Rumus matematik examonline spa

Mohammad Hafiz Bin Hamzah, M. Sc.
Mohammad Hafiz Bin Hamzah, M. Sc.Research Assistant at University of Malaya um Sekolah Menengah Kebangsaan Hutan Melintang (SHUMEL)

Rumus Matematik Examonline SPA PTD M41 pada 19.01.2016 jam 8:00 malam

zefry@sas.edu.my 1
NOTES AND FORMULAE
SPM MATHEMATICS
FORM 1 – 3 NOTES
1. SOLID GEOMETRY
(a) Area and perimeter
Triangle
A = 2
1
 base  height
= 2
1
bh
Trapezium
A = 2
1
(sum of two
parallel sides)  height
= 2
1
(a + b)  h
Circle
Area = r2
Circumference = 2r
Sector
Area of sector =
360
 
r2
Length of arc =
360
  2r
Cylinder
Curve surface area
= 2rh
Sphere
Curve surface area =
4r2
(b) Solid and Volume
Cube:
V = x  x  x = x3
Cuboid:
V = l  b  h
= lbh
Cylinder
V =  r2
h
Cone
V = 3
1
 r2
h
Sphere
V = 3
4
r3
Pyramid
V = 3
1
 base area 
height
Prism
V = Area of cross section
 length
2. CIRCLE THEOREM
Angle at the centre
= 2 × angle at the
circumference
x = 2y
Angles in the same
segment are equal
x = y
Angle in a
semicircle
ACB = 90o
Sum of opposite
angles of a cyclic
quadrilateral = 180o
a + b = 180o
The exterior angle
of a cyclic
quadrilateral is
equal to the interior
opposite angle.
b = a
Angle between a
tangent and a radius
= 90o
OPQ = 90o
RUMUS MATEMATIK UNTUK EXAMONLINE SPA (SUKATAN MATEMATIK SPM)
Untuk maklumat lanjut mengenai Examonline PTD M41 19.01.2016 sila layari :
http://goo.gl/1zCLI4
zefry@sas.edu.my 2
The angle between a
tangent and a chord
is equal to the angle
in the alternate
segment.
x = y
If PT and PS are
tangents to a circle,
PT = PS
TPO = SPO
TOP = SOP
3. POLYGON
(a) The sum of the interior angles of a n sided polygon
= (n – 2)  180o
(b) Sum of exterior angles of a polygon = 360o
(c) Each exterior angle of a regular n sided polygon =
n
0
360
(d) Regular pentagon
Each exterior angle = 72o
Each interior angle = 108o
(e) Regular hexagon
Each exterior angle = 60o
Each interior angle = 120o
(f) Regular octagon
Each exterior angle = 45o
Each interior angle = 135o
4. FACTORISATION
(a) xy + xz = x(y + z)
(b) x2
– y2
= (x – y)(x + y)
(c) xy + xz + ay + az
= x (y + z) + a (y + z)
= (y + z)(x + a)
(d) x2
+ 4x + 3
= (x + 3)(x + 1)
5. EXPANSION OF ALGERBRAIC
EXPRESSIONS
(a)
2x2
– 6x + x – 3 = 2x2
– 5x − 3
(b) (x + 3)2
= x2
+ 2 × 3 × x + 32
= x2
+ 6x + 9
(c) (x – y)(x + y) = x2
+ xy – xy – y2
= x2
– y2
6. LAW OF INDICES
(a) xm
 x n
= xm + n
(b) xm
 xn
= xm – n
(c) (xm
)n
= x m  n
(d) x-n
= n
x
1
(e)
n
xxn

1
(f)
mn
xx n
m
)(
(g) x0
= 1
7. ALGEBRAIC FRACTION
Express
2
1 10
2 6
k
k k

 as a fraction in its simplest
form.
Solution:
2 2
1 10 1 3 (10 )
2 6 6
k k k
k k k
   
 
=
2 2 2 2
3 10 4 10 2( 5) 5
6 6 6 3
k k k k k
k k k k
    
  
8. LINEAR EQUATION
Given that
1
5
(3n + 2) = n – 2, calculate the value
of n.
Solution:
1
5
(3n + 2) = n – 2
5 ×
1
5
(3n + 2) = 5(n – 2)
3n + 2 = 5n – 10
2 + 10 = 5n – 3n 2n = 12 n = 6
9. SIMULTANEOUS LINEAR EQUATIONS
(a) Substitution Method:
y = 2x – 5 --------(1)
2x + y = 7 --------(2)
Substitute (1) into (2)
2x + 2x – 5 = 7 4x = 12 x = 3
Substitute x = 3 into (1), y = 6 – 5 = 1
(b) Elimination Method:
Solve:
3x + 2y = 5 ----------(1)
x – 2y = 7 ----------(2)
(1) + (2), 4x = 12, x = 3
Substitute into (1) 9 + 2y = 5
2y = 5 – 9 = −4
zefry@sas.edu.my 3
y = −2
10. ALGEBRAIC FORMULAE
Given that k – (m + 2) = 3m, express m in terms of
k.
Solution:
k – (m + 2) = 3m k – m – 2 = 3m
k – 2 = 3m + m = 4m
m =
2
4
k 
11. LINEAR INEQUALITIES
1. Solve the linear inequality 3x – 2 > 10.
Solution:
3x – 2 > 10 3x > 10 + 2
3x > 12 x > 4
2. List all integer values of x which satisfy the
linear inequality 1 ≤ x + 2 < 4
Solution:
1 ≤ x + 2 < 4
Subtract 2, 1 − 2 ≤ x + 2 – 2 < 4 – 2
−1 ≤ x < 2
 x = −1, 0, 1
3. Solve the simultaneous linear inequalities
4p – 3 ≤ p and p + 2 
1
2
p
Solution:
4p – 3 ≤ p 4p – p ≤ 3 3p ≤ 3
p ≤ 1
p + 2 
1
2
p × 2, 2p + 4  p
2p – p  −4 p  −4
 The solution is −4 ≤ p ≤ 1.
12. STATISTICS
Mean =
sum of data
number of data
Mean = sum of(frequency data)
sum of frequency
 , when the data
has frequency.
Mode is the data with the highest frequency
Median is the middle data which is arranged in
ascending/descending order.
1. 3, 3, 4, 6, 8
Mean =
3 3 4 6 8
4.8
5
   

