Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

rekayasa-transportasi-modul-6-modelling.pptx

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 38 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie rekayasa-transportasi-modul-6-modelling.pptx (20)

Aktuellste (20)

Anzeige

rekayasa-transportasi-modul-6-modelling.pptx

  1. 1. MODUL KE 6 PERTEMUAN KE 9 RENI KARNO KINASIH, S.T.,M.T. UNIVERSITAS MERCU BUANA Model Matematik Lalu Lintas
  2. 2.  Penggunaan sistem kontrol traffic light pada lalu lintas belum memberikan prioritas berupa nyala lampu hijau lebih lama pada jalur-jalur yang lebih padat penggunanya.  Hal tersebut dapat menyebabkan antrian panjang pada sebuah ruas.  Sehingga bila dilihat secara gambaran besar, sistem kontrol traffic light yang ada ternyata belum maksimal.  Belum adanya informasi yang bisa kita andalkan untuk memberikan prioritas atau mengambil keputusan.  Bahkan sering kali justru sistem kontrol traffic light lah yang membuat kemacetan pada sebuah ruas.
  3. 3.  Dalam simulasi traffic light, untuk menganalisa arus kendaraan pada sebuah ruas, terdapat beberapa metode yang bisa diterapkan. Diantaranya metode Greenshield, teori antrian dan metode Computational Fluid Dynamic
  4. 4. Model Greenshield  Berguna untuk membantu peneliti dibidang transportasi dalam memahami arus tanpa hambatan.  Model ini memberikan rumusan matematika arus kendaraan sebagai fungsi dari kepadatan lalu-lintas, serta arus kendaraan sebagai fungsi dari kecepatan kendaraan.  Akan tetapi, model greenshields tidak dapat mengatasi kerumitan yang dihasilkan oleh kondisi arus yang memiliki hambatan.
  5. 5. Interrupted Flow  Arus dikatakan memiliki hambatan, jika arus lalu- lintas terhenti secara periodik yang disebabkan oleh rambu-rambu lalulintas.  Arus yang berhambatan itu memerlukan pemahaman teori antrian, yang sepenuhnya merupakan model terpisah dari model arus lalu lintas
  6. 6. Teori Antrian  Teori antrian dapat digunakan untuk menganalisis arus lalu-lintas melalui pendekatan sebuah persimpangan jalan yang dikontrol oleh rambu lalu-lintas.  Namun teori ini harus memiliki asumsi bahwa arus kendaraan harus dalam keadaan rapi dan tidak fleksibel.  Sehingga diperlukan metode yang dapat digunakan untuk mengatasi permasalahan ini . Salah satunya adalah metode Computational Fluid Dynamic. Computational Fluid Dynamic (CFD) adalah metode yang digunakan untuk menganalisis aliran fluida atau air
  7. 7. Computational Fluid Dynamic (CFD)  Adalah metode yang digunakan untuk menganalisis aliran fluida atau air, namun seiring perkembangan zaman, metode ini mulai diterapkan di bidang engineering, salah satunya adalah transportasi  CFD juga dapat memainkan peran penting dalam mengatur waktu sinyal, sesuai dengan kondisi lalu lintas, sehingga akan menjamin arus lalu lintas seragam bahkan ketika tingkat aliran tinggi
  8. 8. How CFD Works?  CFD menganalisa aliran fluida dengan cara pemodelan matematika (persamaan diferensial parsial), metode numerik (diskritisasi dan solusi teknik) dan perangkat lunak (pemecah, pra-dan utilitas postprocessing)  CFD menggunakan sudut pandang Eulerian, yakni bukan memandang kendaraan secara individual dalam aliran, tetapi memandang arus lalu lintas sebagai aliran sederhana yang didistribusikan secara terus menerus, dengan melihat kesenjangan atau selang yang konsisten antara jumlah mobil dengan panjang jalan yang dikenal sebagai density.  Penekanan metode CFD adalah pada aliran secara keseluruhan atau sistem dan bukan pada individu kendaraan.
  9. 9.  CFD memungkinkan untuk melakukan eksperimen berupa perhitungan numerik dan simulasi komputer. Sedangkan metode yang digunakan untuk menghitung waktu nyala lampu lalu lintas adalahaturan Manual Kapasitas Jalan Indonesia (MKJI)  Computational Fluid Dynamic merupakan metode yang digunakanuntuk dapat menganalisis keadaan arus antrian pada ruas jalan. Sedangkan aturan MKJI digunakan untuk mendapatkan nilai kapasitas jalan, waktu nyala lampu lalu lintas dan derajat kejenuhan
  10. 10. Model – Model Makroskopis Arus Lalu Lintas
  11. 11. Greenshiled’s Linear Model (1935)  Macroscopic stream models represent how the behaviour of one parameter of traffic flow changes with respect to another.  Most important among them is the relation between speed and density. The first and most simple relation between them is proposed by Greenshield.  Greenshield assumed a linear speed-density relationship as illustrated in figure 1 to derive the model.
  12. 12.  The equation for this relationship is shown below. ………………………. (1)  Where v is the mean speed at density , vf is the free speed and kj is the jam density. T  This equation (1) is often referred to as the Greenshields' model. It indicates that when density becomes zero, speed approaches free flow speed (ie. V  vf when k  0).
  13. 13.  Once the relation between speed and flow is established, the relation with flow can be derived. This relation between flow and density is parabolic in shape and is shown in figure 3. Also, we know that
  14. 14.  Now substituting equation 1 in equation 2, we get ………………….. (3)  Similarly we can find the relation between speed and flow. For this, put in equation 1 and solving, we get ………………….. (4)
