SlideShare ist ein Scribd-Unternehmen logo
1 von 50
Downloaden Sie, um offline zu lesen
From Idea to
Execution: Spotify’s
Discover Weekly
Chris Johnson :: @MrChrisJohnson
Edward Newett :: @scaladaze
DataEngConf • NYC • Nov 2015
Or: 5 lessons in building
recommendation products at scale
Who are We??
Chris Johnson Edward Newett
Spotify in Numbers
• Started in 2006, now available in 58 markets
• 75+ Million active users, 20 Million paying subscribers
• 30+ Million songs, 20,000 new songs added per day
• 1.5 Billion user generated playlists
• 1 TB user data logged per day
• 1,700 node Hadoop cluster
• 10,000+ Hadoop jobs run daily
Challenge: 30M songs… how do we recommend
music to users?
Discover
Radio
Related Artists
Discover Weekly
• Started in 2006, now available in 58 markets
• 75+ Million active users, 20 Million paying subscribers
• 30+ Million songs, 20,000 new songs added per day
• 1.5 Billion user generated playlists
• 1 TB user data logged per day
• 1,700 node Hadoop cluster
• 10,000+ Hadoop jobs run daily
The Road to
Discover Weekly
2013 :: Discover Page v1.0
• Personalized News Feed of
recommendations
• Artists, Album Reviews, News
Articles, New Releases, Upcoming
Concerts, Social
Recommendations, Playlists…
• Required a lot of attention and
digging to engage with
recommendations
• No organization of content
2014 :: Discover Page v2.0
• Recommendations grouped into
strips (a la Netflix)
• Limited to Albums and New
Releases
• More organized than News-Feed
but still requires active
interaction
Insight: users spending more time on
editorial Browse playlists than Discover.
Idea: combine the
personalized experience
of Discover with the lean-
back ease of Browse
Meanwhile… 2014 Year In Music
Play it forward: Same content as the
Discover Page but.. a playlist
Lesson 1:
Be data driven from
start to finish
Slide from Dan McKinley - Etsy
2008 2012 2015
• Reach: How many users are you reaching
• Depth: For the users you reach, what is the
depth of reach.
• Retention: For the users you reach, how many
do you retain?
Define success metrics BEFORE you
release your test
• Reach: DW WAU / Spotify WAU
• Depth: DW Time Spent / Spotify WAU
• Retention: DW week-over-week retention
Discover Weekly Key Success Metrics
2008 2012 2015
Slide from Dan McKinley - Etsy
Step 1: Prototype (employee test)
Step 1: Prototype (employee test)
Results of Employee Test were very positive!
2008 2012 2015
Slide from Dan McKinley - Etsy
Step 2: Release AB Test to 1% of Users
Google Form 1% Results
Personalized image resulted in 10% lift in WAU
• Initial 0.5% user test
• 1% Spaceman image
• 1% Personalized
image
Lesson 2:
Reuse existing
infrastructure in creative
ways
Discover Weekly Data Flow
Recommendation
Models
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by inner product of 2 smaller matrices by minimizing the
weighted RMSE (root mean squared error) using a function of plays, context, and recency as weight
X YUsers
Songs
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
[1] Hu Y. & Koren Y. & Volinsky C. (2008) Collaborative Filtering for Implicit Feedback Datasets 8th IEEE International Conference on Data Mining
Implicit Matrix Factorization
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
•Aggregate all (user, track) streams into a large matrix
•Goal: Model probability of user playing a song as logistic, then maximize log likelihood of binary
preference matrix, weighting positive observations by a function of plays, context, and recency
X YUsers
Songs
• = bias for user
• = bias for item
• = regularization parameter
• = user latent factor vector
• = item latent factor vector
[2] Johnson C. (2014) Logistic Matrix Factorization for Implicit Feedback Data NIPS Workshop on Distributed Matrix Computations
Can also use Logistic Loss!
NLP Models on News and Blogs
Playlist itself is a
document
Songs in
playlist are
words
NLP Models work great on Playlists!
[3] http://benanne.github.io/2014/08/05/spotify-cnns.html
Deep Learning on Audio
•normalized item-vectors
Songs in a Latent Space representation
•user-vector in same space
Songs in a Latent Space representation
Lesson 3:
Don’t scale until
you need to
Scaling to 100%: Rollout Challenges
‣Create and publish 75M playlists every week
‣Downloading and processing Facebook images
‣Language translations
Scaling to 100%: Weekly refresh
‣Time sensitive updates
‣Refresh 75M playlists every Sunday night
‣Take timezones into account
Discover Weekly publishing flow
What’s next?
Iterating on content
quality and interface
enhancements
Iterating on quality and adding a feedback loop.
DW feedback comes at the expense of presentation bias.
Lesson 4:
Users know best. In the
end, AB Test everything!
Lesson 5 (final lesson!):
Empower bottom-up
innovation in your org and
amazing things will happen.
Thank You!
(btw, we’re hiring Machine Learning and
Data Engineers, come chat with us!)

