Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

metode iterasi Gauss seidel

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
3. newton raphson method
3. newton raphson method
Wird geladen in …3
×

Hier ansehen

1 von 107 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie metode iterasi Gauss seidel (20)

Anzeige

Aktuellste (20)

metode iterasi Gauss seidel

  1. 1. Iterative Techniques in Matrix Algebra Jacobi & Gauss-Seidel Iterative Techniques II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning
  2. 2. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  3. 3. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  4. 4. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  5. 5. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi & Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 2 / 38
  6. 6. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi & Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 3 / 38
  7. 7. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  8. 8. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n The components of x(k−1) are used to compute all the components x(k) i of x(k). Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  9. 9. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Looking at the Jacobi Method A possible improvement to the Jacobi Algorithm can be seen by re-considering x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n The components of x(k−1) are used to compute all the components x(k) i of x(k). But, for i 1, the components x(k) 1 , . . . , x(k) i−1 of x(k) have already been computed and are expected to be better approximations to the actual solutions x1, . . . , xi−1 than are x(k−1) 1 , . . . , x(k−1) i−1 . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 4 / 38
  10. 10. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Instead of using x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n it seems reasonable, then, to compute x(k) i using these most recently calculated values. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 5 / 38
  11. 11. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Instead of using x(k) i = 1 aii 2 Xn 664 j=1 j6=i −aijx(k−1) j + bi 3 775 , for i = 1, 2, . . . , n it seems reasonable, then, to compute x(k) i using these most recently calculated values. The Gauss-Seidel Iterative Technique x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 5 / 38
  12. 12. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  13. 13. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  14. 14. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t and iterating until kx(k) − x(k−1)k1 kx(k)k1 10−3 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  15. 15. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Example Use the Gauss-Seidel iterative technique to find approximate solutions to 10x1 − x2 + 2x3 = 6 −x1 + 11x2 − x3 + 3x4 = 25 2x1 − x2 + 10x3 − x4 = −11 3x2 − x3 + 8x4 = 15 , starting with x = (0, 0, 0, 0)t and iterating until kx(k) − x(k−1)k1 kx(k)k1 10−3 Note: The solution x = (1, 2, −1, 1)t was approximated by Jacobi’s method in an earlier example. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 6 / 38
  16. 16. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (1/3) For the Gauss-Seidel method we write the system, for each k = 1, 2, . . . as x(k) 1 = 1 10 x(k−1) 2 − 1 5 x(k−1) 3 + 3 5 x(k) 2 = 1 11 x(k) 1 + 1 11 x(k−1) 3 − 3 11 x(k−1) 4 + 25 11 x(k) 3 = − 1 5 x(k) 1 + 1 10 x(k) 2 + 1 10 x(k−1) 4 − 11 10 x(k) 4 = − 3 8 x(k) 2 + 1 8 x(k) 3 + 15 8 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 7 / 38
  17. 17. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (2/3) When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 8 / 38
  18. 18. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (2/3) When x(0) = (0, 0, 0, 0)t , we have x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t . Subsequent iterations give the values in the following table: k 0 1 2 3 4 5 x(k) 1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001 x(k) 2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000 x(k) 3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000 x(k) 4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 8 / 38
  19. 19. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (3/3) Because kx(5) − x(4)k1 kx(5)k1 = 0.0008 2.000 = 4 × 10−4 x(5) is accepted as a reasonable approximation to the solution. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 9 / 38
  20. 20. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method Solution (3/3) Because kx(5) − x(4)k1 kx(5)k1 = 0.0008 2.000 = 4 × 10−4 x(5) is accepted as a reasonable approximation to the solution. Note that, in an earlier example, Jacobi’s method required twice as many iterations for the same accuracy. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 9 / 38
  21. 21. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  22. 22. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, multiply both sides of x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 by aii and collect all kth iterate terms, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  23. 23. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations To write the Gauss-Seidel method in matrix form, multiply both sides of x(k) i = 1 aii 2 4− Xi−1 j=1 (aijx(k) j ) − Xn j=i+1 (aijx(k−1) j ) + bi 3 5 by aii and collect all kth iterate terms, to give ai1x(k) 1 + ai2x(k) 2 + · · · + aiix(k) i = −ai,i+1x(k−1) i+1 − · · · − ainx(k−1) n + bi for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 10 / 38
