SlideShare a Scribd company logo
1 of 27
Download to read offline
Multiplexing Techniques
Dr. G.Aarthi,
Associate Professor, School of Electronics Engineering
6.2
Bandwidth utilization is the wise use of
available bandwidth to achieve
specific goals.
Efficiency can be achieved by
multiplexing; i.e., sharing of the
bandwidth between multiple users.
Note
6.3
MULTIPLEXING
Whenever the bandwidth of a medium linking two
devices is greater than the bandwidth needs of the
devices, the link can be shared. Multiplexing is the set
of techniques that allows the (simultaneous)
transmission of multiple signals across a single data
link. There are three basic multiplexing techniques.
 Frequency-Division Multiplexing
 Wavelength-Division Multiplexing
 Time-Division Multiplexing
Categories of multiplexing
6.5
Dividing a link into channels
The word link refers to the physical path.
The word channel refers to the portion of a link that carries a transmission
between a given pair of lines. One link can have many (n) channels.
6.6
Frequency-division multiplexing (FDM)
Frequency-division multiplexing (FDM) is an analog technique that can be applied
when the bandwidth of a link (in hertz) is greater than the combined bandwidths of the
signals to be transmitted.
In FDM, signals generated by each sending device modulate different carrier
frequencies.
These modulated signals are then combined into a single composite signal that can be
transported by the link.
6.7
Frequency-division multiplexing (FDM)
Channels can be separated by unused guard bands to prevent signals from
overlapping.
In addition, carrier frequencies must not interfere with the original data frequencies.
6.8
Frequency-division multiplexing (FDM)
We consider FDM to be an analog multiplexing technique; however, this does not
mean that FDM cannot be used to combine sources sending digital signals.
A digital signal can be converted to an analog signal before FDM is used to multiplex
them.
6.9
FDM is an analog multiplexing technique
that combines analog signals.
It uses the concept of modulation.
Note
6.10
FDM process
Each source generates a signal of a similar frequency range.
Inside the multiplexer, these similar signals modulates different carrier
frequencies (f1,f2 and f3).
The resulting modulated signals are then combined into a single composite signal
that is sent out over a media link that has enough bandwidth to accommodate it.
FDM demultiplexing example
The demultiplexer uses a series of filters to decompose the multiplexed signal into its
constituent component signals.
The individual signals are then passed to a demodulator that separates them from their
carriers and passes them to the output lines.
6.12
Assume that a voice channel occupies a bandwidth of 4
kHz. We need to combine three voice channels into a link
with a bandwidth of 12 kHz, from 20 to 32 kHz. Show the
configuration, using the frequency domain. Assume there
are no guard bands.
Solution
We shift (modulate) each of the three voice channels to a
different bandwidth, as shown in Figure 1. We use the 20-
to 24-kHz bandwidth for the first channel, the 24- to 28-
kHz bandwidth for the second channel, and the 28- to 32-
kHz bandwidth for the third one. Then we combine them
as shown in Figure 1.
Problem 1
Figure 1
6.14
Five channels, each with a 100-kHz bandwidth, are to be
multiplexed together. What is the minimum bandwidth of
the link if there is a need for a guard band of 10 kHz
between the channels to prevent interference?
Solution
For five channels, we need at least four guard bands.
This means that the required bandwidth is at least
5 × 100 + 4 × 10 = 540 kHz,
as shown in Figure 2.
Problem 2
Figure 2
6.16
Four data channels (digital), each transmitting at 1
Mbps, use a satellite channel of 1 MHz. Design an
appropriate configuration, using FDM.
Solution
The satellite channel is analog. We divide it into four
channels, each channel having 1M/4=250-kHz
bandwidth.
Each digital channel of 1 Mbps is modulated such that
each 4 bits is modulated to 1 Hz.
One solution is 16-QAM modulation. In Figure 3 we
show a possible configuration.
Problem 3
6.17
Figure 3
6.18
Wavelength-division multiplexing (WDM)
Wavelength-division multiplexing (WDM) is designed to use the high-data-rate
capability of fiber-optic cable.
WDM is conceptually the same as FDM, except that the multiplexing and
demultiplexing involve optical signals transmitted through fiber-optic channels.
Very narrow bands of light from different sources are combined to make a wider
band of light. At the receiver, the signals are separated by the demultiplexer.
6.19
WDM is an analog multiplexing
technique to combine optical signals.
Note
Prisms in wavelength-division multiplexing and demultiplexing
Time Division Multiplexing (TDM)
Time-division multiplexing (TDM) is a digital process that allows several connections to share
the high bandwidth of a link.
Instead of sharing a portion of the bandwidth as in FDM, time is shared.
Each connection occupies a portion of time in the link.
Note that the same link is used as in FDM; here, however, the link is shown sectioned by time
rather than by frequency. In the figure, portions of signals 1,2,3, and 4 occupy the link
sequentially.
6.22
TDM is a digital multiplexing technique
for combining several low-rate digital
channels into one high-rate one.
Note
6.23
Synchronous time-division multiplexing
Time slots are grouped into frames.
A frame consists of one complete cycle of time slots, with one slot dedicated to each
sending device.
In a system with n input lines, each frame has n slots, with each slot allocated to
carrying data from a specific input line.
6.24
In a TDM system, the data rate for each one of the 3
input connection is 1 kbps. If 1 bit at a time is multiplexed
(a unit is 1 bit), what is the duration of (a) each input slot,
(b) each output slot, and (c) each frame?
Solution
We can answer the questions as follows:
a. The data rate of each input connection is 1 kbps. This
means that the bit duration is 1/1000 s or 1 ms. The
duration of the input time slot is 1 ms (same as bit
duration).
Problem 4
6.25
b. The duration of each output time slot is one-third of
the input time slot. This means that the duration of the
output time slot is 1/3 ms.
c. Each frame carries three output time slots. So the
duration of a frame is 3 × 1/3 ms, or 1 ms.
Note: The duration of a frame is the same as the duration
of an input unit.
Problem 4
6.26
Statistical Time-Division Multiplexing
In synchronous TDM, each input has a reserved slot in the output frame.
This can be inefficient if some input lines have no data to send.
In statistical time-division multiplexing, slots are dynamically allocated to
improve bandwidth efficiency.
Only when an input line has a slot's worth of data to send is it given a slot
in the output frame.
6.27
TDM slot comparison

