SlideShare a Scribd company logo
1 of 135
OPTION
01
PREVALENCE
DELAY
OPTIO
N
0
2
INTRODUCTION
OPTION
03
OBJECTIVE
Registers of communities based in developing countries indicates that the prevalence of PH associated with
CHD is about 5-10%.
The CHD-related PH  both the pre-tricuspid (atrial septal defect (ASD)) and post-tricuspid (such as
ventricle septal defect (VSD), patent ductus arteriosus (PDA) and aorto pulmonary (AP) window) systemic-
to-pulmonary shunt, which generates persistent increased flow to the pulmonary vessels.
Diagnostic interval with data from USA, Europe, and China with
international mean estimates of diagnostic interval ranging form
2.2-2.4 years
PAH is correlated with such a steady increase in
PVR without treatment, leading to right heart
failure and death
OBJECTIVE
01
OPTION
the time from the onset of symptoms to the diagnosis of PAH
associated with CHD in Saiful Anwar general Hospital,Malang
02
OPTION
determine the factors with delayed definitive diagnosis
• PH is defined as a mean pulmonary artery pressure >25
mm Hg at rest or >30 mm Hg during exercise.
• The term PAH describes a group of PH patients
characterized haemodynamically by the presence of pre-
capillary PH, defined by a pulmonary artery wedge
pressure (PAWP) ≤15 mmHg and a PVRI
>3 Wood units*m2 (WU).
• Panvasculopathy predominantly affecting small PA
• Exact mechanism is unknown, abnormalities in pulmonary artery endothelial &
smooth muscle cells (PASMCs) with varying degrees of
I. Vasoconstriction, [PASMCs, K+ &Ca2+ channels]
II. Vascular proliferation, [PASMCs, ECM syn.]
proliferation
SERT ON PASMCs: apoptosis
III. Thrombosis, and
IV. Inflammation
contribute to the development of pulmonary hypertension
described history and postmortem details of 32 year old
man with VSD and pathological features of PAH
Victor Eisenmenger, 1887
Pulmonary Hypertension at or near systemic level with reversed or bidirectional shunt
between the pulmonary and systemic circulation at aorto- pulmonary, ventricular or atrial
level and pulmonary vascular resistance above 800 dyne/cm-5 (10 Wood Units)
8
Paul Wood, Br Med J, 1958
• Multifactorial
– Vasoconstriction
– Proliferative and obstructive remodelling of the
pulmonary vascular bed
– Inflammation and thrombosis
– Failure of endothelial cell apoptosis, intimal
proliferation, and irreversible PAH
• Stage I - Medial hypertrophy (reversible)
• Stage II - Cellular Intimal hyperplasia in a abnormally
muscular artery (reversible)
• Stage III - Lumen occlusion from intimal hyperplasia
of fibroelastic tissue (partially reversible)
• Stage IV - Arteriolar dilation and medial thinning
(irreversible)
• Stage V - Plexiform lesion, which is an angiomatoid
formation (terminal and irreversible)
• Stage VI - Fibrinoid/necrotizing arteritis (terminal and
irreversible
Rever
sible
Irrev
ersi
ble
Grade Peripheral arteries Medial
thickness(muscular
arteries)
Arterial
concerntration
Grade A Muscle extened
into peripheral
arteries
<1.5 times N
Normal
Grade B ( mild ) Increased
extension
1.5 to 2 times
Grade B (severe) > 2 times N
Grade C Arterial
concerntration
and size
reduced
• A biopsy showing severe grade C and
grade III or greater changes in 20% of
vessels indicative of severe vascular
disease that is unlikely to regress
postoperatively.
• Severe grade B, or grade II changes in
any vessel may preclude a favorable result
from a Fontan procedure.
PRESSURE = FLOW X RESISTANCE
HYPERKINETIC PAH OBSTRUCTIVE PAH
• Age of the patient and complexity of lesion influence
development of ES.
• Significant biologic variability exists in the clinical
presentation and prognosis of underlying CHD
• BMPR2 mutations in patients with PAH in CHD.
• These data raise the possibility that the presence of
a genetic predisposition in some patients with CHD
may contribute to the observed biologic variability
• Pathologically similar to primary PAH
• Endothelial proliferation is polyclonal in ES while
monoclonal in IPAH
• Certain vascular patterns are different between
the two-
– Persistent foetal pattern in large PAwith elastic fibres
being long and densely packed as in the aorta
– persistence of the foetal type of muscular artery
• Better appreciated with VSD & PDA thanASD
VASCULAR ABNORMALITIES ASSOCIATED WITH PULMONARY
HYPERTENSION
• Survival, as measured by age reached
• 30 years of age: 75%
• 40 years of age: 70%
• 55 years of age: 55%
• IPAH –NIH registry -1,3,5 yr survival -
68%,48%,38%
Diller, et al..Model of chronic adaptation: right ventricular
function in Eisenmenger syndrome European Heart
Journal Supplements 9
• Transplant free survival --
• 97% at 1 year, 89% at 2 years, and 77% at
3 years for patients with ES
• 77%, 69%, and 35%, respectively, for
patients with PPH
• Have a long symptom free time period
• Patients have adjusted to a lower exercise capacity since
childhood.
• Patients may even do well throughout adolescence and
early adulthood.
• Many become symptomatic during their 30s and gradually
develop complaints and complications, particularly
cyanosis, exercise intolerance, dyspnea upon exertion,
etc..
• Rhythm disturbances, particularly atrial fibrillation,
corresponds to clinical deterioration and right heart failure.
• According to historical data, patients with ES usually die
between 30 and 35 years.
• However, survival to late adulthood has been reported
• Demontrated that patients with ES can survive for
several decades following diagnosis.
• In this study, 54% of 98 unoperated patients with
ventricular septal defects and ES were alive 20 years
after diagnosis
Kidd L, Driscoll DJ, Gersony WM, Hayes CJ, Keane JF,
O’Fallon WM, Pieroni DR, Wolfe RR, Weidman WH.
Second natural history study of congenital heart
defects. Circulation 1993;87(suppl I):38-51.
1. RV appears to adapt to the rise in pressure
through hypertrophy and preservation of a fetal-
like phenotype
2. Regression of the physiologic right ventricular
hypertrophy does not occur and the right-to-left
shunt serves as an excess flow valve
3. Ability of Eisenmenger patients to maintain their
systemic CO at the expense of cyanosis
Type of lesion Somerville’98(n=132) Daliento
’98(182)
Ventricular Septal Defect 45 71
Atrial Septal Defect 6 21
Patent ductus arteriosus 12 36
Atrio ventricular septal defect 16 23
Truncus arteriosus 15 11
Single ventricle 13 9
Transposition of great
arteries
5 8
Others 20 9
WHY EARLY ES IN POSTTRICUSPID SHUNT THAN ASD?
• POST TRICUSPID SHUNT (VSD/PDA)
• PVR never comes down to normal due to high
pressure flow from infancy
• Regression of medial hypertrophy of SMC &
RVH does not occur
• DVP PAH & reversal of shunt at an early age
• PRETRICUSPID SHUNTS( ASD)
• Direction of shunt is determined by the Right
ventricular compliance so no shunt occurs till
3 months
• PVR reaches normal by 3 mths
• PAH & ES occurs late in life especially ina
largeASD
• PAH in ASD believed to be acquiredor
unrelated to the defect
PAH associated with heart Defects with Decreased
Pulmonary Blood Flow
• Condition like
PA with intact IVS
TOF
• Associated because of
 Hypoplasia of pulmonary arteries.
 Intra-acinar pulmonary arteries are small and few
in number.
 Alveolar development is impaired (mostly
reduction in alveolar number)
 ↑ Hematocrit resulting in in-situ thrombus.
1. Exertional dyspnea,
2. Lethargy, and
3. Fatigue,
In ability to
increase cardiac
output
1. Exertional chest pain (ie, angina),
2. Exertional syncope, and
3. Peripheral edema
The PH
progresses and
right ventricular
failure develops.
RIGHT VENTRICULAR WALL STRESS
MYOCARDIAL OXYGEN DEMAND
Subendocardial hypoperfusion
Angina
Dynamic
compression of the
left main coronary
artery by an
enlarged
pulmonary artery(if
PA> 40mm)
COMPLICATION FREQUENCY
1. HAEMOPTYSIS 20%
2. PULMONARY THROMBOEMBOLISM 13%
3. STROKE 8%
4. CEREBRALABSCESS 4%
5.I.E 3%
SYMPTOM FREQUENCY
D.O.E 84%
INCREASED CYANOSIS 59%
HYPERVISCOSITY 39%
ANGINA 13%
SYNCOPE 10%
CHF 8%
• Passive hepatic congestion may cause
anorexia and abdominal pain in the right upper
quadrant.
• Less common symptoms of PH include cough,
hemoptysis, and hoarseness (ie, Ortner's
syndrome) left recurrent laryngeal nerve
compressed by a dilated main pulmonary
artery.
• Dizziness or syncope
• Lower extremity edema and eventually ascites
• Cyanosis of the lips and skin
• Cyanosis
• Most florid when the shunt was at ventricular level and least with a
patent ductus.
• VSD -no case was truly acyanotic even at rest,42% had gross
cyanosis
• PDA -60% of were acyanotic in the head and upper extremities.only
4% had gross cyanosis,differential cyanosis-50%
• Clubbing
• PDA -absent in 76% of the cases ,considerable in only5%;
• VSD-Absent 3% and gross 36%.
• ASD-Intermediate
• Squatting - uncommon
• Relatively more frequent with ventricular septal
defect (15%) than with atrial septal defect(5%) or
patent ductus (3%)(p.Wood)
• Pulse-small about twice as often with atrial
septal defect (88%) as with ventricular
septal defect (37%) or patent ductus (50%).
• When full or water-hammer in quality, atrial
septal defect was never present
• Bidirectional aorto-pulmonary shunts -water-
hammer pulses (12%)(p.wood)
• Jugular Venous Pressure: small dominant a
wave measuring about 3 mm. Hg 20 to
25% of cases of each type.
• Large v waves from tricuspid incompetence
in 5% of all cases
• RV impulse palpable in ASD(57%),rare with
VSD/PDA
• An impulse over the pulmonary -66% of cases in
each group.
• Right atrial gallop -38% of cases with interatrial
shunt, but in only 2 to 3% of the others
• Pulmonary ejection click -in about two-thirds of all
cases
• Functional pulmonary ejection murmur, usually of
moderate intensity and relatively short duration, -
80% of all cases, -loud in 25%
• Thrill - one-half of the loud murmurs,10% overall
• ASD –wide fixed,never single
• VSD –single (55%),wide varying(12%)
• PDA –narrow/wide
varying(50%),single(6%)
• Auscultation of the heart may also reveal a
systolic ejection murmur and, in more