Mode = 3
Median = 4
2. 4, 5, 6, 8, 9, 10, there is no middle number,
the median is the mean of the two middle
numbers.
Median =
6 8
2

= 7
2. A pictograph uses symbols to represent a set of
data. Each symbol is used to represent certain
frequency of the data.
January
February
March
Represents 50 books
3. A bar chart uses horizontal or vertical bars to
represent a set of data. The length or the height of
each bar represents the frequency of each data.
4. A pie chart uses the sectors of a circle to represent
the frequency/quantitiy of data.
A pie chart showing the favourite drinks of a group
of students.
FORM FOUR NOTES
1. SIGNIFICANT FIGURES AND STANDARD
FORM
Significant Figures
1. Zero in between numbers are significant.
Example: 3045 (4 significant figures)
2. Zero between whole numbers are not
significant figures.
Example: 4560 (3 significant figures)
3. Zero in front of decimal numbers are not
significant.
Example: 0.00324 ( 3 significant figures)
4. Zero behind decimal numbers are significant.
Example: 2.140 (4 significant figures)
Standard Form
Standard form are numbers written in the form A ×
10n
, where 1 ≤ A < 10 and n are integers.
Example: 340 000 = 3.4 × 105
0.000 56 = 5.6 × 10-4
2. QUADRATIC EXPRESSION AND
QUADRATIC EQUATIONS
1. Solve quadratic equations by factorization.
Example: Solve
2
5 8
2
3
k
k


5k2
– 8 = 6k 5k2
– 6k – 8 = 0
(5k + 4)(k – 2) = 0
k = 4
5
 , 2
2. Solve qudratic equation by formula:
Example: Solve 3x2
– 2x – 2 = 0
x =
2
4
2
b b ac
a
   = 2 4 4(3)( 2)
6
  
= 2 28
6
 x = 1.215, −0.5486
3. SET
(a) Symbol
 - intersection  - union
 - subset  - universal set
 - empty set - is a member of
zefry@sas.edu.my 4
n(A) –number of element in set A.
A – Complement of set A.
(b) Venn Diagram
A  B
A  B
A
Example:
n(A) = 7 + 6 = 13
n(B) = 6 + 10 = 16
n(A  B) = 6
n(A  B) = 7 + 6 + 10 = 23
n(A  B‟) = 7
n(A‟  B) = 10
n(A  B) = 7 + 10 + 2 = 19
n(A  B) = 2
4. MATHEMATICAL REASONING
(a) Statement
A mathematical sentence which is either true or
false but not both.
(b) Implication
If a, then b
a – antecedent
b – consequent
„p if and only if q‟ can be written in two
implications:
If p, then q
If q, then p
(c) Argument
Three types of argument:
Type I
Premise 1: All A are B
Premise 2 : C is A
Conclusion: C is B
Type II
Premise 1: If A, then B
Premise 2: A is true
Conclusion: B is true.
Type III
Premise 1: If A, then B
Premise 2: Not B is true.
Conclusion: Not A is true.
5. THE STRAIGHT LINE
(a) Gradient
Gradient of AB =
m =
12
12
xx
yy


(b) Equation of a straight line
Gradient Form:
y = mx + c
m = gradient
c = y-intercept
Intercept Form:
1
b
y
a
x
a = x−intercept
b = y−intercept
Gradient of straight line m =
-intercept
-intercept
y
x

=
a
b

6. STATISTICS
(a) Class, Modal Class, Class Interval Size, Midpoint,
Cumulative frequency, Ogive
Example :
The table below shows the time taken by 80
students to type a document.
Time (min) Frequency
10-14
15-19
1
7
zefry@sas.edu.my 5
20-24
25-29
30-34
35-39
40-44
45-49
12
21
19
12
6
2
For the class 10 – 14 :
Lower limit = 10 min
Upper limit = 14 min
Lower boundary = 9.5 min
Upper boundary = 14.5 min
Class interval size = Upper boundary – lower
boundary = 14.5 – 9.5 = 5 min
Modal class = 25 – 29 min
Midpoint of modal class =
2
2925  = 27
To draw an ogive, a table of upper boundary and
cumulative frequency has to be constructed.
Time
(min)
Frequency
Upper
boundary
Cumulative
frequency
5-9
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
0
1
7
12
21
19
12
6
2
9.5
14.5
19.5
24.5
29.5
34.5
39.5
44.5
49.5
0
1
8
20
42
60
72
78
80
From the ogive :
Median = 29.5 min
First quartile = 24. 5 min
Third quartile = 34 min
Interquartile range = 34 – 24. 5 = 9.5 min.
(b) Histogram, Frequency Polygon
Example:
The table shows the marks obtained by a group of
students in a test.
Marks Frequency
1 – 10
11 – 20
21 – 30
31 – 40
41 – 50
2
8
16
20
4
7. TRIGONOMETRY
sin o
= Opposite
hypotenuse
AB
AC