More Related Content

Similar to 24 Multiplexing_Techniques.pdf

Mux ppt unit 2 data comm
Mux ppt unit 2 data commMux ppt unit 2 data comm
Mux ppt unit 2 data commSrashti Vyas
 
Multiplexing and Frequency Division Multiplexing
Multiplexing and Frequency Division MultiplexingMultiplexing and Frequency Division Multiplexing
Multiplexing and Frequency Division MultiplexingKath Mataac
 
BANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONBANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONAvijeet Negel
 
Networks-part10-Multiplexing-RcthfxgP-1.pptx
Networks-part10-Multiplexing-RcthfxgP-1.pptxNetworks-part10-Multiplexing-RcthfxgP-1.pptx
Networks-part10-Multiplexing-RcthfxgP-1.pptxVijayKaran7
 
Introduction to multiplexing, packet switching.pptx
Introduction to multiplexing, packet switching.pptxIntroduction to multiplexing, packet switching.pptx
Introduction to multiplexing, packet switching.pptxnamrata110808
 
MULTIPLEXING.pdf
MULTIPLEXING.pdfMULTIPLEXING.pdf
MULTIPLEXING.pdfalghafari
 
Multiplexing.ppt
Multiplexing.pptMultiplexing.ppt
Multiplexing.pptSwatiHans10
 
Telecom lect 4
Telecom lect 4Telecom lect 4
Telecom lect 4Shiraz316
 
Telecom lect 3
Telecom lect 3Telecom lect 3
Telecom lect 3Shiraz316
 
Ch6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kuraleCh6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kuraleNeha Kurale
 