severe disease, a diastolic pulmonic
regurgitation murmur.
• The right sided murmurs and gallops are
augmented with inspiration
• Right ventricular failure results in systemic venous
hypertension.
• This can lead to findings such as elevated jugular venous
pressure, a right ventricular third heart sound, and a high-
pitched tricuspid regurgitant murmur accompanied by a
prominent V wave in the jugular venous pulse if tricuspid
regurgitation is present.
• In addition, hepatomegaly, a pulsatile liver, peripheral edema,
and ascites may exist.
Imaging tests are useful in
1. detection of PH ,
2. assessment of severity of PH,
3.categorization – the specific group the
patient belongs to,
4. prognostication ,
5.serial followup of patients( those who
receive PH specific therapies)
• RVH – tall R in v1 , R/S >1 , monophasic R or qR
• Right atrial abnormality – tall peaked P in lead 2
• RIGHT axis deviation
• Secondary ST- T Changes in V1- V4.
• RBBB – uncommon manifestation
• RVH ± RAD is present nearly 90% of patients.
• A normal ECG is reported in <5% cases.
RBBB
Extreme right axis deviation (+180 degrees)
S1 Q3 T3
T-wave inversions in V1-4 and lead III
Clockwise rotation with persistent S wave in V6
Right axis deviation.
T-wave inversions in V1-4 (extending to V5).
Clockwise rotation with persistent S wave in V6.
• The rhythm is usually sinus , AF occurs
rarely in patients with advanced RV
disease and RV dysfunction.
• The annual risk of SVT is roughly 3%.
• Ventricular arrhythmias are unusual.
• It is abnormal in nearly 90% patients.
• Enlarged MPA
• Right pulmonary artery diameter > 14mm
in women , >16 mm in men.
• Prunning – rapid tapering of peripheral
pulmonary arteries and increased
translucency of peripheral lung fields due
to hypovascularity.
A right interlobar pulmonary diameter of greater than 16 mm or a hilar-
to-thoracic ratio of greater than 0.44 is specific but not sensitive for the
diagnosis of pulmonary hypertension.
• Cardiomegaly with right atrial and right
ventricular enlargement usually present.
• Right atrial appendage dilatation results in
obliteration of retrosternal space in its
upper part.
• Retrosternal space obliteration beyond its
lower 1/3rd indicates RV dilatation.
CXR – CLUE TO ETIOLOGY…
• Pulmonary venous hypertension – dilated
upper lobe veins , perivascular cuffing ,
ground glass appearance of lung fields , kerly
B lines, thickened minor fissure.
• Shunt lesions – shunt at atrial and
ventricular level may results in inconspicuous
aorta , shunt at arterial level leads to dilated
ascending aorta.
• Lund parenchymal diseases – ILD , COPD.
• Chronic thromboembolic PH- focal
hypovascularity
• Congenital absence of a pulmonary artery.
• Lateral chest radiograph
shows filling of the
retrosternal airspace, a result
of right ventricular dilatation.
• The right ventricle is in
contact with more than one-
third of the distance from the
sternodiaphragmatic angle to
the point where the trachea
meets the sternum.
• Echocardiography with Doppler studies is the most
useful first line investigation in a patient presenting
with clinical features suggestive of pulmonary
hypertension.
• It facilitates:
1) Estimation of pulmonary artery systolic pressure to
determine if PH is present.
2) Assessment of cardiac cause of PH
3) Assessment of severity of RV dysfunction
4) Assessment of prognostic variables
• Pulmonary valve M-Mode
• According to Wyeman the following M mode
signs are useful in diagnosing PAH.
1. Diminished or absent a
2. Presence of mid-systolic closure or notching
3. Fluttering of the posterior pulmonic leaflet
M-mode of the pulmonary valve showing rectification of diastolic curve and lack of an atrial
contraction dip in pulmonary hypertension patients (A). The mid-systolic dip (arrows), which is a
specific (although low-sensitivity) sign of significant pulmonary hypertension, can be observed in
the lining of the pulmonary valve during the systolic phase (B).
• These findings generally manifest in
moderate to severe PH.
• In pts with PAH ,colour reversal in MPAis
a common finding.
• Early systolic forward flow along the lateral
wall with subsequent late systolic flow
Pulsed wave
Doppler in the
pulmonary artery
showing rapid early
systolic
acceleration and
mid-systolic
slowing.
• Echocardiographic evaluation of pulmonary artery systolic
pressure (PASP) relies on the fact that PASP approximates
right ventricular systolic pressure (RVSP) in the absence of
right ventricular outflow obstruction.
• The most accurate echocardiographic method for estimating
(PASP) uses the simplified Bernoulli equation to obtain a
systolic trans-valvular pressure gradient.
• DPRV-RA = 4(VTR)2
• Where VTR is the velocity of the tricuspid regurgitant jet. This
figure is added to an estimate of right atrial pressure (RAP) to
produce an estimate of RVSP.
• PASP » RVSP = 4(VTR)2 + RAP
• Qualitative Features that suggest elevated
RAP in ECHO –
1. RA enlargement
2. Persistent bowing of atrial septum toward
left atrium
3. Dilated coronary sinus
4. Dilated IVC and hepatic veins.
• Ratio between Tricuspid valve E velocity
and tricuspid annulus tissue doppler
velocity E’ .
• If the ratio is >6 , RAP of >10 mmhg is
predicted with a sensitivity of 79% and
specificity of 87.7%.
• The HV flow velocity profile consists of 4
components, 2 in forward flow and 2 in flow
reversal, each with a systolic and diastolic
component (S, D and SR, SD).
• The velocities reflect changes in right atrial
pressure and compliance, analogous to the
pulmonary vein flow velocity changes for the left
atrium.
• Normally, there should be no prominent reversal of
velocities and S is higher than D.
• As RV filling pressure increases, flow
reversal in systole and diastole
becomes prominent and is augmented
by inspiration.
• HV diastolic flow reversal is seen in PH
and constrictive pericarditis. Respiratory
variation helps differentiate between them.
• It is augmented with expiration in
constriction, whilst in PH it remains
constant.
• Hepatic venous systolic filling fraction -
VTI of systolic flow/ systolic +diastolic flow
VTI
• A Value of<55% is suggestive of RAP
being heigher than 8mmhg with a
sensitivity of 86% and specificity of 90%.
• ESTIMATION of PAP in pts without PR
/TR
• Comprises nearly 15% of pts
• RV IVRT/HR >65 ms identifies those with
PASP >40 mmhg.
• But if RA pressure is high ,IVRT may be
shorter despite pumonary hypertension.
PUMONARY ARTERYACCELERATION
TIME
• In normal individuals, AcT exceeds 140
milliseconds and progressively shortens
with increasing degrees of pulmonary
hypertension.
• The shorter the acceleration time, the
higher the pulmonary artery pressure.
MEAN PAP
• The mean pulmonary artery pressure can
also be estimated by Doppler.
• Mpap = 0.61 × spap + 2mmhg
• Mpap = 4 × early diastolic PR velocity
• MPAP= 4× mean velocity of TR +RAP
• MILD PAH mpap – 25 to 40 mmhg
• MODERATE - : 40 – 55 mmhg
• SEVERE - : >55 mmhg
• Mpap = 79-(0.45×acceleration time)
• If AT <120 ms ; Mpap = 90-(0.62×AT)
• This method is relatively easy to perform,
highly reproducible, and unlike pressure
estimates based on tricuspid regurgitation
velocity, Doppler recordings from the
RVOT are available in virtually all patients.
DIASTOLIC PAP
• Dpap =( 4×end diastolic velocity of PR
jet)+ RA pressure
• Dpap = 0.49 × SPAP
• In cases where PR jet is not available , RV
pressure at the time of pulmonary valve
opening from TR velocity spectrum can be
used.
PVR
• Pressures are flow dependent, so
assessment of disease severity cannot be
reliably done from systolic pressure alone.
• Ex – pts with advanced PH , decreased
RV function RVSP is lower than expected.
• In these situations calculation of PVR is
more dependable.
• PVR= ( TR velocity/RVOT VTI) 10₊0.16
• A TRV/RVO VTI cutoff value of 0.175 had
a sensitivity of 77% and specificity of 81%
to determine PVR >2 WU.
• If >0.275 ,PVR of >6wu is very likely.
• But this equation performed
poorly(underestimation) when PVR >8
• PVR = (RVSP – E/e’ )RVOT VTI
• This equation performed better than the
previous one when compared to invasively
measured PVR.
• LINDQVIST method-
PVR= mPAP – PAWP / CO
Mpap= PASP × 0.61+ 2 mmhg
PAWP is assumed to be 10 mmhg
CO = LVO VTI × CSA of LVOT × heart rate
PULMONARY VASCULAR CAPACITANCE
• A measure of proximal PAdistensibility
• PVCAP = stroke volume/ pulse pressure
SV / 4 × (TRV2- PRV 2)
A value of < 0.8ml/mmhg predicts higher
mortality in PAH.
• Assessment of right ventricular function is the
single most important aspect of the DE
examination in patients with known or
suspected PVD
• As the morbidity and mortality associated
with this condition is heavily dependent on
the degree of adaptation of the right ventricle
to its excessive pulmonary vascular load.
• The right ventricle is better suited for
volume work.
• When there is afterload mismatch RV
dilatation is seen.
• When RV dilates it assumes a bullet
shape in A4C view and circular in SAX
view.
• SYSTOLIC FLATTENING OF IVS
• Degree septal bowing is quantified by measuring LV
• ECCENTRICITY INDEX.
• Normally LV is circular in both systole and diatole ,with
both vertical and horizontal dimensions of the cavity is
equal.
• Normal index is 1.
• Mild septal flattening – 1.1 to 1.4
• Moderate – 1.5 to 1.8
• Severe - >1.8
• TAPSE can be derived from 2D echo or M-
Mode , is simple to perform and has been
shown to be highly reproducible, owed in
part to the lack of reliance on RV
endocardial definition or geometric
assumptions.
• Ghio et al. recently showed in a PAH
cohort that a TAPSE≤1.5 cm was
associated with a nearly three-fold higher
event rate (death or emergent lung
transplant) versus subjects with a
TAPSE>1.5 cm.
• Tissue Doppler imaging (TDI) can also be used to
measure the velocity of RV contraction in the
longitudinal axis (denoted S’ or Sa), correlates with
TAPSE (r=0.90), and is another simple and
reproducible method of RV function assessment.