Weitere ähnliche Inhalte

Was ist angesagt?

Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experienceMounia Lalmas-Roelleke
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Erik Bernhardsson
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyChing-Wei Chen
 
Personalized Playlists at Spotify
Personalized Playlists at SpotifyPersonalized Playlists at Spotify
Personalized Playlists at SpotifyRohan Agrawal
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...Hakka Labs
 
Engagement, Metrics & Personalisation at Scale
Engagement, Metrics &  Personalisation at ScaleEngagement, Metrics &  Personalisation at Scale
Engagement, Metrics & Personalisation at ScaleMounia Lalmas-Roelleke
 
Building Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at SpotifyBuilding Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at SpotifyVidhya Murali
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsErik Bernhardsson
 
The Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainThe Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainRafał Wojdyła
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyNeville Li
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupAndy Sloane
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyChris Johnson
 
Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)Mounia Lalmas-Roelleke
 
Music Personalization At Spotify
Music Personalization At SpotifyMusic Personalization At Spotify
Music Personalization At SpotifyVidhya Murali
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at SpotifyOguz Semerci
 
Spotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendationsSpotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendationsSophia Ciocca
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Esh Vckay
 
Big Data At Spotify
Big Data At SpotifyBig Data At Spotify
Big Data At SpotifyAdam Kawa
 

Was ist angesagt? (20)

Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experience
 
Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014Music recommendations @ MLConf 2014
Music recommendations @ MLConf 2014
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at Spotify
 
Personalized Playlists at Spotify
Personalized Playlists at SpotifyPersonalized Playlists at Spotify
Personalized Playlists at Spotify
 
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
 
Engagement, Metrics & Personalisation at Scale
Engagement, Metrics &  Personalisation at ScaleEngagement, Metrics &  Personalisation at Scale
Engagement, Metrics & Personalisation at Scale
 
Building Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at SpotifyBuilding Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at Spotify
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive Analytics
 
The Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and PainThe Evolution of Hadoop at Spotify - Through Failures and Pain
The Evolution of Hadoop at Spotify - Through Failures and Pain
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ Spotify
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data Meetup
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)Recommending and Searching (Research @ Spotify)
Recommending and Searching (Research @ Spotify)
 
Recommending and searching @ Spotify
Recommending and searching @ SpotifyRecommending and searching @ Spotify
Recommending and searching @ Spotify
 
Music Personalization At Spotify
Music Personalization At SpotifyMusic Personalization At Spotify
Music Personalization At Spotify
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
 
Spotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendationsSpotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendations
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.
 