  15. 15.  This relationship is again parabolic and is shown in figure 2.  Once the relationship between the fundamental variables of traffic flow is established, the boundary conditions can be derived.  The boundary conditions that are of interest are jam density, freeflow speed, and maximum flow.  To find density at maximum flow, differentiate equation 3 with respect to and equate it to zero. ie., 
  16. 16.  Denoting the density corresponding to maximum flow as k0,  Therefore, density corresponding to maximum flow is half the jam density Once we get , we can derive for maximum flow, qmax. Substituting equation 5 in equation 3
  17. 17.  Thus the maximum flow is one fourth the product of free flow and jam density. Finally to get the speed at maximum flow, v0, substitute equation 5 in equation 1 and solving we get, ……………………………………… (6)  Therefore, speed at maximum flow is half of the free speed.
  18. 18. Calibration of Greenshield's model  Inorder to use this model for any traffic stream, one should get the boundary values, especially free flow speed (vf) and jam density (kj).  This has to be obtained by field survey and this is called calibration process.  Although it is difficult to determine exact free flow speed and jam density directly from the field, approximate values can be obtained from a number of speed and density observations and then fitting a linear equation between them.
  19. 19.  Let the linear equation be y = ax = b such that y is density, k and x denotes the speed v. Using linear regression method, coefficients a and b can be solved as,  (7)  (8)
  20. 20.  Alternate method of solving for b is, ……(9)  where xi and yi are the samples, n is the number of samples, and are the mean of xi and yi respectively.
  21. 21. Problem  For the following data on speed and density, determine the parameters of the Greenshields' model. Also find the maximum flow and density corresponding to a speed of 30 km/hr.
  22. 22. Solution  Denoting y = v and x = k, solve for a and b using equation 8 and equation 9. The solution is tabulated as shown below.  Step 1
  23. 23.  Step 2: From equation 9, define b = ….. And a =……  Step 3: Define the linear regression from Step 2 above v =……. (10)  Here vf = …….. and vf/kj= …….. This implies, = ……/…….. = …….. veh/km  The basic parameters of Greenshield's model are free flow speed and jam density and they are obtained as ….. kmph and ……… veh/km respectively.
  24. 24.  To find maximum flow, use equation 6 q max = …… veh/hr  Density corresponding to the speed 30 km/hr can be found out by substituting in equation 10. i.e, 30 = 40.8 - 0.2 k Therefore, k = ………. veh/km
  25. 25. G R E E N B E R G ’ S A N D U N D E R W O O D ’ S Other macroscopic stream models
  26. 26.  In Greenshield's model, linear relationship between speed and density was assumed. But in field we can hardly find such a relationship between speed and density.  Therefore, the validity of Greenshields' model was questioned and many other models came up. Prominent among them are Greenberg's logarithmic model, Underwood's exponential model, Pipe's generalized model, and multiregime models. These are briefly discussed below.
  27. 27. Greenberg's logarithmic model (1959)  Greenberg assumed a logarithmic relation between speed and density. He proposed,
  28. 28.  This model has gained very good popularity because this model can be derived analytically. (This derivation is beyond the scope of this notes).  However, main drawbacks of this model is that as density tends to zero, speed tends to infinity. This shows the inability of the model to predict the speeds at lower densities.
  29. 29. Underwood's exponential model  Trying to overcome the limitation of Greenberg's model, Underwood put forward an exponential model as shown below. …………………………………… (12)  Where vf The model can be graphically expressed as in figure 5 is the free flow speed and k0 is the optimum density, i.e. the densty corresponding to the maximum flow.
  30. 30.  In this model, speed becomes zero only when density reaches infinity which is the drawback of this model. Hence this cannot be used for predicting speeds at high densities.
  31. 31. Pipes' generalized model  Further developments were made with the introduction of a new parameter (n) to provide for a more generalised modelling approach. Pipes proposed a model shown by the following equation. ……………………………………(13)  When is set to one, Pipe's model resembles Greenshields' model. Thus by varying the values of , a family of models can be developed.
  32. 32. Multiregime models  All the above models are based on the assumption that the same speed-density relation is valid for the entire range of densities seen in traffic streams.  Therefore, these models are called single-regime models. However, human behaviour will be different at different densities. This is corraborated with field observations which shows different relations at different range of densities.  Therefore, the speed-density relation will also be different in different zones of densities.  Based on this concept, many models were proposed generally called multi-regime models. The most simple one is called a two-regime model, where separate equations are used to represent the speed-density relation at congested and uncongested traffic.
  33. 33. Resources  https://www.civil.iitb.ac.in/tvm/1100_LnTse/503_l nTse/plain/plain.html  Khisty, J & Lall, K. 2003. Dasar-Dasar Rekayasa Transportasi, 3rd Edition. Prentice Hall.
  34. 34. S E E Y O U I N T H E N E X T C H A P T E R ! Thank You

×