  24. 24. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations (Cont’d) Writing all n equations gives (k) 1 = −a12x a11x (k−1) 2 − a13x (k−1) 3 − · · · − a1nx (k−1) n + b1 (k) 1 + a22x a21x (k) 2 = −a23x (k−1) 3 − · · · − a2nx (k−1) n + b2 ... an1x(k) 1 + an2x(k) 2 + · · · + annx(k) n = bn Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 11 / 38
  25. 25. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form Re-Writing the Equations (Cont’d) Writing all n equations gives (k) 1 = −a12x a11x (k−1) 2 − a13x (k−1) 3 − · · · − a1nx (k−1) n + b1 (k) 1 + a22x a21x (k) 2 = −a23x (k−1) 3 − · · · − a2nx (k−1) n + b2 ... an1x(k) 1 + an2x(k) 2 + · · · + annx(k) n = bn With the definitions of D, L, and U given previously, we have the Gauss-Seidel method represented by (D − L)x(k) = Ux(k−1) + b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 11 / 38
  26. 26. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  27. 27. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel technique the form x(k) = Tgx(k−1) + cg Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  28. 28. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation The Gauss-Seidel Method: Matrix Form (D − L)x(k) = Ux(k−1) + b Re-Writing the Equations (Cont’d) Solving for x(k) finally gives x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . . Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel technique the form x(k) = Tgx(k−1) + cg For the lower-triangular matrix D − L to be nonsingular, it is necessary and sufficient that aii6= 0, for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 12 / 38
  29. 29. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 13 / 38
  30. 30. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  31. 31. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): INPUT the number of equations and unknowns n; the entries aij , 1 i, j n of the matrix A; the entries bi , 1 i n of b; the entries XOi , 1 i n of XO = x(0); tolerance TOL; maximum number of iterations N. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  32. 32. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (1/2) To solve Ax = b given an initial approximation x(0): INPUT the number of equations and unknowns n; the entries aij , 1 i, j n of the matrix A; the entries bi , 1 i n of b; the entries XOi , 1 i n of XO = x(0); tolerance TOL; maximum number of iterations N. OUTPUT the approximate solution x1, . . . , xn or a message that the number of iterations was exceeded. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 14 / 38
  33. 33. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  34. 34. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  35. 35. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  36. 36. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  37. 37. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Step 6 For i = 1, . . . , n set XOi = xi Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  38. 38. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm (2/2) Step 1 Set k = 1 Step 2 While (k N) do Steps 3–6: Step 3 For i = 1, . . . , n set xi = 1 aii 2 4− Xi−1 j=1 aijxj − Xn j=i+1 aijXOj + bi 3 5 Step 4 If ||x − XO|| TOL then OUTPUT (x1, . . . , xn) (The procedure was successful) STOP Step 5 Set k = k + 1 Step 6 For i = 1, . . . , n set XOi = xi Step 7 OUTPUT (‘Maximum number of iterations exceeded’) STOP (The procedure was unsuccessful) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 15 / 38
  39. 39. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  40. 40. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  41. 41. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  42. 42. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Another possible stopping criterion in Step 4 is to iterate until kx(k) − x(k−1)k kx(k)k is smaller than some prescribed tolerance. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  43. 43. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Gauss-Seidel Iterative Algorithm Comments on the Algorithm Step 3 of the algorithm requires that aii6= 0, for each i = 1, 2, . . . , n. If one of the aii entries is 0 and the system is nonsingular, a reordering of the equations can be performed so that no aii = 0. To speed convergence, the equations should be arranged so that aii is as large as possible. Another possible stopping criterion in Step 4 is to iterate until kx(k) − x(k−1)k kx(k)k is smaller than some prescribed tolerance. For this purpose, any convenient norm can be used, the usual being the l1 norm. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 16 / 38
  44. 44. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 17 / 38
  45. 45. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Introduction To study the convergence of general iteration techniques, we need to analyze the formula x(k) = Tx(k−1) + c, for each k = 1, 2, . . . where x(0) is arbitrary. The following lemma and the earlier Theorem on convergent matrices provide the key for this study. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 18 / 38
  46. 46. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  47. 47. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  48. 48. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. But || (T) 1, so = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I − T. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  49. 49. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Lemma If the spectral radius satisfies (T) 1, then (I − T)−1 exists, and (I − T)−1 = I + T + T2 + · · · = 1X j=0 Tj Proof (1/2) Because Tx = x is true precisely when (I − T)x = (1 − )x, we have as an eigenvalue of T precisely when 1 − is an eigenvalue of I − T. But || (T) 1, so = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of I − T. Hence, (I − T)−1 exists. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 19 / 38