cos o
= adjacent BC
hypotenuse AC

tan o
= opposite
adjacent
AB
BC

Acronym: “Add Sugar To Coffee”
Trigonometric Graphs
1. y = sin x
2. y = cos x
3. y = tan x
8. ANGLE OF ELEVATION AND DEPRESSION
(a) Angle of Elevation
zefry@sas.edu.my 6
The angle of elevation is the angle betweeen the
horizontal line drawn from the eye of an observer
and the line joining the eye of the observer to an
object which is higher than the observer.
The angle of elevation of B from A is BAC
(b) Angle of Depression
The angle of depression is the angle between the
horizontal line from the eye of the observer an the
line joining the eye of the observer to an object
which is lower than the observer.
The angle of depression of B from A is BAC.
9. LINES AND PLANES
(a) Angle Between a Line and a Plane
In the diagram,
(a) BC is the normal line to the plane PQRS.
(b) AB is the orthogonal projection of the line
AC to the plane PQRS.
(c) The angle between the line AC and the plane
PQRS is BAC
(b) Angle Between Two Planes
In the diagram,
(a) The plane PQRS and the plane TURS
intersects at the line RS.
(b) MN and KN are any two lines drawn on each
plane which are perpendicular to RS and
intersect at the point N.
The angle between the plane PQRS and the plane
TURS is MNK.
FORM 5 NOTES
10. NUMBER BASES
(a) Convert number in base 10 to a number in base 2, 5
or 8.
Method: Repeated division.
Example:
2
2
2
2
2
2
34
17
8
4
2
1
0
0
1
0
0
0
1
3410 = 1000102
348
8 4 2
0 4
3410 = 428
(b) Convert number in base 2, 5, 8 to number in base
10.
Method: By using place value
Example: (a) 110112 =
24
23
22
21
1
1 1 0 1 12
= 24
+ 23
+ 21
+ 1
= 2710
(b) 2145 =
52
51
1
2 1 45
= 2  52
+ 1  51
+ 4  1
= 5910
(c) Convert between numbers in base 2, 5 and 8.
Method: Number in base m  Number in base
10  Number in base n.
Example: Convert 1100112 to number in base 5.
25
24
23
22
21
1
1 1 0 0 1 12
= 25
+ 24
+ 2 + 1
= 5110
515
5
5
10 1
2 0
0 2
Therefore, 1100112= 2015
(d) Convert number in base two to number in base
eight and vice versa.
Using a conversion table
Base 2 Base 8
000
001
010
011
100
101
110
111
0
1
2
3
4
5
6
7
Example :
10 0112 = 238
zefry@sas.edu.my 7
458 = 100 1012
11. GRAPHS OF FUNCTIONS
(a) Linear Graph
y = mx + c
(b) Quadratic Graph
y = ax2
+ bx + c
(c) Cubic Graph
y = ax3
+ c
(d) Reciprocal Graph
x
a
y 
12. TRANSFORMATION
(a) Translastion
Description: Translastion






k
h
Example : Translastion






 3
4
(b) Reflection
Description: Reflection in the line __________
Example: Reflection in the line y = x.
(c) Rotation
Description: Direction ______rotation of
angle______about the centre _______.
Example: A clockwise rotation of 90o
about the
centre (5, 4).
(d) Enlargement
Description: Enlargement of scale factor ______,
with the centre ______.
Example : Enlargement of scale factor 2 with the
centre at the origin.
2Area of image
Area of object
k
k = scale factor
(e) Combined Transformtions
Transformation V followed by transformation W is
written as WV.
13. MATRICES
(a)




















db
ca
d
c
b
a
(b)












kb
ka
b
a
k
zefry@sas.edu.my 8
(c)




















dhcfdgce
bhafbgae
hg
fe
dc
ba
(d) If M =






dc
ba
, then
M-1
=








 ac
bd
bcad
1
(e) If ax + by = h
cx + dy = k


















k
h
y
x
dc
ba





















k
h
ac
bd
bcady
x 1
(f) Matrix
a c
b d
 
 
 
has no inverse if ad – bc = 0
14. VARIATIONS
(a) Direct Variation
If y varies directly as x,
Writtn in mathematical form: y  x,
Written in equation form: y = kx , k is a constant.
(b) Inverse Variation
If y varies inversely as x,
Written in mathematical form:
1
y
x

Written in equation form:
x
k
y  , k is a constant.
(c) Joint Variation
If y varies directly as x and inversely as z,
Written in mathematical form:
x
y
z
 ,
Written in equation form:
z
kx
y  , k is a
constant.
15. GRADIENT AND AREA UNDER A GRAPH
(a) Distance-Time Graph
Gradient =
distance
time
= speed
Average speed =
Total distance
Total time
(b) Speed-Time Graph
Gradient = Rate of change of speed
=
t
uv 
= acceleration
Distance = Area below speed-time graph
16. PROBABILITY
(a) Definition of Probability
Probability that event A happen,
( )
( )
( )
n A
P A
n S

S = sample space
(b) Complementary Event
P(A) = 1 – P(A)
(c) Probability of Combined Events
(i) P(A or B) = P(A  B)
(ii) P(A and B) = P(A  B)
17. BEARING
Bearing
Bearing of point B from A is the angle measured
clockwise from the north direction at A to the line
joining B to A. Bearing is written in 3 digits.
Example : Bearing B from A is 060o
18. THE EARTH AS A SPHERE
(a) Nautical Miles
1 nautical mile is the length of the arc on a great
circle which subtends an angle of 1 at the centre
of the earth.
(b) Distance Between Two Points on a Great Circle.
Distance =   60 nautical miles
 = angle between the parallels of latitude
measured along a meridian of longitude.
zefry@sas.edu.my 9
 = angle between the meridians of longitude
measured along the equator.
(c) Distance Between Two Points on The Parallel of
Latitude.
Distance =   60  cos o
 = angle of the parallel of latitude.
(d) Shortest Distance
The shortest distance between two points on the
surface of the earth is the distance between the two
points measured along a great circle.
(e) Knot
1 knot = 1 nautical mile per hour.
19. PLAN AND ELEVATION
(a) The diagram shows a solid right prism with
rectangular base FGPN on a horizontal table. The
surface EFGHJK is the uniform cross section. The
rectangular surface EKLM is a slanting plane.
Rectangle JHQR is a horizontal plane. The edges
EF, KJ and HG are vertical.
Draw to full scale, the plan of the solid.
(b) A solid in the form of a cuboid is joined to the solid
in (a) at the plane PQRLMN to form a combined
solid as shown in the diagram. The square base
FGSW is a horizontal plane.
Draw to full scale
(i) the elevation of the combined solid on the
vertical plane parallel to FG as viewed from C,
(ii) the elevation of the combined solid on the
vertical plane parallel to GPS as viewed from
D.
Solution:
(a)
Plan
(b) (i)
C-elevation
(ii)
D-elevation

Recomendados

JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdf von
JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdfJAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdf
JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdfPuvaVari1
22.5K views65 Folien
Topik 1 fungsi (2) von
Topik 1 fungsi (2)Topik 1 fungsi (2)
Topik 1 fungsi (2)ctsafinah
62K views10 Folien
Notes and Formulae Mathematics SPM von
Notes and Formulae Mathematics SPM Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM Zhang Ewe
67.3K views9 Folien
Bab 6 bentuk geometri tiga dimensi von
Bab 6   bentuk geometri tiga dimensiBab 6   bentuk geometri tiga dimensi
Bab 6 bentuk geometri tiga dimensiImahzamri
391 views14 Folien
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6 von
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6AYU_TEMPOYAK
90.9K views5 Folien
Modul 1 algebra von
Modul 1 algebraModul 1 algebra
Modul 1 algebraFatimah Abdul Khalid
16.2K views17 Folien

Más contenido relacionado

Was ist angesagt?