Big Data At Spotify
Big Data At SpotifyBig Data At Spotify
Big Data At Spotify
 
Data at Spotify
Data at SpotifyData at Spotify
Data at Spotify
 

Ähnlich wie From Idea to Execution: Spotify's Discover Weekly

Latest SoundCloud Market Research on Vertical Expansion
Latest SoundCloud Market Research on Vertical ExpansionLatest SoundCloud Market Research on Vertical Expansion
Latest SoundCloud Market Research on Vertical ExpansionInes Chen
 
Analysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming ServiceAnalysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming ServiceMasanori Takano
 
#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks
#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks
#mytweet via Instagram: Exploring User Behaviour Across Multiple Social NetworksBang Hui Lim
 
RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text
RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short TextRESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text
RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short TextElizabeth Murnane
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming serviceJulie Knibbe
 
Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...
Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...
Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...Marius Miron
 
Electronic Resource Assessment: Adventures in Engagement
Electronic Resource Assessment: Adventures in EngagementElectronic Resource Assessment: Adventures in Engagement
Electronic Resource Assessment: Adventures in EngagementColleen Major
 
[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova musicNAVER D2
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018Fabien Gouyon
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Karthik Murugesan
 
Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...
Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...
Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...midem
 
Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...
Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...
Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...midem
 
There is a method to it: Making meaning in information research through a mix...
There is a method to it: Making meaning in information research through a mix...There is a method to it: Making meaning in information research through a mix...
There is a method to it: Making meaning in information research through a mix...Lynn Connaway
 
Data Visualization: A Quick Tour for Data Science Enthusiasts
Data Visualization: A Quick Tour for Data Science EnthusiastsData Visualization: A Quick Tour for Data Science Enthusiasts
Data Visualization: A Quick Tour for Data Science EnthusiastsKrist Wongsuphasawat
 

Ähnlich wie From Idea to Execution: Spotify's Discover Weekly (20)

Latest SoundCloud Market Research on Vertical Expansion
Latest SoundCloud Market Research on Vertical ExpansionLatest SoundCloud Market Research on Vertical Expansion
Latest SoundCloud Market Research on Vertical Expansion
 
Analysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming ServiceAnalysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming Service
 
#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks
#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks
#mytweet via Instagram: Exploring User Behaviour Across Multiple Social Networks
 
NISO Webinar: Keyword Search = "Improve Discovery Systems"
NISO Webinar: Keyword Search = "Improve Discovery Systems"NISO Webinar: Keyword Search = "Improve Discovery Systems"
NISO Webinar: Keyword Search = "Improve Discovery Systems"
 
Groeling, Tim: NewsScape: Preserving TV News
Groeling, Tim: NewsScape: Preserving TV NewsGroeling, Tim: NewsScape: Preserving TV News
Groeling, Tim: NewsScape: Preserving TV News
 
RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text
RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short TextRESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text
RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text
 
Tv, print, radio measuring the impact of traditional media
Tv, print, radio   measuring the impact of traditional mediaTv, print, radio   measuring the impact of traditional media
Tv, print, radio measuring the impact of traditional media
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming service
 
Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...
Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...
Luis Aguiar: Platforms, Promotion, and Product Discovery: Evidence from Spoti...
 
Electronic Resource Assessment: Adventures in Engagement
Electronic Resource Assessment: Adventures in EngagementElectronic Resource Assessment: Adventures in Engagement
Electronic Resource Assessment: Adventures in Engagement
 
Past Slides
Past SlidesPast Slides
Past Slides
 
[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music
 
Viral loops
Viral loopsViral loops
Viral loops
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018
 
Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...
Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...
Marketing Tips for Classical Music Artists - midem 2012 Carnegie Hall present...
 
Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...
Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...
Marketing Tips for Classical Music: Digital Content Marketing – midem 2012 pr...
 
Challenging cajoling and rewarding the community for their contributions to o...
Challenging cajoling and rewarding the community for their contributions to o...Challenging cajoling and rewarding the community for their contributions to o...
Challenging cajoling and rewarding the community for their contributions to o...
 
There is a method to it: Making meaning in information research through a mix...
There is a method to it: Making meaning in information research through a mix...There is a method to it: Making meaning in information research through a mix...
There is a method to it: Making meaning in information research through a mix...
 