• An S’ <10 cm/sec predicts a cardiac index <2.0
l/min/m2 with 89% sensitivity and 87% specificity.
• In addition, the RV TDI signal can be integrated to
measure the longitudinal tissue displacement.
TEI
INDE
X
• The myocardial performance index (MPI or Tei-Doppler
index) uses a different approach to RV function
assessment, integrating systolic and diastolic function
parameters in a single measure.
• the formula IVRT+IVCT/RVET, where IVRT is the RV
isovolumic relaxation time, IVCT is the isovolumic
contraction time, and RVET is the RV ejection time.
• The time intervals are typically derived from tissue
Doppler signals.
• Increasing values represent worsening function, with an
increased RV MPI associated with decreased survival in
PAH.
DOPPLER
ECHOCARDIOGRAPHY
• Normal value is 0.28 ± 0.004
• It is prolonged in RV dysfunction.
• The upper reference limit is 0.40 by pulsed
doppler and 0.55 is by tissue doppler.
• Limitation – it is load dependent and may
get pseudonormalized if RA pressure are
high.
• The normal RV measures approximately 2.5–3.5 cm at end-
diastole, with a planimetered area of 15–18 cm2.
• Typically, the RV dimension and area are two-thirds that of the
LV.
• The normal RV:LV ratio is approximately 0.6–0.8, with
increasing RV:LV ratios in patients with mild (0.8–1.0),
moderate (1.1–1.4), and severe (≥1.5) RV dilatation.
• A useful rule of thumb: RV:LV ratio should be <1.0,
• Value >1.0 : strongly suggestive of RV dilatation, often
coinciding with RV dysfunction.
RVFAC
• A more quantitative approach is to measure
the total systolic area change of the RV,
referred to as the RV fractional area of
change (RVFAC).
• This measure is derived from the
planimetered areas of the RV at end-diastole
and end-systole ([RVFAC=RV Area ED-RV
areaES/RV AreaED] × 100) from the apical
four-chamber view.
• Normal value is 56 ± 13.
• A value of <40% implies RV dysfunction.
• The RVFAC does not require geometric
assumptions and correlates with the RV ejection
fraction.
• However, incomplete visualization of the RV cavity
(more common in the setting of RV enlargement)
as well as suboptimal endocardial definition lead
to relatively high inter- and intra-observer
variablility.
STRAIN AND STRAIN RATE
• 2D strain using speckle tracking method is
likely to be more sensitive to detect early
RV dysfunction.
• Normal strain rate at base : 1.5 -1.74
mid cavity :1.46 – 1.62
• Normal value for strain : 25% -33%
• The most common cause of pulmonary
hypertension is left sided heart disease
resulting in venous pulmonary
hypertension.
• Echocardiography allows for assessment
of left ventricular systolic and diastolic
dysfunction as well as left sided valvular
disease and congenital heart disease.
• In the setting of PAH, a mild to moderate circumferential
pericardial effusion is seen in up to half of patients.
• In general, a pericardial effusion typically indicates right heart
decompensation, and is likely conferred on the basis of
longstanding right atrial hypertension and impaired
myocardial lymphatic drainage.
• The presence of a pericardial effusion has been one of the
most consistent echocardiographic findings indicative of a
poor prognosis in PAH.
• Percutaneous or surgical pericardial drainage should be
avoided unless there is especially compelling evidence of
tamponade, as the effusion typically is the result (not the
cause) of RV failure and right atrial hypertension
PROGNOSTIC FACTORS
Best predictors of poor outlook
1.RA size- RA area index change of5
cm2/m
2. Pericardial effusion
3. Degree of interventricuar septal shift
• MPAP >49 mmhg
• Dpap >29 mmhg
• Abnormal end diastolic septal curvature
• IVC >2cm with <50% inspiratory collapse
• TEI index >0.98
• TAPSE
CT CHEST
• Plays an important role in diagnosis of
certain causes of PH.
• CT findings in PH –
• 1. diameter of MPA > 29mm
• 2. MPA/ ascending thoracic aorta >1
• 3. A segmental artery to bronchus
diameter ratio > 1 in three or four lobes.
• 4. distensibility of PA<16.5%
the pulmonary artery measures 41 mm in
diameter
• Cardiac changes –
• 1. RVH – wall thickness >4 mm
• 2. RV dilatation – RV/LV diameter ratio >1
at midventricular level on axial images.
• 3.straightening or leftward bowing of IVS
• 4. reduced RV EF
• 5.dilated IVC / HEPATIC VEINS.
• MOSAIC pattern of lung attenuation – 77%
of pts with CTPH and 12% of IPAH
patients.
• Regions of hyperemic lung and adjacent
regions of oligemic lung.
• Other diseases – small airway diseases
and infiltrative lung diseases.
CT PULMONARY ANGIOGRAM
• Useful in imaging the vascular changes that
typically occur in CTPH.
• The central Pas are dilated , luminal irregularities
by organized thrombus, rat tail appearance of PA
branches ,bands ,pouches, webs or flaps,
stenosis, post stenotic dilatation and tortuosity.
• The sensitivity and specificity is 98 and 95% at
lobar level and 94% and 93% at segmental level
with reference to invasive angiography.
eccentrically located thrombus that forms obtuse
angles with the vessel wall
peripheral wedge-shaped area of hyperattenuation in the
lung (arrow), a finding that may represent an infarct, as well
as a linear band (arrowhead).
• Exercise testing O2 consumption-
<10.4ml/min/m2 associated with poor
prognosis
• 6 minute walk test-simple test-detect
exercise desaturation,functional
assessment
Indications
• Not required for diagnosis
• It must be done in borderline cases to assess operability
• Response of pulmonary vasculature to pulmonary
vasodilators like 02, tolazoline and nitric oxide should be
assessed
CATH
• Polycythemia
– PCV of >65% =Phlebotomy (O-D/O x wt x70)
• Anaemia
– Appropriate Hb =38 –(0.25 xSaO2)
• Contrast use
– Less than 4ml/kg
• ES had greater pulmonary artery pressures (107
+/- 20 versus 97 +/- 21 mm Hg, p = 0.06)
• Patients with Eisenmenger syndrome had
greater systemic cardiac indexes (2.7 +/- 0.6
versus 2.2 +/- 0.8 L/min/m2, p < 0.05) and lower
mean right atrial pressures (5 +/- 2 versus 12 +/-
5 mm Hg, p < 0.0001) than patients with primary
pulmonary hypertension
Hopkins et al,Comparison of the
hemodynamics and survival of adults with
severe primary pulmonary hypertension or
Eisenmenger syndrome.J Heart Lung
Transplant. 1996 Jan;15(1 Pt 1):100-5
• Absolute PVR
>12 ASD,>8 VSD,>7 PDA
• PVRI/SVRI Ratio
<0.25 =operable
0.25-0.5 –operable,mild risk
0.5-0.75 – operable with high risk of post op PAH
>0.75 - Unoperable
• PASP >80% SBP
• PAmean >50% Sytemic mean
NO LONGER
APPLICABLE
• Reversibility seen in <10%
• Hemodynamic guidelines to ensure postoperative
success and long-term survival without pulmonary
hypertension are still not precise.
– Lock et al(1982) showed that in large VSD with PAH, fall in
PVR/SVR by >30% did not correlate with operative
survival or late PVR/SVR.
– Moller (1991) showed closure of VSD with high PVR of >7
WU had higher operative and long term mortality.
– Kannan et al (2003)showed that 21% of those who
showed vasoreacitivity had poor outcome with persistent
PAH
• Technical difficulties leading to calculation errors and
other medical conditions need to be considered
• Vishwanath S,Kumar.Assessment of operability of congenital
cardiac shunts with increased PVR;CCI 2008
• Controversy whether testing at maximal stimulation
(90% O2 and 80 parts per million of iNO) or a
conservative intermediate protocols (O2 21–30%,
iNO 40 PPM) or gradual increases in vasodilator
challenge would be better predictors.
•
•
•
• For the right-sided
angiogram, a 5F or
6F pulmonary
wedge catheter
was placed in the
lower lobe to a
level one rib space
below the takeoff of
the right pulmonary
artery.
• For the left-sided studies, the catheter was
placed two rib spaces below the takeoff of
the left pulmonary artery.
• After the catheter was positioned, the
balloon was inflated and contrast material
was injected at a dose of 0.3 ml/kg
(minimum 2 ml).
• Injections were by hand as this was
thought to be safer and simpler
• Tapering
• AP view
• Maximum expiration
• Arterial lumen diameter 2.5 &1.5mm
noted.
• The length of the artery between the two
diameters is measured for as many no. of
vessels as possible
• Average taken.
• The length of the artery segment between
the two diameters reflected the rate of
tapering of the artery (the longer the
segment, the more gradual the tapering;
the shorter, the more abrupt).
• Background Haze
• The degree of filling of small peripheral
arteries that determines the background
haze.
• The degree of background haze was
assessed as being normal, mildly,
moderately or markedly reduced by
comparing the angiogram with standard
normal angiograms.
• Arterial concentration is reduced in
newborns and young infants.
• In patients younger than 6 months of age,
mild or moderate reduction was considered
normal, and in younger than 1 year of age
mild reduction was considered normal.
• Reduced background haze in patients with
PAH.
• Pulmonary Circulation Time:
• Pulmonary circulation time as the transit
time of the contrast material through the
capillaries and veins.
• Measured by counting the number of
frames between the time the balloon was
deflated and the time contrast material
was seen in the pulmonary veins at their
site of entry into the left atrium.
• This is divided by the frame rate of the
cine film
• Longer the circulation time severe the
pulmonary vascular disease.
• Quantitative assessment from a
pulmonary wedge angiogram of the rate of
tapering of the pulmonary arteries is useful
in patients with congenital heart disease
who have, or are at risk of developing,
severe pulmonary vascular changes and
fixed elevation in pulmonary vascular
resistance.
• More abrupt arterial tapering is more
suggestive of severe changes in the distal
pulmonary vascular bed
• Pharmacological therapy
• Conventional therapy
• Anticoagulation
• CCB’s
• Prostacyclins
• Endothelin receptor antagonists
• PDE inhibitors
• Novel therapies
Riocigaut
fasudil
THANK YOU
Ppt ph delay