Form 4 add maths note von
Form 4 add maths noteForm 4 add maths note
Form 4 add maths noteSazlin A Ghani
156.7K views9 Folien
Formula geometri koordinat von
Formula geometri koordinatFormula geometri koordinat
Formula geometri koordinatBeela Sensei
3.9K views1 Folie
Modul 4 graf fungsi von
Modul 4 graf fungsiModul 4 graf fungsi
Modul 4 graf fungsiFatimah Abdul Khalid
5.1K views9 Folien
Persamaan serentak von
Persamaan serentakPersamaan serentak
Persamaan serentakzabidah awang
17.4K views4 Folien
Notes and-formulae-mathematics von
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematicsRagulan Dev
62.5K views9 Folien
Kuiz matematik tingkatan 3(ungkapanalgebra) von
Kuiz matematik tingkatan 3(ungkapanalgebra)Kuiz matematik tingkatan 3(ungkapanalgebra)
Kuiz matematik tingkatan 3(ungkapanalgebra)Cikgu Ho SMK Tunku Putra Batu Pahat
7.3K views1 Folie

Was ist angesagt?(20)

Form 4 add maths note von Sazlin A Ghani
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
Sazlin A Ghani156.7K views
Formula geometri koordinat von Beela Sensei
Formula geometri koordinatFormula geometri koordinat
Formula geometri koordinat
Beela Sensei3.9K views
Notes and-formulae-mathematics von Ragulan Dev
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ragulan Dev62.5K views
Rumus matematik-tambahan von ShuYe Lee
Rumus matematik-tambahanRumus matematik-tambahan
Rumus matematik-tambahan
ShuYe Lee22.8K views
Isipadu 3D Solid Geometri math modern von Hanini Hamsan
Isipadu 3D Solid Geometri math modern Isipadu 3D Solid Geometri math modern
Isipadu 3D Solid Geometri math modern
Hanini Hamsan10.9K views
Soalan Pertengahan Tahun Matematik Tingkatan 4 von Mujaheedah Solehah
Soalan Pertengahan Tahun Matematik Tingkatan 4Soalan Pertengahan Tahun Matematik Tingkatan 4
Soalan Pertengahan Tahun Matematik Tingkatan 4
Mujaheedah Solehah89.6K views
Nota math f1 bab 13 theorem phytagoras von Beela Sensei
Nota math f1 bab 13 theorem phytagorasNota math f1 bab 13 theorem phytagoras
Nota math f1 bab 13 theorem phytagoras
Beela Sensei5.6K views
Spm Add Maths Formula List Form4 von guest76f49d
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
guest76f49d175.6K views
PEPERIKSAAN AKHIR TAHUN BAHASA MELAYU KERTAS 2 , TINGKATAN 4, SMK SULTAN ISMA... von Normarjana Ibrahim
PEPERIKSAAN AKHIR TAHUN BAHASA MELAYU KERTAS 2 , TINGKATAN 4, SMK SULTAN ISMA...PEPERIKSAAN AKHIR TAHUN BAHASA MELAYU KERTAS 2 , TINGKATAN 4, SMK SULTAN ISMA...
PEPERIKSAAN AKHIR TAHUN BAHASA MELAYU KERTAS 2 , TINGKATAN 4, SMK SULTAN ISMA...
Normarjana Ibrahim118.3K views
Coordinate form 2 von larasati06
Coordinate form 2Coordinate form 2
Coordinate form 2
larasati0617.1K views
100 Soalan Matematik Ting3 von Roiamah Basri
100 Soalan Matematik Ting3100 Soalan Matematik Ting3
100 Soalan Matematik Ting3
Roiamah Basri114.4K views

Destacado

Kumpulan rumus Fisika Smp lengkap von
Kumpulan rumus Fisika Smp lengkapKumpulan rumus Fisika Smp lengkap
Kumpulan rumus Fisika Smp lengkapSulistiyo Wibowo
178.6K views5 Folien
GEOGRAFI TINGKATAN 2 ; graf von
GEOGRAFI TINGKATAN 2 ; grafGEOGRAFI TINGKATAN 2 ; graf
GEOGRAFI TINGKATAN 2 ; grafRamli Rem
2.2K views26 Folien
Chapter 2 (23-34) von
Chapter 2 (23-34)Chapter 2 (23-34)
Chapter 2 (23-34)ismalperlisi
5.4K views12 Folien
Analisis peperiksaan pertengahan tahun 2016 (2) von
Analisis peperiksaan pertengahan tahun 2016 (2)Analisis peperiksaan pertengahan tahun 2016 (2)
Analisis peperiksaan pertengahan tahun 2016 (2)Go 4 Construction Jobs
455 views78 Folien
Nota seni von
Nota seniNota seni
Nota seninadiafikris
956 views35 Folien
Rpt sains t2 2017noli von
Rpt sains t2 2017noliRpt sains t2 2017noli
Rpt sains t2 2017nolinoli dina
558 views19 Folien

Destacado(20)