Data Visualization: A Quick Tour for Data Science Enthusiasts
Data Visualization: A Quick Tour for Data Science EnthusiastsData Visualization: A Quick Tour for Data Science Enthusiasts
Data Visualization: A Quick Tour for Data Science Enthusiasts
 

Kürzlich hochgeladen

WSO2CON 2024 - Building a Digital Government in Uganda
WSO2CON 2024 - Building a Digital Government in UgandaWSO2CON 2024 - Building a Digital Government in Uganda
WSO2CON 2024 - Building a Digital Government in UgandaWSO2
 
WSO2Con2024 - Low-Code Integration Tooling
WSO2Con2024 - Low-Code Integration ToolingWSO2Con2024 - Low-Code Integration Tooling
WSO2Con2024 - Low-Code Integration ToolingWSO2
 
WSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open Source
WSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open SourceWSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open Source
WSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open SourceWSO2
 
WSO2CON2024 - Why Should You Consider Ballerina for Your Next Integration
WSO2CON2024 - Why Should You Consider Ballerina for Your Next IntegrationWSO2CON2024 - Why Should You Consider Ballerina for Your Next Integration
WSO2CON2024 - Why Should You Consider Ballerina for Your Next IntegrationWSO2
 
Announcing Codolex 2.0 from GDK Software
Announcing Codolex 2.0 from GDK SoftwareAnnouncing Codolex 2.0 from GDK Software
Announcing Codolex 2.0 from GDK SoftwareJim McKeeth
 
WSO2CON 2024 Slides - Unlocking Value with AI
WSO2CON 2024 Slides - Unlocking Value with AIWSO2CON 2024 Slides - Unlocking Value with AI
WSO2CON 2024 Slides - Unlocking Value with AIWSO2
 
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital TransformationWSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital TransformationWSO2
 
Driving Innovation: Scania's API Revolution with WSO2
Driving Innovation: Scania's API Revolution with WSO2Driving Innovation: Scania's API Revolution with WSO2
Driving Innovation: Scania's API Revolution with WSO2WSO2
 
Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...
Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...
Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...Bert Jan Schrijver
 
WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...
WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...
WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...WSO2
 
WSO2Con2024 - Software Delivery in Hybrid Environments
WSO2Con2024 - Software Delivery in Hybrid EnvironmentsWSO2Con2024 - Software Delivery in Hybrid Environments
WSO2Con2024 - Software Delivery in Hybrid EnvironmentsWSO2
 
WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...
WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...
WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...WSO2
 
Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024
Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024
Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024VictoriaMetrics
 
BusinessGPT - Security and Governance for Generative AI
BusinessGPT  - Security and Governance for Generative AIBusinessGPT  - Security and Governance for Generative AI
BusinessGPT - Security and Governance for Generative AIAGATSoftware
 
WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...
WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...
WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...WSO2
 
WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...
WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...
WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...WSO2
 
WSO2CON 2024 - How to Run a Security Program
WSO2CON 2024 - How to Run a Security ProgramWSO2CON 2024 - How to Run a Security Program
WSO2CON 2024 - How to Run a Security ProgramWSO2
 
WSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & Innovation
WSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & InnovationWSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & Innovation
WSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & InnovationWSO2
 
WSO2CON 2024 Slides - Open Source to SaaS
WSO2CON 2024 Slides - Open Source to SaaSWSO2CON 2024 Slides - Open Source to SaaS
WSO2CON 2024 Slides - Open Source to SaaSWSO2
 

Kürzlich hochgeladen (20)

WSO2CON 2024 - Building a Digital Government in Uganda
WSO2CON 2024 - Building a Digital Government in UgandaWSO2CON 2024 - Building a Digital Government in Uganda
WSO2CON 2024 - Building a Digital Government in Uganda
 
WSO2Con2024 - Low-Code Integration Tooling
WSO2Con2024 - Low-Code Integration ToolingWSO2Con2024 - Low-Code Integration Tooling
WSO2Con2024 - Low-Code Integration Tooling
 
WSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open Source
WSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open SourceWSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open Source
WSO2CON 2024 - Freedom First—Unleashing Developer Potential with Open Source
 
