SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Fluidos apellido de líquidos y gases<br />   Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los más comunes y, como punto de referencia, los mantendremos en mente como prototipos de un fluido. Su ubicuidad les confiere su importancia. El manejo de los fluidos ha estado íntimamente ligado al desarrollo de la sociedad. No es de sorprender entonces que desde los inicios de la civilización la imagen del Universo incluyera a los fluidos como elementos primarios de su constitución; aire, agua, fuego y tierra son la versión clásica y medieval de gas, líquido, plasma y sólido, o sucintamente, fluidos y sólidos.<br />   Completar nuestra descripción y comprensión del comportamiento de los fluidos es, además de un fascinante juego, una imperiosa necesidad por manejar nuestro entorno. El aire y el agua son parte esencial de la vida en la forma que la conocemos. El transporte marítimo y aéreo depende de este conocimiento; también la agricultura, que no puede ya lograrse si sólo se depende de un buen clima, sino de sistemas de riego, vastos y eficientes, que permitan optimizar los recursos locales y suplir las deficiencias naturales. La predicción del clima y de sus más violentas manifestaciones, como huracanes y tornados, es mucho más que una curiosidad académica (aunque también lo es). Entender éstos y muchos otros problemas en los que los fluidos participan como protagonistas principales, requiere de una labor creativa y de un trabajo sistemático y sostenido. Los resultados los demanda la sociedad por razones culturales, estéticas y, especialmente, prácticas.<br />   Del inmenso proyecto general de la física nos ocuparemos de la parte que estudia los fluidos desde el punto de vista macroscópico, es decir, como los percibimos en forma más o menos directa a través de nuestros sentidosII. ¿Qué son y como los describimos?<br />   II. 1. UNA INDEFINICIÓN PRECISA<br />   La materia, es decir, todo lo que nos rodea y que percibimos a través de los sentidos, viene en tres presentaciones aparentemente distintas y exclusivas: en sólido, en líquido o en gas. Buscando características genéricas, comunes, y las razones para que éstas se manifiesten, llegamos al estudio de la materia en sus diferentes estados de agregación (formas de presentación), que en última instancia hemos reducido a sólidos y fluidos.<br />   “Un fluido es un material que fluye”. Así, además de risa, la definición no da más que pena y sorprendería que pudiera servir para caracterizar a una sustancia. Una sustancia que bajo la acción de una fuerza cortante, por pequeña que ésta sea, se deforma sin límite se dice que fluye. ¡Un fluido es un material que fluye! Ahora ya no parece tan tautológica la definición. Así, el mar bajo la acción del viento, que produce una fuerza cortante sobre su superficie, se deforma sin límite, se mueve continuamente sin lograr frenar al viento por tenue que éste sea: la deformación resultante es la que percibimos como oleaje, hipnotizando a unos y mareando a otros.<br />   A las rarezas las tratamos en forma especial, en subgrupos, según las circunstancias. Materiales tan familiares como el vidrio, la pintura y el pavimento pertenecen a esta clase exótica de materiales. El vidrio, que se comporta como sólido cuando lo estudiamos en un laboratorio (o cuando una pelota de béisbol es bateada en la dirección equivocada y va a dar precisamente a…), resulta ser un fluido cuando los tiempos de observación son suficientemente largos. Se puede ver en los emplomados de las viejas catedrales góticas que la parte inferior es mucho más gruesa que la superior. La razón es que el vidrio ha fluido, por cientos de años bajo la acción de la gravedad.<br />   También hay sustancias que presentan comportamiento simultáneo de fluido y sólido. Su tratamiento requiere de consideraciones particulares que caen en el área conocida como la reología. Materiales de este tipo, con propiedades que genéricamente son llamadas visco elásticas, son por lo general soluciones con gran cantidad de partículas (polímeros) disueltas en ellas. Casos típicos son las resinas, los plásticos, múltiples derivados del petróleo y diversos tipos de champú (el aire de la ciudad de México parecería un buen candidato).<br />   II. 2. LOS ÁTOMOS Y LA VENTAJA DE IGNORARLOS<br />   La concepción atomística de la naturaleza, según la cual todas las cosas están constituidas por elementos indivisibles e inmutables, se remonta al origen de nuestra civilización.