Kumpulan rumus Fisika Smp lengkap von Sulistiyo Wibowo
Kumpulan rumus Fisika Smp lengkapKumpulan rumus Fisika Smp lengkap
Kumpulan rumus Fisika Smp lengkap
Sulistiyo Wibowo178.6K views
GEOGRAFI TINGKATAN 2 ; graf von Ramli Rem
GEOGRAFI TINGKATAN 2 ; grafGEOGRAFI TINGKATAN 2 ; graf
GEOGRAFI TINGKATAN 2 ; graf
Ramli Rem2.2K views
Rpt sains t2 2017noli von noli dina
Rpt sains t2 2017noliRpt sains t2 2017noli
Rpt sains t2 2017noli
noli dina558 views
Sains Bab 5 von the1 cats
Sains Bab 5Sains Bab 5
Sains Bab 5
the1 cats2.9K views
SOALAN PEPERIKSAAN PERTENGAHAN TAHUN GEOGRAFI TINGKATAN 2 von cikla321
SOALAN PEPERIKSAAN PERTENGAHAN TAHUN GEOGRAFI TINGKATAN 2SOALAN PEPERIKSAAN PERTENGAHAN TAHUN GEOGRAFI TINGKATAN 2
SOALAN PEPERIKSAAN PERTENGAHAN TAHUN GEOGRAFI TINGKATAN 2
cikla32116.8K views
HSP Science Year 2 von marziana80
HSP Science Year 2HSP Science Year 2
HSP Science Year 2
marziana803.8K views
Pemetaan dsp dan hsp sains tingkatan 2 von Steven Tan
Pemetaan dsp dan hsp sains tingkatan 2 Pemetaan dsp dan hsp sains tingkatan 2
Pemetaan dsp dan hsp sains tingkatan 2
Steven Tan360 views
Pp overview geografi tingkatan 2 von Aini Manal
Pp overview geografi tingkatan 2Pp overview geografi tingkatan 2
Pp overview geografi tingkatan 2
Aini Manal1.3K views
Hsp matematik-tingkatan-2-bm von Herney Mohamed
Hsp matematik-tingkatan-2-bmHsp matematik-tingkatan-2-bm
Hsp matematik-tingkatan-2-bm
Herney Mohamed1.4K views
Peperiksaan Akhir Tahun November 2017 | Dunia Muzik Tahun 2 von Stephanie Unsil
Peperiksaan Akhir Tahun November 2017 | Dunia Muzik Tahun 2Peperiksaan Akhir Tahun November 2017 | Dunia Muzik Tahun 2
Peperiksaan Akhir Tahun November 2017 | Dunia Muzik Tahun 2
Stephanie Unsil5.9K views
Ujian awal tahun sn4 krts 2 von aya kaplai
Ujian awal tahun sn4 krts 2Ujian awal tahun sn4 krts 2
Ujian awal tahun sn4 krts 2
aya kaplai2.3K views
Book von leeaa
BookBook
Book
leeaa1.3K views
Hsp sains tingkatan-2 von Khat Erin
Hsp sains tingkatan-2Hsp sains tingkatan-2
Hsp sains tingkatan-2
Khat Erin775 views

Similar a Rumus matematik examonline spa

Notes and-formulae-mathematics von
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematicsAh Ching
1.5K views9 Folien
Mathematics formulas von
Mathematics formulasMathematics formulas
Mathematics formulasThanussha Ragu
1.8K views9 Folien
Notes and formulae mathematics von
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematicsZainonie Ma'arof
19.3K views9 Folien
Form 5 Additional Maths Note von
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths NoteChek Wei Tan
76.5K views10 Folien
Set 1 mawar von
Set 1 mawarSet 1 mawar
Set 1 mawarfaazafauzana
408 views49 Folien
MATHS- (12th & 13th) Paper-2.pdf von
MATHS- (12th & 13th) Paper-2.pdfMATHS- (12th & 13th) Paper-2.pdf
MATHS- (12th & 13th) Paper-2.pdfSTUDY INNOVATIONS
9 views7 Folien

Similar a Rumus matematik examonline spa(20)

Notes and-formulae-mathematics von Ah Ching
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ah Ching1.5K views
Form 5 Additional Maths Note von Chek Wei Tan
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
Chek Wei Tan76.5K views
Cbse sample-papers-class-10-maths-sa-ii-solved-1 von gyanpub
Cbse sample-papers-class-10-maths-sa-ii-solved-1Cbse sample-papers-class-10-maths-sa-ii-solved-1
Cbse sample-papers-class-10-maths-sa-ii-solved-1
gyanpub1.6K views
Upcat math 2014 original von Mark Garrido
Upcat math 2014 originalUpcat math 2014 original
Upcat math 2014 original
Mark Garrido1.3K views
H 2008 2011 von sjamaths
H 2008   2011H 2008   2011
H 2008 2011
sjamaths85 views

Más de Mohammad Hafiz Bin Hamzah, M. Sc.

nota ringkas berkenaan TPPA von
nota ringkas berkenaan TPPAnota ringkas berkenaan TPPA
nota ringkas berkenaan TPPAMohammad Hafiz Bin Hamzah, M. Sc.
3.1K views2 Folien
SESI TAKLIMAT PERJANJIAN PERKONGSIAN TRANS-PASIFIK (TPPA) von
SESI TAKLIMAT PERJANJIAN PERKONGSIAN TRANS-PASIFIK (TPPA)SESI TAKLIMAT PERJANJIAN PERKONGSIAN TRANS-PASIFIK (TPPA)
SESI TAKLIMAT PERJANJIAN PERKONGSIAN TRANS-PASIFIK (TPPA)Mohammad Hafiz Bin Hamzah, M. Sc.
1.6K views84 Folien
Dasar Pembangunan Negara Malaysia Sepintas Lalu von
Dasar Pembangunan Negara Malaysia Sepintas LaluDasar Pembangunan Negara Malaysia Sepintas Lalu
Dasar Pembangunan Negara Malaysia Sepintas LaluMohammad Hafiz Bin Hamzah, M. Sc.
3.3K views5 Folien
2013 APCBEES MALAYSIA CONFERENCES von
2013 APCBEES MALAYSIA CONFERENCES2013 APCBEES MALAYSIA CONFERENCES
2013 APCBEES MALAYSIA CONFERENCESMohammad Hafiz Bin Hamzah, M. Sc.
502 views24 Folien

Más de Mohammad Hafiz Bin Hamzah, M. Sc.(15)

