SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere Nutzervereinbarung und die Datenschutzrichtlinie.
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere unsere Datenschutzrichtlinie und die Nutzervereinbarung.
Veröffentlicht am
Have you ever imagined what it would be like to build a massively scalable streaming application on Kafka, the challenges, the patterns and the thought process involved? How much of the application can be reused? What patterns will you discover? How does it all fit together? Depending upon your use case and business, this can mean many things. Starting out with a data pipeline is one thing, but evolving into a company-wide real-time application that is business critical and entirely dependent upon a streaming platform is a giant leap. Large-scale streaming applications are also called event streaming applications. They are classically different from other data systems; event streaming applications are viewed as a series of interconnected streams that are topologically defined using stream processors; they hold state that models your use case as events. Almost like a deconstructed real-time database.
In this talk, I step through the origins of event streaming systems, understanding how they are developed from raw events to evolve into something that can be adopted at an organizational scale. I start with event-first thinking, Domain Driven Design to build data models that work with the fundamentals of Streams, Kafka Streams, KSQL and Serverless (FaaS).
Building upon this, I explain how to build common business functionality by stepping through the patterns for: – Scalable payment processing – Run it on rails: Instrumentation and monitoring – Control flow patterns Finally, all of these concepts are combined in a solution architecture that can be used at an enterprise scale. I will introduce enterprise patterns such as events-as-a-backbone, events as APIs and methods for governance and self-service. You will leave talk with an understanding of how to model events with event-first thinking, how to work towards reusable streaming patterns and most importantly, how it all fits together at scale.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Loggen Sie sich ein, um Kommentare anzuzeigen.