Multiplexing
MultiplexingMultiplexing
Multiplexingnimay1
 
Multiplexing and spreading
Multiplexing and spreadingMultiplexing and spreading
Multiplexing and spreadingShankar Gangaju
 

Similar to 24 Multiplexing_Techniques.pdf (20)

Mux ppt unit 2 data comm
Mux ppt unit 2 data commMux ppt unit 2 data comm
Mux ppt unit 2 data comm
 
Multiplexing and Frequency Division Multiplexing
Multiplexing and Frequency Division MultiplexingMultiplexing and Frequency Division Multiplexing
Multiplexing and Frequency Division Multiplexing
 
COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3
 
Ch6 1 v1
Ch6 1 v1Ch6 1 v1
Ch6 1 v1
 
BANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONBANDWIDTH UTILIZATION
BANDWIDTH UTILIZATION
 
Networks-part10-Multiplexing-RcthfxgP-1.pptx
Networks-part10-Multiplexing-RcthfxgP-1.pptxNetworks-part10-Multiplexing-RcthfxgP-1.pptx
Networks-part10-Multiplexing-RcthfxgP-1.pptx
 
Introduction to multiplexing, packet switching.pptx
Introduction to multiplexing, packet switching.pptxIntroduction to multiplexing, packet switching.pptx
Introduction to multiplexing, packet switching.pptx
 
MULTIPLEXING.pdf
MULTIPLEXING.pdfMULTIPLEXING.pdf
MULTIPLEXING.pdf
 
Multiplexing.ppt
Multiplexing.pptMultiplexing.ppt
Multiplexing.ppt
 
Ch 06
Ch 06Ch 06
Ch 06
 
Telecom lect 4
Telecom lect 4Telecom lect 4
Telecom lect 4
 
Telecom lect 3
Telecom lect 3Telecom lect 3
Telecom lect 3
 
Ch6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kuraleCh6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kurale
 
Multiplexing
MultiplexingMultiplexing
Multiplexing
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Multiplexing and spreading
Multiplexing and spreadingMultiplexing and spreading
Multiplexing and spreading
 
Bandwidth utilization
Bandwidth utilizationBandwidth utilization
Bandwidth utilization
 
Multiplexing
MultiplexingMultiplexing
Multiplexing
 
ch6_1_v1.ppt
ch6_1_v1.pptch6_1_v1.ppt
ch6_1_v1.ppt
 
ch6_1_v1.ppt
ch6_1_v1.pptch6_1_v1.ppt
ch6_1_v1.ppt
 

More from Mohamedshabana38

1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdfMohamedshabana38
 
dsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfdsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfMohamedshabana38
 
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdfMohamedshabana38
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfMohamedshabana38
 
exfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfexfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfMohamedshabana38
 
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdfMohamedshabana38
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdfMohamedshabana38
 
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Mohamedshabana38
 
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfExfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfMohamedshabana38
 
101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdfMohamedshabana38
 
424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdfMohamedshabana38
 
exfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfexfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfMohamedshabana38
 
388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdfMohamedshabana38
 

More from Mohamedshabana38 (20)

1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf1 Sampling and Signal Reconstruction.pdf
1 Sampling and Signal Reconstruction.pdf
 
2 Aliasing (1).pdf
2 Aliasing (1).pdf2 Aliasing (1).pdf
2 Aliasing (1).pdf
 
1.pdf
1.pdf1.pdf
1.pdf
 
dsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdfdsl-advances-0130938106-9780130938107.pdf
dsl-advances-0130938106-9780130938107.pdf
 
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf419907669-Linear-Algebra-by-Gilbert-Strang.pdf
419907669-Linear-Algebra-by-Gilbert-Strang.pdf
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
 