More Related Content

What's hot

Pulmonary stenosis presentation
Pulmonary stenosis presentationPulmonary stenosis presentation
Pulmonary stenosis presentationNizam Uddin
 
Critical congenital heart diseases
Critical congenital heart diseases  Critical congenital heart diseases
Critical congenital heart diseases Vaishnavi S Nair
 
Natural history of common congenital heart diseases
Natural history of common congenital heart diseasesNatural history of common congenital heart diseases
Natural history of common congenital heart diseasesRamachandra Barik
 
The adult with congenital heart disease
The adult with congenital heart diseaseThe adult with congenital heart disease
The adult with congenital heart diseaseasadsoomro1960
 
Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...
Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...
Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...Imran Ahmed
 
MANAGEMENT OF VSD
MANAGEMENT OF VSDMANAGEMENT OF VSD
MANAGEMENT OF VSDIndia CTVS
 
STEMI equivalents
STEMI  equivalentsSTEMI  equivalents
STEMI equivalentsantonhenry
 
Acynotic heart defects
Acynotic heart defectsAcynotic heart defects
Acynotic heart defectsPallavi Rai
 
Approach to cyanotic congenital heart diseases
Approach to cyanotic congenital heart diseases Approach to cyanotic congenital heart diseases
Approach to cyanotic congenital heart diseases Nagendra prasad Kulari
 
Caeserean section complicated by mitral stenosis
Caeserean section complicated by mitral stenosisCaeserean section complicated by mitral stenosis
Caeserean section complicated by mitral stenosisDhritiman Chakrabarti
 
Acyanotic Heart Defects
Acyanotic Heart DefectsAcyanotic Heart Defects
Acyanotic Heart DefectsTosca Torres
 
Vsd surgery, Dr Prateek Vaswani
Vsd surgery, Dr Prateek VaswaniVsd surgery, Dr Prateek Vaswani
Vsd surgery, Dr Prateek VaswaniPrateek Vaswani
 
Anaesthetic management of mitral valvular heart disease
Anaesthetic management of mitral valvular heart diseaseAnaesthetic management of mitral valvular heart disease
Anaesthetic management of mitral valvular heart diseaseDhritiman Chakrabarti
 

What's hot (20)

Pulmonary stenosis presentation
Pulmonary stenosis presentationPulmonary stenosis presentation
Pulmonary stenosis presentation
 
Asd and vsd
Asd and vsdAsd and vsd
Asd and vsd
 
Critical congenital heart diseases
Critical congenital heart diseases  Critical congenital heart diseases
Critical congenital heart diseases
 
Natural history of common congenital heart diseases
Natural history of common congenital heart diseasesNatural history of common congenital heart diseases
Natural history of common congenital heart diseases
 
Valvular heart disease for post graduates
Valvular heart disease for post graduates Valvular heart disease for post graduates
Valvular heart disease for post graduates
 
Reno vascular Hypertension
Reno vascular Hypertension Reno vascular Hypertension
Reno vascular Hypertension
 
The adult with congenital heart disease
The adult with congenital heart diseaseThe adult with congenital heart disease
The adult with congenital heart disease
 
Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...
Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...
Asymptomatic Severe Aortic Stenosis – Cardiologist’s Confusion and Surgeon’s ...
 
MANAGEMENT OF VSD
MANAGEMENT OF VSDMANAGEMENT OF VSD
MANAGEMENT OF VSD
 
STEMI equivalents
STEMI  equivalentsSTEMI  equivalents
STEMI equivalents
 
Acynotic heart defects
Acynotic heart defectsAcynotic heart defects
Acynotic heart defects
 
Atrial septal defect
Atrial septal defectAtrial septal defect
Atrial septal defect
 
Approach to cyanotic congenital heart diseases
Approach to cyanotic congenital heart diseases Approach to cyanotic congenital heart diseases
Approach to cyanotic congenital heart diseases
 
Caeserean section complicated by mitral stenosis
Caeserean section complicated by mitral stenosisCaeserean section complicated by mitral stenosis
Caeserean section complicated by mitral stenosis
 
Acyanotic Heart Defects
Acyanotic Heart DefectsAcyanotic Heart Defects
Acyanotic Heart Defects
 
Vsd surgery, Dr Prateek Vaswani
Vsd surgery, Dr Prateek VaswaniVsd surgery, Dr Prateek Vaswani
Vsd surgery, Dr Prateek Vaswani
 
Atrial septal defect
Atrial septal defectAtrial septal defect
Atrial septal defect
 
Mitral valve prolapse
Mitral valve prolapseMitral valve prolapse
Mitral valve prolapse
 
Anaesthetic management of mitral valvular heart disease
Anaesthetic management of mitral valvular heart diseaseAnaesthetic management of mitral valvular heart disease
Anaesthetic management of mitral valvular heart disease
 
Stroke
StrokeStroke
Stroke
 

Similar to Ppt ph delay

Pulmonary arterial hypertension (PAH) in ccongenital heart diseases
Pulmonary arterial hypertension (PAH) in ccongenital heart diseasesPulmonary arterial hypertension (PAH) in ccongenital heart diseases
Pulmonary arterial hypertension (PAH) in ccongenital heart diseasesMalleswara rao Dangeti
 
ashish pulm embolism.pptx
ashish pulm embolism.pptxashish pulm embolism.pptx
ashish pulm embolism.pptxashishnair22
 
Pulmonary arterial hypertension in congenital heart disease
Pulmonary arterial hypertension in congenital heart diseasePulmonary arterial hypertension in congenital heart disease
Pulmonary arterial hypertension in congenital heart diseasemadhusiva03
 
CONGENITAL HEART DISEASE LECTURE NOTES MD3.pptx
CONGENITAL HEART DISEASE LECTURE NOTES MD3.pptxCONGENITAL HEART DISEASE LECTURE NOTES MD3.pptx
CONGENITAL HEART DISEASE LECTURE NOTES MD3.pptxErhardRutakulemberwa
 