Último

Meet the Bible von
Meet the BibleMeet the Bible
Meet the BibleSteve Thomason
83 views80 Folien
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx von
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxNiranjan Chavan
43 views48 Folien
Gross Anatomy of the Liver von
Gross Anatomy of the LiverGross Anatomy of the Liver
Gross Anatomy of the Liverobaje godwin sunday
100 views12 Folien
Education of marginalized and socially disadvantages segments.pptx von
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptxGarimaBhati5
52 views36 Folien
Papal.pdf von
Papal.pdfPapal.pdf
Papal.pdfMariaKenney3
76 views24 Folien
PRELIMS ANSWER.pptx von
PRELIMS ANSWER.pptxPRELIMS ANSWER.pptx
PRELIMS ANSWER.pptxsouravkrpodder
56 views60 Folien

Último(20)

Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx von Niranjan Chavan
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Niranjan Chavan43 views
Education of marginalized and socially disadvantages segments.pptx von GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati552 views
JRN 362 - Lecture Twenty-Two von Rich Hanley
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-Two
Rich Hanley39 views
The Future of Micro-credentials: Is Small Really Beautiful? von Mark Brown
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown121 views
JQUERY.pdf von ArthyR3
JQUERY.pdfJQUERY.pdf
JQUERY.pdf
ArthyR3114 views
UNIT NO 13 ORGANISMS AND POPULATION.pptx von Madhuri Bhande
UNIT NO 13 ORGANISMS AND POPULATION.pptxUNIT NO 13 ORGANISMS AND POPULATION.pptx
UNIT NO 13 ORGANISMS AND POPULATION.pptx
Madhuri Bhande48 views
Presentation_NC_Future now 2006.pdf von Lora
Presentation_NC_Future now 2006.pdfPresentation_NC_Future now 2006.pdf
Presentation_NC_Future now 2006.pdf
Lora 38 views
Pharmaceutical Analysis PPT (BP 102T) von yakshpharmacy009
Pharmaceutical Analysis PPT (BP 102T) Pharmaceutical Analysis PPT (BP 102T)
Pharmaceutical Analysis PPT (BP 102T)
yakshpharmacy009118 views
INT-244 Topic 6b Confucianism von S Meyer
INT-244 Topic 6b ConfucianismINT-244 Topic 6b Confucianism
INT-244 Topic 6b Confucianism
S Meyer51 views

