Option Prediction ● Predict final purchased product options based on earlier transactions. ○ 7 correlated targets ● This turns out to be very difficult because: ○ The evaluation criteria is all-or-nothing: all 7 predictions need to be correct ○ The baseline “last quoted” is very hard to beat. ■ Last quoted 53.269% ■ #3 (me) : 53.713% (+0.444%) ■ #1 solution 53.743% (+0.474%) ● Key challenges -- capture correlation, and not to lose to baseline
  • 28. Case 2 -- Allstate User Purchase Option Prediction ● Dependency -- Chained models ○ First build stand-alone model for F ○ Then model for G, given F ○ F => G => B => A => C => E => D ○ “Free models” first, “dependent” model later ○ In training time, use actual data ○ In prediction time, use most likely predicted value ● Not to lose to baseline -- 2 stage models ○ One model to predict which one to use: chained prediction, or baseline
  • 29. ● ~1 million insurance records ● 300 variables: target : The transformed ratio of loss to total insured value id : A unique identifier of the data set dummy : Nuisance variable used to control the model, but not a predictor var1 – var17 : A set of normalized variables representing policy characteristics crimeVar1 – crimeVar9 : Normalized Crime Rate variables geodemVar1 – geodemVar37 : Normalized geodemographic variables weatherVar1 – weatherVar236 : Normalized weather station variables DATA OVERVIEW info@DataRobot.com | @DataRobot | DataRobot, INC. Case 3 -- Liberty Mutual fire loss prediction
  • 30. FEATURE ENGINEERING info@DataRobot.com | @DataRobot | DataRobot, INC. 32 features Policy Characteristics 30 features: - All policy characteristics features (17) - Split V4 into 2 levels (8) - Computed ratio of certain features - Combined surrogate ID and subsets of policy vars Geodemographics 1 feature: - Derived from PCA trained on scaled vars Weather 1 feature: - Derived from elasticnet trained on scaled variables Crime Rate 0 features ● Broke feature set into 4 components ● Created surrogate ID based on identical crime, geodemographics and weather variables
  • 31. FINAL SOLUTION SUMMARY info@DataRobot.com | @DataRobot | DataRobot, INC. split var4 Policy Weather Geodem Crime Surrogate ID 25 policy features 1 weather feature = Enet(Weather) 4 count features =Count(ID * 4 subsets of policy features) 1 geo-demo feature =PCA (Geodem)Raw data 31 Features + ratio R(glmnet) Elastinet DataRobot: RF ExtraTrees GLM. Weighted Average Blend Select 28 features + CrimeVar3 downsample 20K obs(y==0) One-hot encoded categorical + Scaled numerical R(gbm) Lambdmart y2=min(y, cap) downsample 10K obs(y==0) y2=min(y, cap) full sample
  • 32. Useful Resources ● http://www.kaggle.com/competitions ● http://www.kaggle.com/forums ● http://statweb.stanford.edu/~tibs/ElemStatLearn/ ● http://scikit-learn.org/ ● http://cran.r-project.org/ ● https://github.com/JohnLangford/vowpal_wabbit/wiki ● ….