Eisenmenger Syndrome
Eisenmenger SyndromeEisenmenger Syndrome
Eisenmenger SyndromeNishant Tyagi
 
Seminar on Congenital Heart Disease
Seminar on Congenital Heart DiseaseSeminar on Congenital Heart Disease
Seminar on Congenital Heart DiseaseSoumen Sengupta
 
Congenital Heart Disease.ppt
Congenital Heart Disease.pptCongenital Heart Disease.ppt
Congenital Heart Disease.pptSalam467227
 
Congenital heart disease
Congenital heart disease Congenital heart disease
Congenital heart disease mesfin mamuye
 
Patent Ductus Arteriosus (PDA)
Patent Ductus Arteriosus (PDA)Patent Ductus Arteriosus (PDA)
Patent Ductus Arteriosus (PDA)Dr.Sayeedur Rumi
 
Endocardial Cushion Defect / AVSD
Endocardial Cushion Defect / AVSDEndocardial Cushion Defect / AVSD
Endocardial Cushion Defect / AVSDHarshitha
 
cyanotic and acyanotic Congenital heart disease for undergraduated student uo...
cyanotic and acyanotic Congenital heart disease for undergraduated student uo...cyanotic and acyanotic Congenital heart disease for undergraduated student uo...
cyanotic and acyanotic Congenital heart disease for undergraduated student uo...Azad Haleem
 
Approach to a Child with Congenital Heart Disese
Approach to a Child with Congenital Heart DiseseApproach to a Child with Congenital Heart Disese
Approach to a Child with Congenital Heart DiseseCSN Vittal
 
PATHOLOGY CONGENITAL HEART DISEASE IN CHILDREN
PATHOLOGY CONGENITAL HEART DISEASE IN CHILDRENPATHOLOGY CONGENITAL HEART DISEASE IN CHILDREN
PATHOLOGY CONGENITAL HEART DISEASE IN CHILDRENChandler Huthey
 
TOF, VSD in children
TOF, VSD in childrenTOF, VSD in children
TOF, VSD in childrenSajjad Sabir
 
Approach to cyanotic congenital heart disease in new born
Approach to cyanotic congenital heart disease in new bornApproach to cyanotic congenital heart disease in new born
Approach to cyanotic congenital heart disease in new bornJigar Patel
 

Similar to Ppt ph delay (20)

Pulmonary arterial hypertension (PAH) in ccongenital heart diseases
Pulmonary arterial hypertension (PAH) in ccongenital heart diseasesPulmonary arterial hypertension (PAH) in ccongenital heart diseases
Pulmonary arterial hypertension (PAH) in ccongenital heart diseases
 
Truncus arteriosus by Dr Wali
Truncus arteriosus by Dr Wali Truncus arteriosus by Dr Wali
Truncus arteriosus by Dr Wali
 
1)Congenital HD 2009.ppt
1)Congenital HD 2009.ppt1)Congenital HD 2009.ppt
1)Congenital HD 2009.ppt
 
ashish pulm embolism.pptx
ashish pulm embolism.pptxashish pulm embolism.pptx
ashish pulm embolism.pptx
 
Pulmonary arterial hypertension in congenital heart disease
Pulmonary arterial hypertension in congenital heart diseasePulmonary arterial hypertension in congenital heart disease
Pulmonary arterial hypertension in congenital heart disease
 
CONGENITAL HEART DISEASE LECTURE NOTES MD3.pptx
CONGENITAL HEART DISEASE LECTURE NOTES MD3.pptxCONGENITAL HEART DISEASE LECTURE NOTES MD3.pptx
CONGENITAL HEART DISEASE LECTURE NOTES MD3.pptx
 
Eisenmenger Syndrome
Eisenmenger SyndromeEisenmenger Syndrome
Eisenmenger Syndrome
 
Seminar on Congenital Heart Disease
Seminar on Congenital Heart DiseaseSeminar on Congenital Heart Disease
Seminar on Congenital Heart Disease
 
Congenital Heart Disease.ppt
Congenital Heart Disease.pptCongenital Heart Disease.ppt
Congenital Heart Disease.ppt
 
CHD cvs.pdf
CHD cvs.pdfCHD cvs.pdf
CHD cvs.pdf
 
Congenital heart disease
Congenital heart disease Congenital heart disease
Congenital heart disease
 
Congenital Heart Diseases
Congenital Heart DiseasesCongenital Heart Diseases
Congenital Heart Diseases
 
Patent Ductus Arteriosus (PDA)
Patent Ductus Arteriosus (PDA)Patent Ductus Arteriosus (PDA)
Patent Ductus Arteriosus (PDA)
 
Endocardial Cushion Defect / AVSD
Endocardial Cushion Defect / AVSDEndocardial Cushion Defect / AVSD
Endocardial Cushion Defect / AVSD
 
cyanotic and acyanotic Congenital heart disease for undergraduated student uo...
cyanotic and acyanotic Congenital heart disease for undergraduated student uo...cyanotic and acyanotic Congenital heart disease for undergraduated student uo...
cyanotic and acyanotic Congenital heart disease for undergraduated student uo...
 
congenital heart disease
congenital heart diseasecongenital heart disease
congenital heart disease
 
Approach to a Child with Congenital Heart Disese
Approach to a Child with Congenital Heart DiseseApproach to a Child with Congenital Heart Disese
Approach to a Child with Congenital Heart Disese
 
PATHOLOGY CONGENITAL HEART DISEASE IN CHILDREN
PATHOLOGY CONGENITAL HEART DISEASE IN CHILDRENPATHOLOGY CONGENITAL HEART DISEASE IN CHILDREN
PATHOLOGY CONGENITAL HEART DISEASE IN CHILDREN
 
TOF, VSD in children
TOF, VSD in childrenTOF, VSD in children
TOF, VSD in children
 
Approach to cyanotic congenital heart disease in new born
Approach to cyanotic congenital heart disease in new bornApproach to cyanotic congenital heart disease in new born
Approach to cyanotic congenital heart disease in new born
 

Recently uploaded

Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxSimeonChristian
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 