Module 1 (1).pdf
Module 1 (1).pdfModule 1 (1).pdf
Module 1 (1).pdf
 
exfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdfexfo_spec-sheet_maxtester-635_v16_en.pdf
exfo_spec-sheet_maxtester-635_v16_en.pdf
 
mod_2.pdf
mod_2.pdfmod_2.pdf
mod_2.pdf
 
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
454022781-ODN-Planning-and-Design-Suggestions-TLF.pdf
 
mod_3.pdf
mod_3.pdfmod_3.pdf
mod_3.pdf
 
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
383934148-DWDM-101-Introduction-to-DWDM-2-pdf.pdf
 
mod_4.pdf
mod_4.pdfmod_4.pdf
mod_4.pdf
 
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
Applications of Operational Amplifiers 3rd generation techniques (Jerald G. G...
 
408375669-XDSL.pdf
408375669-XDSL.pdf408375669-XDSL.pdf
408375669-XDSL.pdf
 
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdfExfo-CABLESHARK-P3-Specifications-11A67.pdf
Exfo-CABLESHARK-P3-Specifications-11A67.pdf
 
101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf101483423-Fiber-Characterization-Training.pdf
101483423-Fiber-Characterization-Training.pdf
 
424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf424185963-Introduction-to-VoLTE.pdf
424185963-Introduction-to-VoLTE.pdf
 
exfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdfexfo_reference-guide_otn.pdf
exfo_reference-guide_otn.pdf
 
388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf388865344-990dsl-Manu-copper-loop-tester.pdf
388865344-990dsl-Manu-copper-loop-tester.pdf
 

Recently uploaded

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 

Recently uploaded (20)