Rumus matematik examonline spa

  • 1. zefry@sas.edu.my 1 NOTES AND FORMULAE SPM MATHEMATICS FORM 1 – 3 NOTES 1. SOLID GEOMETRY (a) Area and perimeter Triangle A = 2 1  base  height = 2 1 bh Trapezium A = 2 1 (sum of two parallel sides)  height = 2 1 (a + b)  h Circle Area = r2 Circumference = 2r Sector Area of sector = 360   r2 Length of arc = 360   2r Cylinder Curve surface area = 2rh Sphere Curve surface area = 4r2 (b) Solid and Volume Cube: V = x  x  x = x3 Cuboid: V = l  b  h = lbh Cylinder V =  r2 h Cone V = 3 1  r2 h Sphere V = 3 4 r3 Pyramid V = 3 1  base area  height Prism V = Area of cross section  length 2. CIRCLE THEOREM Angle at the centre = 2 × angle at the circumference x = 2y Angles in the same segment are equal x = y Angle in a semicircle ACB = 90o Sum of opposite angles of a cyclic quadrilateral = 180o a + b = 180o The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle. b = a Angle between a tangent and a radius = 90o OPQ = 90o RUMUS MATEMATIK UNTUK EXAMONLINE SPA (SUKATAN MATEMATIK SPM) Untuk maklumat lanjut mengenai Examonline PTD M41 19.01.2016 sila layari : http://goo.gl/1zCLI4
  • 2. zefry@sas.edu.my 2 The angle between a tangent and a chord is equal to the angle in the alternate segment. x = y If PT and PS are tangents to a circle, PT = PS TPO = SPO TOP = SOP 3. POLYGON (a) The sum of the interior angles of a n sided polygon = (n – 2)  180o (b) Sum of exterior angles of a polygon = 360o (c) Each exterior angle of a regular n sided polygon = n 0 360 (d) Regular pentagon Each exterior angle = 72o Each interior angle = 108o (e) Regular hexagon Each exterior angle = 60o Each interior angle = 120o (f) Regular octagon Each exterior angle = 45o Each interior angle = 135o 4. FACTORISATION (a) xy + xz = x(y + z) (b) x2 – y2 = (x – y)(x + y) (c) xy + xz + ay + az = x (y + z) + a (y + z) = (y + z)(x + a) (d) x2 + 4x + 3 = (x + 3)(x + 1) 5. EXPANSION OF ALGERBRAIC EXPRESSIONS (a) 2x2 – 6x + x – 3 = 2x2 – 5x − 3 (b) (x + 3)2 = x2 + 2 × 3 × x + 32 = x2 + 6x + 9 (c) (x – y)(x + y) = x2 + xy – xy – y2 = x2 – y2 6. LAW OF INDICES (a) xm  x n = xm + n (b) xm  xn = xm – n (c) (xm )n = x m  n (d) x-n = n x 1 (e) n xxn  1 (f) mn xx n m )( (g) x0 = 1 7. ALGEBRAIC FRACTION Express 2 1 10 2 6 k k k   as a fraction in its simplest form. Solution: 2 2 1 10 1 3 (10 ) 2 6 6 k k k k k k       = 2 2 2 2 3 10 4 10 2( 5) 5 6 6 6 3 k k k k k k k k k         8. LINEAR EQUATION Given that 1 5 (3n + 2) = n – 2, calculate the value of n. Solution: 1 5 (3n + 2) = n – 2 5 × 1 5 (3n + 2) = 5(n – 2) 3n + 2 = 5n – 10 2 + 10 = 5n – 3n 2n = 12 n = 6 9. SIMULTANEOUS LINEAR EQUATIONS (a) Substitution Method: y = 2x – 5 --------(1) 2x + y = 7 --------(2) Substitute (1) into (2) 2x + 2x – 5 = 7 4x = 12 x = 3 Substitute x = 3 into (1), y = 6 – 5 = 1 (b) Elimination Method: Solve: 3x + 2y = 5 ----------(1) x – 2y = 7 ----------(2) (1) + (2), 4x = 12, x = 3 Substitute into (1) 9 + 2y = 5 2y = 5 – 9 = −4
  • 3. zefry@sas.edu.my 3 y = −2 10. ALGEBRAIC FORMULAE Given that k – (m + 2) = 3m, express m in terms of k. Solution: k – (m + 2) = 3m k – m – 2 = 3m k – 2 = 3m + m = 4m m = 2 4 k  11. LINEAR INEQUALITIES 1. Solve the linear inequality 3x – 2 > 10. Solution: 3x – 2 > 10 3x > 10 + 2 3x > 12 x > 4 2. List all integer values of x which satisfy the linear inequality 1 ≤ x + 2 < 4 Solution: 1 ≤ x + 2 < 4 Subtract 2, 1 − 2 ≤ x + 2 – 2 < 4 – 2 −1 ≤ x < 2  x = −1, 0, 1 3. Solve the simultaneous linear inequalities 4p – 3 ≤ p and p + 2  1 2 p Solution: 4p – 3 ≤ p 4p – p ≤ 3 3p ≤ 3 p ≤ 1 p + 2  1 2 p × 2, 2p + 4  p 2p – p  −4 p  −4  The solution is −4 ≤ p ≤ 1. 12. STATISTICS Mean = sum of data number of data Mean = sum of(frequency data) sum of frequency  , when the data has frequency. Mode is the data with the highest frequency Median is the middle data which is arranged in ascending/descending order. 1. 3, 3, 4, 6, 8 Mean = 3 3 4 6 8 4.8 5      Mode = 3 Median = 4 2. 4, 5, 6, 8, 9, 10, there is no middle number, the median is the mean of the two middle numbers. Median = 6 8 2  = 7 2. A pictograph uses symbols to represent a set of data. Each symbol is used to represent certain frequency of the data. January February March Represents 50 books 3. A bar chart uses horizontal or vertical bars to represent a set of data. The length or the height of each bar represents the frequency of each data. 4. A pie chart uses the sectors of a circle to represent the frequency/quantitiy of data. A pie chart showing the favourite drinks of a group of students. FORM FOUR NOTES 1. SIGNIFICANT FIGURES AND STANDARD FORM Significant Figures 1. Zero in between numbers are significant. Example: 3045 (4 significant figures) 2. Zero between whole numbers are not significant figures. Example: 4560 (3 significant figures) 3. Zero in front of decimal numbers are not significant. Example: 0.00324 ( 3 significant figures) 4. Zero behind decimal numbers are significant. Example: 2.140 (4 significant figures) Standard Form Standard form are numbers written in the form A × 10n , where 1 ≤ A < 10 and n are integers. Example: 340 000 = 3.4 × 105 0.000 56 = 5.6 × 10-4 2. QUADRATIC EXPRESSION AND QUADRATIC EQUATIONS 1. Solve quadratic equations by factorization. Example: Solve 2 5 8 2 3 k k   5k2 – 8 = 6k 5k2 – 6k – 8 = 0 (5k + 4)(k – 2) = 0 k = 4 5  , 2 2. Solve qudratic equation by formula: Example: Solve 3x2 – 2x – 2 = 0 x = 2 4 2 b b ac a    = 2 4 4(3)( 2) 6    = 2 28 6  x = 1.215, −0.5486 3. SET (a) Symbol  - intersection  - union  - subset  - universal set  - empty set - is a member of
  • 4. zefry@sas.edu.my 4 n(A) –number of element in set A. A – Complement of set A. (b) Venn Diagram A  B A  B A Example: n(A) = 7 + 6 = 13 n(B) = 6 + 10 = 16 n(A  B) = 6 n(A  B) = 7 + 6 + 10 = 23 n(A  B‟) = 7 n(A‟  B) = 10 n(A  B) = 7 + 10 + 2 = 19 n(A  B) = 2 4. MATHEMATICAL REASONING (a) Statement A mathematical sentence which is either true or false but not both. (b) Implication If a, then b a – antecedent b – consequent „p if and only if q‟ can be written in two implications: If p, then q If q, then p (c) Argument Three types of argument: Type I Premise 1: All A are B Premise 2 : C is A Conclusion: C is B Type II Premise 1: If A, then B Premise 2: A is true Conclusion: B is true. Type III Premise 1: If A, then B Premise 2: Not B is true. Conclusion: Not A is true. 5. THE STRAIGHT LINE (a) Gradient Gradient of AB = m = 12 12 xx yy   (b) Equation of a straight line Gradient Form: y = mx + c m = gradient c = y-intercept Intercept Form: 1 b y a x a = x−intercept b = y−intercept Gradient of straight line m = -intercept -intercept y x  = a b  6. STATISTICS (a) Class, Modal Class, Class Interval Size, Midpoint, Cumulative frequency, Ogive Example : The table below shows the time taken by 80 students to type a document. Time (min) Frequency 10-14 15-19 1 7