Ppt ph delay

  • 1. OPTION 01 PREVALENCE DELAY OPTIO N 0 2 INTRODUCTION OPTION 03 OBJECTIVE Registers of communities based in developing countries indicates that the prevalence of PH associated with CHD is about 5-10%. The CHD-related PH  both the pre-tricuspid (atrial septal defect (ASD)) and post-tricuspid (such as ventricle septal defect (VSD), patent ductus arteriosus (PDA) and aorto pulmonary (AP) window) systemic- to-pulmonary shunt, which generates persistent increased flow to the pulmonary vessels. Diagnostic interval with data from USA, Europe, and China with international mean estimates of diagnostic interval ranging form 2.2-2.4 years PAH is correlated with such a steady increase in PVR without treatment, leading to right heart failure and death
  • 2. OBJECTIVE 01 OPTION the time from the onset of symptoms to the diagnosis of PAH associated with CHD in Saiful Anwar general Hospital,Malang 02 OPTION determine the factors with delayed definitive diagnosis
  • 3. • PH is defined as a mean pulmonary artery pressure >25 mm Hg at rest or >30 mm Hg during exercise. • The term PAH describes a group of PH patients characterized haemodynamically by the presence of pre- capillary PH, defined by a pulmonary artery wedge pressure (PAWP) ≤15 mmHg and a PVRI >3 Wood units*m2 (WU).
  • 4.
  • 5. • Panvasculopathy predominantly affecting small PA • Exact mechanism is unknown, abnormalities in pulmonary artery endothelial & smooth muscle cells (PASMCs) with varying degrees of I. Vasoconstriction, [PASMCs, K+ &Ca2+ channels] II. Vascular proliferation, [PASMCs, ECM syn.] proliferation SERT ON PASMCs: apoptosis III. Thrombosis, and IV. Inflammation contribute to the development of pulmonary hypertension
  • 6.
  • 7.
  • 8. described history and postmortem details of 32 year old man with VSD and pathological features of PAH Victor Eisenmenger, 1887 Pulmonary Hypertension at or near systemic level with reversed or bidirectional shunt between the pulmonary and systemic circulation at aorto- pulmonary, ventricular or atrial level and pulmonary vascular resistance above 800 dyne/cm-5 (10 Wood Units) 8 Paul Wood, Br Med J, 1958
  • 9. • Multifactorial – Vasoconstriction – Proliferative and obstructive remodelling of the pulmonary vascular bed – Inflammation and thrombosis – Failure of endothelial cell apoptosis, intimal proliferation, and irreversible PAH
  • 10.
  • 11. • Stage I - Medial hypertrophy (reversible) • Stage II - Cellular Intimal hyperplasia in a abnormally muscular artery (reversible) • Stage III - Lumen occlusion from intimal hyperplasia of fibroelastic tissue (partially reversible) • Stage IV - Arteriolar dilation and medial thinning (irreversible) • Stage V - Plexiform lesion, which is an angiomatoid formation (terminal and irreversible) • Stage VI - Fibrinoid/necrotizing arteritis (terminal and irreversible Rever sible Irrev ersi ble
  • 12. Grade Peripheral arteries Medial thickness(muscular arteries) Arterial concerntration Grade A Muscle extened into peripheral arteries <1.5 times N Normal Grade B ( mild ) Increased extension 1.5 to 2 times Grade B (severe) > 2 times N Grade C Arterial concerntration and size reduced
  • 13. • A biopsy showing severe grade C and grade III or greater changes in 20% of vessels indicative of severe vascular disease that is unlikely to regress postoperatively. • Severe grade B, or grade II changes in any vessel may preclude a favorable result from a Fontan procedure.
  • 14. PRESSURE = FLOW X RESISTANCE HYPERKINETIC PAH OBSTRUCTIVE PAH
  • 15.
  • 16. • Age of the patient and complexity of lesion influence development of ES. • Significant biologic variability exists in the clinical presentation and prognosis of underlying CHD • BMPR2 mutations in patients with PAH in CHD. • These data raise the possibility that the presence of a genetic predisposition in some patients with CHD may contribute to the observed biologic variability
  • 17. • Pathologically similar to primary PAH • Endothelial proliferation is polyclonal in ES while monoclonal in IPAH • Certain vascular patterns are different between the two- – Persistent foetal pattern in large PAwith elastic fibres being long and densely packed as in the aorta – persistence of the foetal type of muscular artery • Better appreciated with VSD & PDA thanASD
  • 18.
  • 19.
  • 20. VASCULAR ABNORMALITIES ASSOCIATED WITH PULMONARY HYPERTENSION
  • 21.
  • 22. • Survival, as measured by age reached • 30 years of age: 75% • 40 years of age: 70% • 55 years of age: 55% • IPAH –NIH registry -1,3,5 yr survival - 68%,48%,38% Diller, et al..Model of chronic adaptation: right ventricular function in Eisenmenger syndrome European Heart Journal Supplements 9
  • 23. • Transplant free survival -- • 97% at 1 year, 89% at 2 years, and 77% at 3 years for patients with ES • 77%, 69%, and 35%, respectively, for patients with PPH
  • 24. • Have a long symptom free time period • Patients have adjusted to a lower exercise capacity since childhood. • Patients may even do well throughout adolescence and early adulthood. • Many become symptomatic during their 30s and gradually develop complaints and complications, particularly cyanosis, exercise intolerance, dyspnea upon exertion, etc.. • Rhythm disturbances, particularly atrial fibrillation, corresponds to clinical deterioration and right heart failure. • According to historical data, patients with ES usually die between 30 and 35 years. • However, survival to late adulthood has been reported
  • 25. • Demontrated that patients with ES can survive for several decades following diagnosis. • In this study, 54% of 98 unoperated patients with ventricular septal defects and ES were alive 20 years after diagnosis Kidd L, Driscoll DJ, Gersony WM, Hayes CJ, Keane JF, O’Fallon WM, Pieroni DR, Wolfe RR, Weidman WH. Second natural history study of congenital heart defects. Circulation 1993;87(suppl I):38-51.
  • 26. 1. RV appears to adapt to the rise in pressure through hypertrophy and preservation of a fetal- like phenotype 2. Regression of the physiologic right ventricular hypertrophy does not occur and the right-to-left shunt serves as an excess flow valve 3. Ability of Eisenmenger patients to maintain their systemic CO at the expense of cyanosis
  • 27.
  • 28. Type of lesion Somerville’98(n=132) Daliento ’98(182) Ventricular Septal Defect 45 71 Atrial Septal Defect 6 21 Patent ductus arteriosus 12 36 Atrio ventricular septal defect 16 23 Truncus arteriosus 15 11 Single ventricle 13 9 Transposition of great arteries 5 8 Others 20 9
  • 29. WHY EARLY ES IN POSTTRICUSPID SHUNT THAN ASD? • POST TRICUSPID SHUNT (VSD/PDA) • PVR never comes down to normal due to high pressure flow from infancy • Regression of medial hypertrophy of SMC & RVH does not occur • DVP PAH & reversal of shunt at an early age • PRETRICUSPID SHUNTS( ASD) • Direction of shunt is determined by the Right ventricular compliance so no shunt occurs till 3 months • PVR reaches normal by 3 mths • PAH & ES occurs late in life especially ina largeASD • PAH in ASD believed to be acquiredor unrelated to the defect
  • 30. PAH associated with heart Defects with Decreased Pulmonary Blood Flow • Condition like PA with intact IVS TOF • Associated because of  Hypoplasia of pulmonary arteries.  Intra-acinar pulmonary arteries are small and few in number.  Alveolar development is impaired (mostly reduction in alveolar number)  ↑ Hematocrit resulting in in-situ thrombus.
  • 31. 1. Exertional dyspnea, 2. Lethargy, and 3. Fatigue, In ability to increase cardiac output 1. Exertional chest pain (ie, angina), 2. Exertional syncope, and 3. Peripheral edema The PH progresses and right ventricular failure develops.
  • 32. RIGHT VENTRICULAR WALL STRESS MYOCARDIAL OXYGEN DEMAND Subendocardial hypoperfusion Angina Dynamic compression of the left main coronary artery by an enlarged pulmonary artery(if PA> 40mm)
  • 33. COMPLICATION FREQUENCY 1. HAEMOPTYSIS 20% 2. PULMONARY THROMBOEMBOLISM 13% 3. STROKE 8% 4. CEREBRALABSCESS 4% 5.I.E 3% SYMPTOM FREQUENCY D.O.E 84% INCREASED CYANOSIS 59% HYPERVISCOSITY 39% ANGINA 13% SYNCOPE 10% CHF 8%
  • 34. • Passive hepatic congestion may cause anorexia and abdominal pain in the right upper quadrant. • Less common symptoms of PH include cough, hemoptysis, and hoarseness (ie, Ortner's syndrome) left recurrent laryngeal nerve compressed by a dilated main pulmonary artery. • Dizziness or syncope • Lower extremity edema and eventually ascites • Cyanosis of the lips and skin
  • 35. • Cyanosis • Most florid when the shunt was at ventricular level and least with a patent ductus. • VSD -no case was truly acyanotic even at rest,42% had gross cyanosis • PDA -60% of were acyanotic in the head and upper extremities.only 4% had gross cyanosis,differential cyanosis-50% • Clubbing • PDA -absent in 76% of the cases ,considerable in only5%; • VSD-Absent 3% and gross 36%. • ASD-Intermediate
  • 36. • Squatting - uncommon • Relatively more frequent with ventricular septal defect (15%) than with atrial septal defect(5%) or patent ductus (3%)(p.Wood)
  • 37. • Pulse-small about twice as often with atrial septal defect (88%) as with ventricular septal defect (37%) or patent ductus (50%). • When full or water-hammer in quality, atrial septal defect was never present • Bidirectional aorto-pulmonary shunts -water- hammer pulses (12%)(p.wood)
  • 38. • Jugular Venous Pressure: small dominant a wave measuring about 3 mm. Hg 20 to 25% of cases of each type. • Large v waves from tricuspid incompetence in 5% of all cases
  • 39. • RV impulse palpable in ASD(57%),rare with VSD/PDA • An impulse over the pulmonary -66% of cases in each group. • Right atrial gallop -38% of cases with interatrial shunt, but in only 2 to 3% of the others • Pulmonary ejection click -in about two-thirds of all cases • Functional pulmonary ejection murmur, usually of moderate intensity and relatively short duration, - 80% of all cases, -loud in 25% • Thrill - one-half of the loud murmurs,10% overall
  • 40. • ASD –wide fixed,never single • VSD –single (55%),wide varying(12%) • PDA –narrow/wide varying(50%),single(6%)
