Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Farm animals in aquatic systems - Anna Troedsson-Wargelius

231 Aufrufe

Veröffentlicht am

-

Veröffentlicht in: Umweltschutz
  • Als Erste(r) kommentieren

Farm animals in aquatic systems - Anna Troedsson-Wargelius

  1. 1. Application of genome editing 8: Farm animals in aquatic systems Anna Troedsson-Wargelius Institute of Marine Research, Bergen, Norway
  2. 2. Aquaculture environments for fish and shellfish Ottinger et al 2016
  3. 3. Ottinger et al 2016 Global aquaculture production
  4. 4. Norwegian aquaculture of Atlantic salmon • Norway is the world’s largest producer of Atlantic salmon • > 1.2 million metric tonnes in 2012- 2016 Norwegian farming of salmon, 1980-2015 What are the current challenges in salmon farming? Rainbow trout Atlantic salmon
  5. 5. -Environmental impact Disease Genetic introgression of farmed fish into wild populations -Feed resources Sustainability issues
  6. 6. Atlantic Salmon genome Lien et al 2016 Ayllon et al 2015 Kjærner- Semb et al 2016
  7. 7. Establishment of CRISPR/Cas9 methodology in Atlantic salmon Edvardsen et al., Plos One (2014) Injection of guide RNA + Cas9 in newly fertilized eggs Targeting a pigmentation gene: slc45a2 (albino) Successful editing = albinosSuccessful editing = F0 albinos Likewise the technology has been established in other aquaculture species.: Tilapia (Wang et al 2014) Cat fish (Zhong et al 2016) Carp (Khalil et al 2017)
  8. 8. Generation time in salmon 3-4 years
  9. 9. CRISPR/Cas9 Research tool and possible industrial applications in salmon aquaculture - Genetic containment of wild populations - Filet quality - Disease resistance - Move traits between strains
  10. 10. Environmental concerns - Disease - Genetic introgression of farmed escapees into wild populations - Feed resources
  11. 11. Triploid sterile salmon Genetic containment - Produced by pressure treatment of eggs - One extra set of chromosomes  sterile - Sensitive to warmer temperatures and low oxygen - More likely to develop skeletal deformities and cataract - Males og through puberty - Triplodization does not always result in 100% sterile fish batches - Prone to get bacterial disease
  12. 12. Sterile salmon through germ cell ablation Genetic containment 1) Broodstock/eggs: Inhibit germ cell formation 2) Juveniles: Induce apoptosis of germ cells
  13. 13. Sterile salmon through germ cell ablation Genetic containment χ
  14. 14. Germ cell-free (sterile) dnd-knockout dnd + albino Knockout female Control female Genetic containment Wargelius et al., Sci. Rep. (2016)
  15. 15. Germ cell-free salmon – what next? Genetic containment Kleppe et al., Sci. Rep. (2017) Ongoing: Long-term (2017-2020) growth experiment ~80 GCF and ~80 controls -Common garden -Induced early puberty -Measured growth and sex steroid levels -no puberty -normal growth
  16. 16. Environmental concerns - Disease - Genetic introgression of farmed escapees into wild populations - Feed resources
  17. 17. Omega-3 synthesis Filet quality EPA DHA Control elovl2 + albino knockout Datsmoor, Winge, in prep.
  18. 18. 0 5 10 15 20 25 30 35 40 C18:3n3 C18:2n6 C20:2n6 C20:4n6 C20:5n3 C22:5n3 C22:6n3 %offattyacidsfromphospholipidsinthe liver Wildtype Elovl2 knockout C20:5n3 C22:5n3 C22:6n3 p-values 0,0043 0,027 0,031 Filet quality Datsmoor, Winge, in prep. Effects of elovl2 knockout on DHA synthesis in the liver under standard diet
  19. 19. Environmental concerns - Disease - Genetic introgression of farmed escapees into wild populations - Feed resources Number of wild salmon that returns to rivers to breed
  20. 20. Natura Disease resistance in wild strains Kjærner-Semb et al 2016, BMC genomicsMove traits between strains
  21. 21. Gene editing by CRISPR/Cas9 NHEJ= Non-Homologous End Joining HDR= Homology Directed Recombination
  22. 22. Region under selection for time of maturation Move traits between strains Barson et al., Nature (2015) Ayllon et al., Plos Genetics (2015)
  23. 23. Ayllon et al., Plos Genetics (2015)Move traits between strains SNPs explaining the trait in farmed fish
  24. 24. Straume, Edvardsen, Unpubl. res. Move minor genetic elements between salmon populations Project: AquaCrispr
  25. 25. Responsible Research Innovation (RRI) - Interactions with public, presentations, media debates - Ethics and integrity -Local highschool integration (Nordahl Grieg og Amalie Skram)
  26. 26. Summary – Gene editing in aquaculture - Targeted mutagenesis using Crispr-Cas9 is established in a number of farmed fish species - F0 mutant studies are enabled - Homologous recombination of single causative SNPs is being explored (Disease resistance, control of reproduction, nutritional content, fish robustness) - Mutants representing sustainable traits are being studied (Germ cell-free fish, altered omega-3 metabolism, time of maturation etc.)
  27. 27. Reproduction and Developmental biology group at IMR Anna Wargelius Eva Andersson Sven Leininger Kai Ove Skaftnesmo Geir Lasse Taranger Erik Kjærner Semb Tomasz Furmanek Per Gunnar Fjelldal Thomas Fraser Tom Hansen Birgitta Norberg Hilal Güralp Anne Hege Straume Rolf Edvardsen Population genetics group at IMR Kevin Glover Fernando Ayllon Vidar Wennevik Calle Rubin Dorothy Dankel Alex Datsomoor Per Winge Nina Santi Maren Mommens Helge Tveiten Øivind Andersen Rüdiger W. Schulz Hildre Sindre Acknowledgements Funding: -Norwegian Research Council BIOTEK2021 project SALMOSTERILE HAVBRUK_BIOTEK2021 project SALMAT HAVBRUK project STERWELL and MATGEN -EU AQUACRISPR
  28. 28. Thank your for the attention!

×