WSO2CON2024 - Why Should You Consider Ballerina for Your Next Integration
WSO2CON2024 - Why Should You Consider Ballerina for Your Next IntegrationWSO2CON2024 - Why Should You Consider Ballerina for Your Next Integration
WSO2CON2024 - Why Should You Consider Ballerina for Your Next Integration
 
Announcing Codolex 2.0 from GDK Software
Announcing Codolex 2.0 from GDK SoftwareAnnouncing Codolex 2.0 from GDK Software
Announcing Codolex 2.0 from GDK Software
 
Abortion Pill Prices Tembisa [(+27832195400*)] 🏥 Women's Abortion Clinic in T...
Abortion Pill Prices Tembisa [(+27832195400*)] 🏥 Women's Abortion Clinic in T...Abortion Pill Prices Tembisa [(+27832195400*)] 🏥 Women's Abortion Clinic in T...
Abortion Pill Prices Tembisa [(+27832195400*)] 🏥 Women's Abortion Clinic in T...
 
WSO2CON 2024 Slides - Unlocking Value with AI
WSO2CON 2024 Slides - Unlocking Value with AIWSO2CON 2024 Slides - Unlocking Value with AI
WSO2CON 2024 Slides - Unlocking Value with AI
 
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital TransformationWSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
 
Driving Innovation: Scania's API Revolution with WSO2
Driving Innovation: Scania's API Revolution with WSO2Driving Innovation: Scania's API Revolution with WSO2
Driving Innovation: Scania's API Revolution with WSO2
 
Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...
Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...
Devoxx UK 2024 - Going serverless with Quarkus, GraalVM native images and AWS...
 
WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...
WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...
WSO2CON 2024 - Navigating API Complexity: REST, GraphQL, gRPC, Websocket, Web...
 
WSO2Con2024 - Software Delivery in Hybrid Environments
WSO2Con2024 - Software Delivery in Hybrid EnvironmentsWSO2Con2024 - Software Delivery in Hybrid Environments
WSO2Con2024 - Software Delivery in Hybrid Environments
 
WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...
WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...
WSO2Con2024 - GitOps in Action: Navigating Application Deployment in the Plat...
 
Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024
Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024
Large-scale Logging Made Easy: Meetup at Deutsche Bank 2024
 
BusinessGPT - Security and Governance for Generative AI
BusinessGPT  - Security and Governance for Generative AIBusinessGPT  - Security and Governance for Generative AI
BusinessGPT - Security and Governance for Generative AI
 
WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...
WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...
WSO2CON 2024 - IoT Needs CIAM: The Importance of Centralized IAM in a Growing...
 
WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...
WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...
WSO2CON 2024 - Building the API First Enterprise – Running an API Program, fr...
 
WSO2CON 2024 - How to Run a Security Program
WSO2CON 2024 - How to Run a Security ProgramWSO2CON 2024 - How to Run a Security Program
WSO2CON 2024 - How to Run a Security Program
 
WSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & Innovation
WSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & InnovationWSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & Innovation
WSO2CON 2024 - OSU & WSO2: A Decade Journey in Integration & Innovation
 
WSO2CON 2024 Slides - Open Source to SaaS
WSO2CON 2024 Slides - Open Source to SaaSWSO2CON 2024 Slides - Open Source to SaaS
WSO2CON 2024 Slides - Open Source to SaaS
 