  50. 50. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  51. 51. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  52. 52. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 and, since T is convergent, the Theorem on convergent matrices implies that lim m!1 (I − T)Sm = lim (I − Tm+1) = I m!1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  53. 53. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/2) Let Sm = I + T + T2 + · · · + Tm Then (I −T)Sm = (1+T +T2+· · ·+Tm)−(T +T2+· · ·+Tm+1) = I −Tm+1 and, since T is convergent, the Theorem on convergent matrices implies that lim m!1 (I − T)Sm = lim (I − Tm+1) = I m!1 Thus, (I − T)−1 = limm!1 Sm = I + T + T2 + · · · = P1j =0 Tj Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 20 / 38
  54. 54. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Theorem For any x(0) 2 IRn, the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c, for each k 1 converges to the unique solution of x = Tx + c if and only if (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 21 / 38
  55. 55. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  56. 56. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  57. 57. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  58. 58. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  59. 59. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c ... = Tkx(0) + (Tk−1 + · · · + T + I)c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  60. 60. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (1/5) First assume that (T) 1. Then, x(k) = Tx(k−1) + c = T(Tx(k−2) + c) + c = T2x(k−2) + (T + I)c ... = Tkx(0) + (Tk−1 + · · · + T + I)c Because (T) 1, the Theorem on convergent matrices implies that T is convergent, and lim k!1 Tkx(0) = 0 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 22 / 38
  61. 61. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  62. 62. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  63. 63. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c = (I − T)−1c Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  64. 64. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (2/5) The previous lemma implies that lim k!1 x(k) = lim k!1 Tkx(0) + 0 @ 1X j=0 Tj 1 Ac = 0 + (I − T)−1c = (I − T)−1c Hence, the sequence {x(k)} converges to the vector x (I − T)−1c and x = Tx + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 23 / 38
  65. 65. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  66. 66. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  67. 67. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  68. 68. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define x(0) = x − z, and, for k 1, x(k) = Tx(k−1) + c. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  69. 69. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (3/5) To prove the converse, we will show that for any z 2 IRn, we have limk!1 Tkz = 0. Again, by the theorem on convergent matrices, this is equivalent to (T) 1. Let z be an arbitrary vector, and x be the unique solution to x = Tx + c. Define x(0) = x − z, and, for k 1, x(k) = Tx(k−1) + c. Then {x(k)} converges to x. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 24 / 38
  70. 70. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  71. 71. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  72. 72. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  73. 73. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  74. 74. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... = Tk x − x(0) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  75. 75. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (4/5) Also, x − x(k) = (Tx + c) − Tx(k−1) + c = T x − x(k−1) so x − x(k) = T x − x(k−1) = T2 x − x(k−2) = ... = Tk x − x(0) = Tkz Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 25 / 38
  76. 76. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  77. 77. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  78. 78. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) = 0 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  79. 79. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Proof (5/5) Hence lim k!1 Tkz = lim k!1 Tk x − x(0) = lim k!1 x − x(k) = 0 But z 2 IRn was arbitrary, so by the theorem on convergent matrices, T is convergent and (T) 1. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 26 / 38
  80. 80. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  81. 81. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  82. 82. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk (ii) kx − x(k)k kTkk 1−kTkkx(1) − x(0)k Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  83. 83. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence Results for General Iteration Methods Corollary kTk 1 for any natural matrix norm and c is a given vector, then the sequence {x(k)}1k =0 defined by x(k) = Tx(k−1) + c converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and the following error bounds hold: (i) kx − x(k)k kTkkkx(0) − xk (ii) kx − x(k)k kTkk 1−kTkkx(1) − x(0)k The proof of the following corollary is similar to that for the Corollary to the Fixed-Point Theorem for a single nonlinear equation. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 27 / 38
  84. 84. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Outline 1 The Gauss-Seidel Method 2 The Gauss-Seidel Algorithm 3 Convergence Results for General Iteration Methods 4 Application to the Jacobi Gauss-Seidel Methods Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 28 / 38