  • 5. zefry@sas.edu.my 5 20-24 25-29 30-34 35-39 40-44 45-49 12 21 19 12 6 2 For the class 10 – 14 : Lower limit = 10 min Upper limit = 14 min Lower boundary = 9.5 min Upper boundary = 14.5 min Class interval size = Upper boundary – lower boundary = 14.5 – 9.5 = 5 min Modal class = 25 – 29 min Midpoint of modal class = 2 2925  = 27 To draw an ogive, a table of upper boundary and cumulative frequency has to be constructed. Time (min) Frequency Upper boundary Cumulative frequency 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 0 1 7 12 21 19 12 6 2 9.5 14.5 19.5 24.5 29.5 34.5 39.5 44.5 49.5 0 1 8 20 42 60 72 78 80 From the ogive : Median = 29.5 min First quartile = 24. 5 min Third quartile = 34 min Interquartile range = 34 – 24. 5 = 9.5 min. (b) Histogram, Frequency Polygon Example: The table shows the marks obtained by a group of students in a test. Marks Frequency 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 2 8 16 20 4 7. TRIGONOMETRY sin o = Opposite hypotenuse AB AC  cos o = adjacent BC hypotenuse AC  tan o = opposite adjacent AB BC  Acronym: “Add Sugar To Coffee” Trigonometric Graphs 1. y = sin x 2. y = cos x 3. y = tan x 8. ANGLE OF ELEVATION AND DEPRESSION (a) Angle of Elevation
  • 6. zefry@sas.edu.my 6 The angle of elevation is the angle betweeen the horizontal line drawn from the eye of an observer and the line joining the eye of the observer to an object which is higher than the observer. The angle of elevation of B from A is BAC (b) Angle of Depression The angle of depression is the angle between the horizontal line from the eye of the observer an the line joining the eye of the observer to an object which is lower than the observer. The angle of depression of B from A is BAC. 9. LINES AND PLANES (a) Angle Between a Line and a Plane In the diagram, (a) BC is the normal line to the plane PQRS. (b) AB is the orthogonal projection of the line AC to the plane PQRS. (c) The angle between the line AC and the plane PQRS is BAC (b) Angle Between Two Planes In the diagram, (a) The plane PQRS and the plane TURS intersects at the line RS. (b) MN and KN are any two lines drawn on each plane which are perpendicular to RS and intersect at the point N. The angle between the plane PQRS and the plane TURS is MNK. FORM 5 NOTES 10. NUMBER BASES (a) Convert number in base 10 to a number in base 2, 5 or 8. Method: Repeated division. Example: 2 2 2 2 2 2 34 17 8 4 2 1 0 0 1 0 0 0 1 3410 = 1000102 348 8 4 2 0 4 3410 = 428 (b) Convert number in base 2, 5, 8 to number in base 10. Method: By using place value Example: (a) 110112 = 24 23 22 21 1 1 1 0 1 12 = 24 + 23 + 21 + 1 = 2710 (b) 2145 = 52 51 1 2 1 45 = 2  52 + 1  51 + 4  1 = 5910 (c) Convert between numbers in base 2, 5 and 8. Method: Number in base m  Number in base 10  Number in base n. Example: Convert 1100112 to number in base 5. 25 24 23 22 21 1 1 1 0 0 1 12 = 25 + 24 + 2 + 1 = 5110 515 5 5 10 1 2 0 0 2 Therefore, 1100112= 2015 (d) Convert number in base two to number in base eight and vice versa. Using a conversion table Base 2 Base 8 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 Example : 10 0112 = 238
  • 7. zefry@sas.edu.my 7 458 = 100 1012 11. GRAPHS OF FUNCTIONS (a) Linear Graph y = mx + c (b) Quadratic Graph y = ax2 + bx + c (c) Cubic Graph y = ax3 + c (d) Reciprocal Graph x a y  12. TRANSFORMATION (a) Translastion Description: Translastion       k h Example : Translastion        3 4 (b) Reflection Description: Reflection in the line __________ Example: Reflection in the line y = x. (c) Rotation Description: Direction ______rotation of angle______about the centre _______. Example: A clockwise rotation of 90o about the centre (5, 4). (d) Enlargement Description: Enlargement of scale factor ______, with the centre ______. Example : Enlargement of scale factor 2 with the centre at the origin. 2Area of image Area of object k k = scale factor (e) Combined Transformtions Transformation V followed by transformation W is written as WV. 13. MATRICES (a)                     db ca d c b a (b)             kb ka b a k
  • 8. zefry@sas.edu.my 8 (c)                     dhcfdgce bhafbgae hg fe dc ba (d) If M =       dc ba , then M-1 =          ac bd bcad 1 (e) If ax + by = h cx + dy = k                   k h y x dc ba                      k h ac bd bcady x 1 (f) Matrix a c b d       has no inverse if ad – bc = 0 14. VARIATIONS (a) Direct Variation If y varies directly as x, Writtn in mathematical form: y  x, Written in equation form: y = kx , k is a constant. (b) Inverse Variation If y varies inversely as x, Written in mathematical form: 1 y x  Written in equation form: x k y  , k is a constant. (c) Joint Variation If y varies directly as x and inversely as z, Written in mathematical form: x y z  , Written in equation form: z kx y  , k is a constant. 15. GRADIENT AND AREA UNDER A GRAPH (a) Distance-Time Graph Gradient = distance time = speed Average speed = Total distance Total time (b) Speed-Time Graph Gradient = Rate of change of speed = t uv  = acceleration Distance = Area below speed-time graph 16. PROBABILITY (a) Definition of Probability Probability that event A happen, ( ) ( ) ( ) n A P A n S  S = sample space (b) Complementary Event P(A) = 1 – P(A) (c) Probability of Combined Events (i) P(A or B) = P(A  B) (ii) P(A and B) = P(A  B) 17. BEARING Bearing Bearing of point B from A is the angle measured clockwise from the north direction at A to the line joining B to A. Bearing is written in 3 digits. Example : Bearing B from A is 060o 18. THE EARTH AS A SPHERE (a) Nautical Miles 1 nautical mile is the length of the arc on a great circle which subtends an angle of 1 at the centre of the earth. (b) Distance Between Two Points on a Great Circle. Distance =   60 nautical miles  = angle between the parallels of latitude measured along a meridian of longitude.
  • 9. zefry@sas.edu.my 9  = angle between the meridians of longitude measured along the equator. (c) Distance Between Two Points on The Parallel of Latitude. Distance =   60  cos o  = angle of the parallel of latitude. (d) Shortest Distance The shortest distance between two points on the surface of the earth is the distance between the two points measured along a great circle. (e) Knot 1 knot = 1 nautical mile per hour. 19. PLAN AND ELEVATION (a) The diagram shows a solid right prism with rectangular base FGPN on a horizontal table. The surface EFGHJK is the uniform cross section. The rectangular surface EKLM is a slanting plane. Rectangle JHQR is a horizontal plane. The edges EF, KJ and HG are vertical. Draw to full scale, the plan of the solid. (b) A solid in the form of a cuboid is joined to the solid in (a) at the plane PQRLMN to form a combined solid as shown in the diagram. The square base FGSW is a horizontal plane. Draw to full scale (i) the elevation of the combined solid on the vertical plane parallel to FG as viewed from C, (ii) the elevation of the combined solid on the vertical plane parallel to GPS as viewed from D. Solution: (a) Plan (b) (i) C-elevation (ii) D-elevation