  • 41. • Auscultation of the heart may also reveal a systolic ejection murmur and, in more severe disease, a diastolic pulmonic regurgitation murmur. • The right sided murmurs and gallops are augmented with inspiration
  • 42. • Right ventricular failure results in systemic venous hypertension. • This can lead to findings such as elevated jugular venous pressure, a right ventricular third heart sound, and a high- pitched tricuspid regurgitant murmur accompanied by a prominent V wave in the jugular venous pulse if tricuspid regurgitation is present. • In addition, hepatomegaly, a pulsatile liver, peripheral edema, and ascites may exist.
  • 43. Imaging tests are useful in 1. detection of PH , 2. assessment of severity of PH, 3.categorization – the specific group the patient belongs to, 4. prognostication , 5.serial followup of patients( those who receive PH specific therapies)
  • 44. • RVH – tall R in v1 , R/S >1 , monophasic R or qR • Right atrial abnormality – tall peaked P in lead 2 • RIGHT axis deviation • Secondary ST- T Changes in V1- V4. • RBBB – uncommon manifestation • RVH ± RAD is present nearly 90% of patients. • A normal ECG is reported in <5% cases.
  • 45. RBBB Extreme right axis deviation (+180 degrees) S1 Q3 T3 T-wave inversions in V1-4 and lead III Clockwise rotation with persistent S wave in V6
  • 46. Right axis deviation. T-wave inversions in V1-4 (extending to V5). Clockwise rotation with persistent S wave in V6.
  • 47. • The rhythm is usually sinus , AF occurs rarely in patients with advanced RV disease and RV dysfunction. • The annual risk of SVT is roughly 3%. • Ventricular arrhythmias are unusual.
  • 48. • It is abnormal in nearly 90% patients. • Enlarged MPA • Right pulmonary artery diameter > 14mm in women , >16 mm in men. • Prunning – rapid tapering of peripheral pulmonary arteries and increased translucency of peripheral lung fields due to hypovascularity.
  • 49. A right interlobar pulmonary diameter of greater than 16 mm or a hilar- to-thoracic ratio of greater than 0.44 is specific but not sensitive for the diagnosis of pulmonary hypertension.
  • 50.
  • 51. • Cardiomegaly with right atrial and right ventricular enlargement usually present. • Right atrial appendage dilatation results in obliteration of retrosternal space in its upper part. • Retrosternal space obliteration beyond its lower 1/3rd indicates RV dilatation.
  • 52. CXR – CLUE TO ETIOLOGY… • Pulmonary venous hypertension – dilated upper lobe veins , perivascular cuffing , ground glass appearance of lung fields , kerly B lines, thickened minor fissure. • Shunt lesions – shunt at atrial and ventricular level may results in inconspicuous aorta , shunt at arterial level leads to dilated ascending aorta. • Lund parenchymal diseases – ILD , COPD. • Chronic thromboembolic PH- focal hypovascularity • Congenital absence of a pulmonary artery.
  • 53.
  • 54. • Lateral chest radiograph shows filling of the retrosternal airspace, a result of right ventricular dilatation. • The right ventricle is in contact with more than one- third of the distance from the sternodiaphragmatic angle to the point where the trachea meets the sternum.
  • 55. • Echocardiography with Doppler studies is the most useful first line investigation in a patient presenting with clinical features suggestive of pulmonary hypertension. • It facilitates: 1) Estimation of pulmonary artery systolic pressure to determine if PH is present. 2) Assessment of cardiac cause of PH 3) Assessment of severity of RV dysfunction 4) Assessment of prognostic variables
  • 56. • Pulmonary valve M-Mode • According to Wyeman the following M mode signs are useful in diagnosing PAH. 1. Diminished or absent a 2. Presence of mid-systolic closure or notching 3. Fluttering of the posterior pulmonic leaflet
  • 57. M-mode of the pulmonary valve showing rectification of diastolic curve and lack of an atrial contraction dip in pulmonary hypertension patients (A). The mid-systolic dip (arrows), which is a specific (although low-sensitivity) sign of significant pulmonary hypertension, can be observed in the lining of the pulmonary valve during the systolic phase (B).
  • 58. • These findings generally manifest in moderate to severe PH. • In pts with PAH ,colour reversal in MPAis a common finding. • Early systolic forward flow along the lateral wall with subsequent late systolic flow
  • 59. Pulsed wave Doppler in the pulmonary artery showing rapid early systolic acceleration and mid-systolic slowing.
  • 60. • Echocardiographic evaluation of pulmonary artery systolic pressure (PASP) relies on the fact that PASP approximates right ventricular systolic pressure (RVSP) in the absence of right ventricular outflow obstruction. • The most accurate echocardiographic method for estimating (PASP) uses the simplified Bernoulli equation to obtain a systolic trans-valvular pressure gradient. • DPRV-RA = 4(VTR)2 • Where VTR is the velocity of the tricuspid regurgitant jet. This figure is added to an estimate of right atrial pressure (RAP) to produce an estimate of RVSP. • PASP » RVSP = 4(VTR)2 + RAP
  • 61.
  • 62.
  • 63. • Qualitative Features that suggest elevated RAP in ECHO – 1. RA enlargement 2. Persistent bowing of atrial septum toward left atrium 3. Dilated coronary sinus 4. Dilated IVC and hepatic veins.
  • 64.
  • 65. • Ratio between Tricuspid valve E velocity and tricuspid annulus tissue doppler velocity E’ . • If the ratio is >6 , RAP of >10 mmhg is predicted with a sensitivity of 79% and specificity of 87.7%.
  • 66. • The HV flow velocity profile consists of 4 components, 2 in forward flow and 2 in flow reversal, each with a systolic and diastolic component (S, D and SR, SD). • The velocities reflect changes in right atrial pressure and compliance, analogous to the pulmonary vein flow velocity changes for the left atrium. • Normally, there should be no prominent reversal of velocities and S is higher than D.
  • 67.
  • 68. • As RV filling pressure increases, flow reversal in systole and diastole becomes prominent and is augmented by inspiration. • HV diastolic flow reversal is seen in PH and constrictive pericarditis. Respiratory variation helps differentiate between them. • It is augmented with expiration in constriction, whilst in PH it remains constant.
  • 69. • Hepatic venous systolic filling fraction - VTI of systolic flow/ systolic +diastolic flow VTI • A Value of<55% is suggestive of RAP being heigher than 8mmhg with a sensitivity of 86% and specificity of 90%.
  • 70. • ESTIMATION of PAP in pts without PR /TR • Comprises nearly 15% of pts • RV IVRT/HR >65 ms identifies those with PASP >40 mmhg. • But if RA pressure is high ,IVRT may be shorter despite pumonary hypertension.
  • 71. PUMONARY ARTERYACCELERATION TIME • In normal individuals, AcT exceeds 140 milliseconds and progressively shortens with increasing degrees of pulmonary hypertension. • The shorter the acceleration time, the higher the pulmonary artery pressure.
  • 72.
  • 73. MEAN PAP • The mean pulmonary artery pressure can also be estimated by Doppler. • Mpap = 0.61 × spap + 2mmhg • Mpap = 4 × early diastolic PR velocity • MPAP= 4× mean velocity of TR +RAP • MILD PAH mpap – 25 to 40 mmhg • MODERATE - : 40 – 55 mmhg • SEVERE - : >55 mmhg
  • 74. • Mpap = 79-(0.45×acceleration time) • If AT <120 ms ; Mpap = 90-(0.62×AT) • This method is relatively easy to perform, highly reproducible, and unlike pressure estimates based on tricuspid regurgitation velocity, Doppler recordings from the RVOT are available in virtually all patients.
  • 75. DIASTOLIC PAP • Dpap =( 4×end diastolic velocity of PR jet)+ RA pressure • Dpap = 0.49 × SPAP • In cases where PR jet is not available , RV pressure at the time of pulmonary valve opening from TR velocity spectrum can be used.
  • 76. PVR • Pressures are flow dependent, so assessment of disease severity cannot be reliably done from systolic pressure alone. • Ex – pts with advanced PH , decreased RV function RVSP is lower than expected. • In these situations calculation of PVR is more dependable.
  • 77. • PVR= ( TR velocity/RVOT VTI) 10₊0.16 • A TRV/RVO VTI cutoff value of 0.175 had a sensitivity of 77% and specificity of 81% to determine PVR >2 WU. • If >0.275 ,PVR of >6wu is very likely. • But this equation performed poorly(underestimation) when PVR >8
  • 78. • PVR = (RVSP – E/e’ )RVOT VTI • This equation performed better than the previous one when compared to invasively measured PVR.
  • 79. • LINDQVIST method- PVR= mPAP – PAWP / CO Mpap= PASP × 0.61+ 2 mmhg PAWP is assumed to be 10 mmhg CO = LVO VTI × CSA of LVOT × heart rate
  • 80. PULMONARY VASCULAR CAPACITANCE • A measure of proximal PAdistensibility • PVCAP = stroke volume/ pulse pressure SV / 4 × (TRV2- PRV 2) A value of < 0.8ml/mmhg predicts higher mortality in PAH.
  • 81. • Assessment of right ventricular function is the single most important aspect of the DE examination in patients with known or suspected PVD • As the morbidity and mortality associated with this condition is heavily dependent on the degree of adaptation of the right ventricle to its excessive pulmonary vascular load.
  • 82. • The right ventricle is better suited for volume work. • When there is afterload mismatch RV dilatation is seen. • When RV dilates it assumes a bullet shape in A4C view and circular in SAX view.
  • 83. • SYSTOLIC FLATTENING OF IVS • Degree septal bowing is quantified by measuring LV • ECCENTRICITY INDEX. • Normally LV is circular in both systole and diatole ,with both vertical and horizontal dimensions of the cavity is equal. • Normal index is 1. • Mild septal flattening – 1.1 to 1.4 • Moderate – 1.5 to 1.8 • Severe - >1.8
  • 84.
  • 85. • TAPSE can be derived from 2D echo or M- Mode , is simple to perform and has been shown to be highly reproducible, owed in part to the lack of reliance on RV endocardial definition or geometric assumptions.
  • 86. • Ghio et al. recently showed in a PAH cohort that a TAPSE≤1.5 cm was associated with a nearly three-fold higher event rate (death or emergent lung transplant) versus subjects with a TAPSE>1.5 cm.