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 

24 Multiplexing_Techniques.pdf

  • 1. Multiplexing Techniques Dr. G.Aarthi, Associate Professor, School of Electronics Engineering
  • 2. 6.2 Bandwidth utilization is the wise use of available bandwidth to achieve specific goals. Efficiency can be achieved by multiplexing; i.e., sharing of the bandwidth between multiple users. Note
  • 3. 6.3 MULTIPLEXING Whenever the bandwidth of a medium linking two devices is greater than the bandwidth needs of the devices, the link can be shared. Multiplexing is the set of techniques that allows the (simultaneous) transmission of multiple signals across a single data link. There are three basic multiplexing techniques.  Frequency-Division Multiplexing  Wavelength-Division Multiplexing  Time-Division Multiplexing
  • 5. 6.5 Dividing a link into channels The word link refers to the physical path. The word channel refers to the portion of a link that carries a transmission between a given pair of lines. One link can have many (n) channels.
  • 6. 6.6 Frequency-division multiplexing (FDM) Frequency-division multiplexing (FDM) is an analog technique that can be applied when the bandwidth of a link (in hertz) is greater than the combined bandwidths of the signals to be transmitted. In FDM, signals generated by each sending device modulate different carrier frequencies. These modulated signals are then combined into a single composite signal that can be transported by the link.
  • 7. 6.7 Frequency-division multiplexing (FDM) Channels can be separated by unused guard bands to prevent signals from overlapping. In addition, carrier frequencies must not interfere with the original data frequencies.
  • 8. 6.8 Frequency-division multiplexing (FDM) We consider FDM to be an analog multiplexing technique; however, this does not mean that FDM cannot be used to combine sources sending digital signals. A digital signal can be converted to an analog signal before FDM is used to multiplex them.
  • 9. 6.9 FDM is an analog multiplexing technique that combines analog signals. It uses the concept of modulation. Note
  • 10. 6.10 FDM process Each source generates a signal of a similar frequency range. Inside the multiplexer, these similar signals modulates different carrier frequencies (f1,f2 and f3). The resulting modulated signals are then combined into a single composite signal that is sent out over a media link that has enough bandwidth to accommodate it.
  • 11. FDM demultiplexing example The demultiplexer uses a series of filters to decompose the multiplexed signal into its constituent component signals. The individual signals are then passed to a demodulator that separates them from their carriers and passes them to the output lines.
  • 12. 6.12 Assume that a voice channel occupies a bandwidth of 4 kHz. We need to combine three voice channels into a link with a bandwidth of 12 kHz, from 20 to 32 kHz. Show the configuration, using the frequency domain. Assume there are no guard bands. Solution We shift (modulate) each of the three voice channels to a different bandwidth, as shown in Figure 1. We use the 20- to 24-kHz bandwidth for the first channel, the 24- to 28- kHz bandwidth for the second channel, and the 28- to 32- kHz bandwidth for the third one. Then we combine them as shown in Figure 1. Problem 1
  • 14. 6.14 Five channels, each with a 100-kHz bandwidth, are to be multiplexed together. What is the minimum bandwidth of the link if there is a need for a guard band of 10 kHz between the channels to prevent interference? Solution For five channels, we need at least four guard bands. This means that the required bandwidth is at least 5 × 100 + 4 × 10 = 540 kHz, as shown in Figure 2. Problem 2
  • 16. 6.16 Four data channels (digital), each transmitting at 1 Mbps, use a satellite channel of 1 MHz. Design an appropriate configuration, using FDM. Solution The satellite channel is analog. We divide it into four channels, each channel having 1M/4=250-kHz bandwidth. Each digital channel of 1 Mbps is modulated such that each 4 bits is modulated to 1 Hz. One solution is 16-QAM modulation. In Figure 3 we show a possible configuration. Problem 3
  • 18. 6.18 Wavelength-division multiplexing (WDM) Wavelength-division multiplexing (WDM) is designed to use the high-data-rate capability of fiber-optic cable. WDM is conceptually the same as FDM, except that the multiplexing and demultiplexing involve optical signals transmitted through fiber-optic channels. Very narrow bands of light from different sources are combined to make a wider band of light. At the receiver, the signals are separated by the demultiplexer.
  • 19. 6.19 WDM is an analog multiplexing technique to combine optical signals. Note
  • 20. Prisms in wavelength-division multiplexing and demultiplexing
  • 21. Time Division Multiplexing (TDM) Time-division multiplexing (TDM) is a digital process that allows several connections to share the high bandwidth of a link. Instead of sharing a portion of the bandwidth as in FDM, time is shared. Each connection occupies a portion of time in the link. Note that the same link is used as in FDM; here, however, the link is shown sectioned by time rather than by frequency. In the figure, portions of signals 1,2,3, and 4 occupy the link sequentially.
  • 22. 6.22 TDM is a digital multiplexing technique for combining several low-rate digital channels into one high-rate one. Note
  • 23. 6.23 Synchronous time-division multiplexing Time slots are grouped into frames. A frame consists of one complete cycle of time slots, with one slot dedicated to each sending device. In a system with n input lines, each frame has n slots, with each slot allocated to carrying data from a specific input line.
  • 24. 6.24 In a TDM system, the data rate for each one of the 3 input connection is 1 kbps. If 1 bit at a time is multiplexed (a unit is 1 bit), what is the duration of (a) each input slot, (b) each output slot, and (c) each frame? Solution We can answer the questions as follows: a. The data rate of each input connection is 1 kbps. This means that the bit duration is 1/1000 s or 1 ms. The duration of the input time slot is 1 ms (same as bit duration). Problem 4
  • 25. 6.25 b. The duration of each output time slot is one-third of the input time slot. This means that the duration of the output time slot is 1/3 ms. c. Each frame carries three output time slots. So the duration of a frame is 3 × 1/3 ms, or 1 ms. Note: The duration of a frame is the same as the duration of an input unit. Problem 4
  • 26. 6.26 Statistical Time-Division Multiplexing In synchronous TDM, each input has a reserved slot in the output frame. This can be inefficient if some input lines have no data to send. In statistical time-division multiplexing, slots are dynamically allocated to improve bandwidth efficiency. Only when an input line has a slot's worth of data to send is it given a slot in the output frame.