From Idea to Execution: Spotify's Discover Weekly

  • 1. From Idea to Execution: Spotify’s Discover Weekly Chris Johnson :: @MrChrisJohnson Edward Newett :: @scaladaze DataEngConf • NYC • Nov 2015 Or: 5 lessons in building recommendation products at scale
  • 2. Who are We?? Chris Johnson Edward Newett
  • 3. Spotify in Numbers • Started in 2006, now available in 58 markets • 75+ Million active users, 20 Million paying subscribers • 30+ Million songs, 20,000 new songs added per day • 1.5 Billion user generated playlists • 1 TB user data logged per day • 1,700 node Hadoop cluster • 10,000+ Hadoop jobs run daily
  • 4. Challenge: 30M songs… how do we recommend music to users?
  • 8. Discover Weekly • Started in 2006, now available in 58 markets • 75+ Million active users, 20 Million paying subscribers • 30+ Million songs, 20,000 new songs added per day • 1.5 Billion user generated playlists • 1 TB user data logged per day • 1,700 node Hadoop cluster • 10,000+ Hadoop jobs run daily
  • 10. 2013 :: Discover Page v1.0 • Personalized News Feed of recommendations • Artists, Album Reviews, News Articles, New Releases, Upcoming Concerts, Social Recommendations, Playlists… • Required a lot of attention and digging to engage with recommendations • No organization of content
  • 11. 2014 :: Discover Page v2.0 • Recommendations grouped into strips (a la Netflix) • Limited to Albums and New Releases • More organized than News-Feed but still requires active interaction
  • 12. Insight: users spending more time on editorial Browse playlists than Discover.
  • 13. Idea: combine the personalized experience of Discover with the lean- back ease of Browse
  • 15. Play it forward: Same content as the Discover Page but.. a playlist
  • 16. Lesson 1: Be data driven from start to finish
  • 17. Slide from Dan McKinley - Etsy 2008 2012 2015
  • 18. • Reach: How many users are you reaching • Depth: For the users you reach, what is the depth of reach. • Retention: For the users you reach, how many do you retain? Define success metrics BEFORE you release your test
  • 19. • Reach: DW WAU / Spotify WAU • Depth: DW Time Spent / Spotify WAU • Retention: DW week-over-week retention Discover Weekly Key Success Metrics
  • 20. 2008 2012 2015 Slide from Dan McKinley - Etsy
  • 21. Step 1: Prototype (employee test)
  • 22. Step 1: Prototype (employee test)
  • 23. Results of Employee Test were very positive!
  • 24. 2008 2012 2015 Slide from Dan McKinley - Etsy
  • 25. Step 2: Release AB Test to 1% of Users
  • 26. Google Form 1% Results
  • 27. Personalized image resulted in 10% lift in WAU • Initial 0.5% user test • 1% Spaceman image • 1% Personalized image
  • 31. 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of plays, context, and recency as weight X YUsers Songs • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector [1] Hu Y. & Koren Y. & Volinsky C. (2008) Collaborative Filtering for Implicit Feedback Datasets 8th IEEE International Conference on Data Mining Implicit Matrix Factorization
  • 32. 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 •Aggregate all (user, track) streams into a large matrix •Goal: Model probability of user playing a song as logistic, then maximize log likelihood of binary preference matrix, weighting positive observations by a function of plays, context, and recency X YUsers Songs • = bias for user • = bias for item • = regularization parameter • = user latent factor vector • = item latent factor vector [2] Johnson C. (2014) Logistic Matrix Factorization for Implicit Feedback Data NIPS Workshop on Distributed Matrix Computations Can also use Logistic Loss!
  • 33. NLP Models on News and Blogs
  • 34. Playlist itself is a document Songs in playlist are words NLP Models work great on Playlists!
  • 36. •normalized item-vectors Songs in a Latent Space representation
  • 37. •user-vector in same space Songs in a Latent Space representation
  • 38. Lesson 3: Don’t scale until you need to
  • 39. Scaling to 100%: Rollout Challenges ‣Create and publish 75M playlists every week ‣Downloading and processing Facebook images ‣Language translations
  • 40. Scaling to 100%: Weekly refresh ‣Time sensitive updates ‣Refresh 75M playlists every Sunday night ‣Take timezones into account
  • 42.
  • 43.
  • 44.
  • 45. What’s next? Iterating on content quality and interface enhancements
  • 46. Iterating on quality and adding a feedback loop.
  • 47. DW feedback comes at the expense of presentation bias.
  • 48. Lesson 4: Users know best. In the end, AB Test everything!
  • 49. Lesson 5 (final lesson!): Empower bottom-up innovation in your org and amazing things will happen.
  • 50. Thank You! (btw, we’re hiring Machine Learning and Data Engineers, come chat with us!)