  • 87. • Tissue Doppler imaging (TDI) can also be used to measure the velocity of RV contraction in the longitudinal axis (denoted S’ or Sa), correlates with TAPSE (r=0.90), and is another simple and reproducible method of RV function assessment. • An S’ <10 cm/sec predicts a cardiac index <2.0 l/min/m2 with 89% sensitivity and 87% specificity. • In addition, the RV TDI signal can be integrated to measure the longitudinal tissue displacement.
  • 88. TEI INDE X • The myocardial performance index (MPI or Tei-Doppler index) uses a different approach to RV function assessment, integrating systolic and diastolic function parameters in a single measure. • the formula IVRT+IVCT/RVET, where IVRT is the RV isovolumic relaxation time, IVCT is the isovolumic contraction time, and RVET is the RV ejection time. • The time intervals are typically derived from tissue Doppler signals. • Increasing values represent worsening function, with an increased RV MPI associated with decreased survival in PAH.
  • 90.
  • 91. • Normal value is 0.28 ± 0.004 • It is prolonged in RV dysfunction. • The upper reference limit is 0.40 by pulsed doppler and 0.55 is by tissue doppler. • Limitation – it is load dependent and may get pseudonormalized if RA pressure are high.
  • 92. • The normal RV measures approximately 2.5–3.5 cm at end- diastole, with a planimetered area of 15–18 cm2. • Typically, the RV dimension and area are two-thirds that of the LV. • The normal RV:LV ratio is approximately 0.6–0.8, with increasing RV:LV ratios in patients with mild (0.8–1.0), moderate (1.1–1.4), and severe (≥1.5) RV dilatation. • A useful rule of thumb: RV:LV ratio should be <1.0, • Value >1.0 : strongly suggestive of RV dilatation, often coinciding with RV dysfunction.
  • 93. RVFAC • A more quantitative approach is to measure the total systolic area change of the RV, referred to as the RV fractional area of change (RVFAC). • This measure is derived from the planimetered areas of the RV at end-diastole and end-systole ([RVFAC=RV Area ED-RV areaES/RV AreaED] × 100) from the apical four-chamber view.
  • 94. • Normal value is 56 ± 13. • A value of <40% implies RV dysfunction. • The RVFAC does not require geometric assumptions and correlates with the RV ejection fraction. • However, incomplete visualization of the RV cavity (more common in the setting of RV enlargement) as well as suboptimal endocardial definition lead to relatively high inter- and intra-observer variablility.
  • 95. STRAIN AND STRAIN RATE • 2D strain using speckle tracking method is likely to be more sensitive to detect early RV dysfunction. • Normal strain rate at base : 1.5 -1.74 mid cavity :1.46 – 1.62 • Normal value for strain : 25% -33%
  • 96. • The most common cause of pulmonary hypertension is left sided heart disease resulting in venous pulmonary hypertension. • Echocardiography allows for assessment of left ventricular systolic and diastolic dysfunction as well as left sided valvular disease and congenital heart disease.
  • 97. • In the setting of PAH, a mild to moderate circumferential pericardial effusion is seen in up to half of patients. • In general, a pericardial effusion typically indicates right heart decompensation, and is likely conferred on the basis of longstanding right atrial hypertension and impaired myocardial lymphatic drainage. • The presence of a pericardial effusion has been one of the most consistent echocardiographic findings indicative of a poor prognosis in PAH. • Percutaneous or surgical pericardial drainage should be avoided unless there is especially compelling evidence of tamponade, as the effusion typically is the result (not the cause) of RV failure and right atrial hypertension
  • 98. PROGNOSTIC FACTORS Best predictors of poor outlook 1.RA size- RA area index change of5 cm2/m 2. Pericardial effusion 3. Degree of interventricuar septal shift
  • 99. • MPAP >49 mmhg • Dpap >29 mmhg • Abnormal end diastolic septal curvature • IVC >2cm with <50% inspiratory collapse • TEI index >0.98 • TAPSE
  • 100. CT CHEST • Plays an important role in diagnosis of certain causes of PH. • CT findings in PH – • 1. diameter of MPA > 29mm • 2. MPA/ ascending thoracic aorta >1 • 3. A segmental artery to bronchus diameter ratio > 1 in three or four lobes. • 4. distensibility of PA<16.5%
  • 101. the pulmonary artery measures 41 mm in diameter
  • 102. • Cardiac changes – • 1. RVH – wall thickness >4 mm • 2. RV dilatation – RV/LV diameter ratio >1 at midventricular level on axial images. • 3.straightening or leftward bowing of IVS • 4. reduced RV EF • 5.dilated IVC / HEPATIC VEINS.
  • 103. • MOSAIC pattern of lung attenuation – 77% of pts with CTPH and 12% of IPAH patients. • Regions of hyperemic lung and adjacent regions of oligemic lung. • Other diseases – small airway diseases and infiltrative lung diseases.
  • 104. CT PULMONARY ANGIOGRAM • Useful in imaging the vascular changes that typically occur in CTPH. • The central Pas are dilated , luminal irregularities by organized thrombus, rat tail appearance of PA branches ,bands ,pouches, webs or flaps, stenosis, post stenotic dilatation and tortuosity. • The sensitivity and specificity is 98 and 95% at lobar level and 94% and 93% at segmental level with reference to invasive angiography.
  • 105. eccentrically located thrombus that forms obtuse angles with the vessel wall
  • 106. peripheral wedge-shaped area of hyperattenuation in the lung (arrow), a finding that may represent an infarct, as well as a linear band (arrowhead).
  • 107. • Exercise testing O2 consumption- <10.4ml/min/m2 associated with poor prognosis • 6 minute walk test-simple test-detect exercise desaturation,functional assessment
  • 108. Indications • Not required for diagnosis • It must be done in borderline cases to assess operability • Response of pulmonary vasculature to pulmonary vasodilators like 02, tolazoline and nitric oxide should be assessed
  • 109. CATH • Polycythemia – PCV of >65% =Phlebotomy (O-D/O x wt x70) • Anaemia – Appropriate Hb =38 –(0.25 xSaO2) • Contrast use – Less than 4ml/kg
  • 110. • ES had greater pulmonary artery pressures (107 +/- 20 versus 97 +/- 21 mm Hg, p = 0.06) • Patients with Eisenmenger syndrome had greater systemic cardiac indexes (2.7 +/- 0.6 versus 2.2 +/- 0.8 L/min/m2, p < 0.05) and lower mean right atrial pressures (5 +/- 2 versus 12 +/- 5 mm Hg, p < 0.0001) than patients with primary pulmonary hypertension Hopkins et al,Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome.J Heart Lung Transplant. 1996 Jan;15(1 Pt 1):100-5
  • 111. • Absolute PVR >12 ASD,>8 VSD,>7 PDA • PVRI/SVRI Ratio <0.25 =operable 0.25-0.5 –operable,mild risk 0.5-0.75 – operable with high risk of post op PAH >0.75 - Unoperable • PASP >80% SBP • PAmean >50% Sytemic mean NO LONGER APPLICABLE
  • 112.
  • 113.
  • 114.
  • 115.
  • 116. • Reversibility seen in <10% • Hemodynamic guidelines to ensure postoperative success and long-term survival without pulmonary hypertension are still not precise. – Lock et al(1982) showed that in large VSD with PAH, fall in PVR/SVR by >30% did not correlate with operative survival or late PVR/SVR. – Moller (1991) showed closure of VSD with high PVR of >7 WU had higher operative and long term mortality. – Kannan et al (2003)showed that 21% of those who showed vasoreacitivity had poor outcome with persistent PAH
  • 117. • Technical difficulties leading to calculation errors and other medical conditions need to be considered • Vishwanath S,Kumar.Assessment of operability of congenital cardiac shunts with increased PVR;CCI 2008 • Controversy whether testing at maximal stimulation (90% O2 and 80 parts per million of iNO) or a conservative intermediate protocols (O2 21–30%, iNO 40 PPM) or gradual increases in vasodilator challenge would be better predictors.
  • 119. • For the right-sided angiogram, a 5F or 6F pulmonary wedge catheter was placed in the lower lobe to a level one rib space below the takeoff of the right pulmonary artery.
  • 120. • For the left-sided studies, the catheter was placed two rib spaces below the takeoff of the left pulmonary artery. • After the catheter was positioned, the balloon was inflated and contrast material was injected at a dose of 0.3 ml/kg (minimum 2 ml). • Injections were by hand as this was thought to be safer and simpler
  • 121. • Tapering • AP view • Maximum expiration • Arterial lumen diameter 2.5 &1.5mm noted. • The length of the artery between the two diameters is measured for as many no. of vessels as possible • Average taken.
  • 122.
  • 123. • The length of the artery segment between the two diameters reflected the rate of tapering of the artery (the longer the segment, the more gradual the tapering; the shorter, the more abrupt).
  • 124. • Background Haze • The degree of filling of small peripheral arteries that determines the background haze. • The degree of background haze was assessed as being normal, mildly, moderately or markedly reduced by comparing the angiogram with standard normal angiograms.
  • 125. • Arterial concentration is reduced in newborns and young infants. • In patients younger than 6 months of age, mild or moderate reduction was considered normal, and in younger than 1 year of age mild reduction was considered normal. • Reduced background haze in patients with PAH.
  • 126. • Pulmonary Circulation Time: • Pulmonary circulation time as the transit time of the contrast material through the capillaries and veins. • Measured by counting the number of frames between the time the balloon was deflated and the time contrast material was seen in the pulmonary veins at their site of entry into the left atrium. • This is divided by the frame rate of the cine film
  • 127. • Longer the circulation time severe the pulmonary vascular disease.
  • 128. • Quantitative assessment from a pulmonary wedge angiogram of the rate of tapering of the pulmonary arteries is useful in patients with congenital heart disease who have, or are at risk of developing, severe pulmonary vascular changes and fixed elevation in pulmonary vascular resistance. • More abrupt arterial tapering is more suggestive of severe changes in the distal pulmonary vascular bed
  • 129. • Pharmacological therapy • Conventional therapy • Anticoagulation • CCB’s • Prostacyclins • Endothelin receptor antagonists • PDE inhibitors • Novel therapies
  • 130.
  • 131.
  • 132.