  85. 85. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  86. 86. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg using the matrices Tj = D−1(L + U) and Tg = (D − L)−1U respectively. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  87. 87. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Using the Matrix Formulations We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written x(k) = Tjx(k−1) + cj and x(k) = Tgx(k−1) + cg using the matrices Tj = D−1(L + U) and Tg = (D − L)−1U respectively. If (Tj ) or (Tg) is less than 1, then the corresponding sequence {x(k)}1k =0 will converge to the solution x of Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 29 / 38
  88. 88. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  89. 89. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  90. 90. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  91. 91. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b This implies that Dx = (L + U)x + b and (D − L − U)x = b Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  92. 92. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Example For example, the Jacobi method has x(k) = D−1(L + U)x(k−1) + D−1b, and, if {x(k)}1k =0 converges to x, then x = D−1(L + U)x + D−1b This implies that Dx = (L + U)x + b and (D − L − U)x = b Since D − L − U = A, the solution x satisfies Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 30 / 38
  93. 93. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 31 / 38
  94. 94. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods The following are easily verified sufficiency conditions for convergence of the Jacobi and Gauss-Seidel methods. Theorem If A is strictly diagonally dominant, then for any choice of x(0), both the Jacobi and Gauss-Seidel methods give sequences {x(k)}1k =0 that converge to the unique solution of Ax = b. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 31 / 38
  95. 95. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  96. 96. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  97. 97. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Is Gauss-Seidel better than Jacobi? No general results exist to tell which of the two techniques, Jacobi or Gauss-Seidel, will be most successful for an arbitrary linear system. In special cases, however, the answer is known, as is demonstrated in the following theorem. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 32 / 38
  98. 98. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods (Stein-Rosenberg) Theorem If aij 0, for each i6= j and aii 0, for each i = 1, 2, . . . , n, then one and only one of the following statements holds: (i) 0 (Tg) (Tj ) 1 (ii) 1 (Tj ) (Tg) (iii) (Tj ) = (Tg) = 0 (iv) (Tj ) = (Tg) = 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 33 / 38
  99. 99. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods (Stein-Rosenberg) Theorem If aij 0, for each i6= j and aii 0, for each i = 1, 2, . . . , n, then one and only one of the following statements holds: (i) 0 (Tg) (Tj ) 1 (ii) 1 (Tj ) (Tg) (iii) (Tj ) = (Tg) = 0 (iv) (Tj ) = (Tg) = 1 For the proof of this result, see pp. 120–127. of Young, D. M., Iterative solution of large linear systems, Academic Press, New York, 1971, 570 pp. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 33 / 38
  100. 100. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  101. 101. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  102. 102. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, and the Gauss-Seidel method converges faster than the Jacobi method. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  103. 103. Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation Convergence of the Jacobi Gauss-Seidel Methods Two Comments on the Thoerem For the special case described in the theorem, we see from part (i), namely 0 (Tg) (Tj ) 1 that when one method gives convergence, then both give convergence, and the Gauss-Seidel method converges faster than the Jacobi method. Part (ii), namely 1 (Tj ) (Tg) indicates that when one method diverges then both diverge, and the divergence is more pronounced for the Gauss-Seidel method. Numerical Analysis (Chapter 7) Jacobi Gauss-Seidel Methods II R L Burden J D Faires 34 / 38
  104. 104. Questions?
  105. 105. Eigenvalues Eigenvectors: Convergent Matrices Theorem The following statements are equivalent. (i) A is a convergent matrix. (ii) limn!1 kAnk = 0, for some natural norm. (iii) limn!1 kAnk = 0, for all natural norms. (iv) (A) 1. (v) limn!1 Anx = 0, for every x. The proof of this theorem can be found on p. 14 of Issacson, E. and H. B. Keller, Analysis of Numerical Methods, John Wiley Sons, New York, 1966, 541 pp. Return to General Iteration Methods — Introduction Return to General Iteration Methods — Lemma Return to General Iteration Methods — Theorem
  106. 106. Fixed-Point Theorem Let g 2 C[a, b] be such that g(x) 2 [a, b], for all x in [a, b]. Suppose, in addition, that g0 exists on (a, b) and that a constant 0 k 1 exists with |g0(x)| k, for all x 2 (a, b). Then for any number p0 in [a, b], the sequence defined by pn = g(pn−1), n 1 converges to the unique fixed point p in [a, b]. Return to the Corrollary to the Fixed-Point Theorem
  107. 107. Functional (Fixed-Point) Iteration Corrollary to the Fixed-Point Convergence Result If g satisfies the hypothesis of the Fixed-Point Theorem then |pn − p| kn 1 − k |p1 − p0| Return to the Corollary to the Convergence Theorem for General Iterative Methods

×