<br />   En la antigua Grecia es donde aparece no sólo la idea general del atomismo, sino las diversas formas que éste adquiere. La existencia de los átomos y del vacío que los rodea, como una necesidad en la explicación de la constitución del mundo, es planteada por razones filosóficas, manteniendo este carácter hasta el renacimiento europeo.<br />   Para Demócríto la naturaleza estaba formada de un número infinito de corpúsculos invisibles por su tamaño, que diferían entre sí sólo en forma, dimensión y estado de movimiento. Comparte con Parménides la idea de un Universo cualitativamente inmutable, pero difiere de éste en cuanto al aspecto cuantitativo, pues atribuye los cambios a la multiplicidad de maneras en que estos átomos se combinan, manteniendo su naturaleza.<br />   En la misma época, Empédocles propone la idea de un Universo formado de cuatro elementos básicos, aire, agua, tierra y fuego, que al mezclarse en distintas proporciones generan la inmensa variedad observada. Este modelo, que domina el panorama a todo lo largo de la Edad Media. Estas ideas, compartidas y desarrolladas por Platón un siglo más tarde, y la concepción de su discípulo, Aristóteles, en torno a la desaparición de las partes al formar un todo, impidieron el florecimiento y desarrollo del atomismo en la civilización helénica.<br />   En las décadas alrededor de 1600, mientras Galileo Galilei y Francis Bacon establecen las bases del método científico o experimental, Pierre Gassendi revive el atomismo clásico para una época mas madura. Daniel Sennert y Robert Doyle, aceptando la idea atomista, le dan su verdadera dimensión al buscar su contenido en la experimentación. Así, Boyle logra descartar en forma definitiva el sobresimplificado esquema de los cuatro elementos. Un siglo más tarde, Antoine Laurent de Lavoisier desarrolla la metodología del análisis químico y define en la práctica a los elementos químicos. La generación que le sigue establece los fundamentos de la teoría atómica moderna, con la obra de John Dalton, al identificar elementos químicos con átomos y proponer las formas en que éstos se combinan para formar compuestos.<br />   Cada etapa muestra los cambios indispensables para alcanzar la madurez. Si bien los átomos, concebidos como constituyentes últimos de la materia, han sido sustituidos por las partículas elementales, como el electrón y el neutrino, se ha mantenido el atomismo que imaginara Demócrito. Por otro lado, se ha perdido el carácter inmutable de aquellos átomos de raseti y de Dalton; los nuevos átomos, en el verdadero sentido etimológico del término, pueden combinarse para disolverse en luz. Creemos tener una idea bastante cercana y correcta sobre estos pequeños bloques universales con los que se construye todo lo que observamos. Otro es el problema de cómo éstos se combinan para formar átomos, éstos a su vez formar moléculas y éstas agruparse para conformar un elote. No deja de llamar la atención que lo que damos ya como un hecho, la existencia de los átomos, sea en realidad algo que no se puede intuir fácilmente. Es difícil imaginar que el humo de un cigarro esté formado de moléculas relativamente complejas o que al aire que respiramos lo componen moléculas simples separadas unas de otras millares de veces la distancia que caracteriza su tamaño. Para tener una idea de las dimensiones atómicas tendríamos que imaginar todo amplificado, de manera que por ejemplo una manzana fuese del tamaño de la Tierra. ¡Un átomo de la manzana sería entonces del tamaño de una canica! Si toda esta concepción es cierta, y todo parece indicar que así es, la tarea de explicar, por ejemplo, el movimiento del agua al salir de un tubo, en términos de átomos, parece equivalente a tratar de construir la Torre de Babel.<br />II. 3. APEROS: FRASCOS Y TUBOS, IDEAS, MATEMÁTICAS Y… FLUIDOS<br />El estudio de un fenómeno, o un grupo de ellos, se inicia con una serie de observaciones que permiten apreciar cuáles son los aspectos más importantes, los que gobiernan el proceso. En el fondo, lo que se busca es la forma de simplificar el análisis, aislando las causas que determinan el efecto principal e ignorando aquellas que desempeñan un papel secundario. Establecer cuáles cantidades y la forma en que éstas contribuyen es una parte medular del proceso de entendimiento. Encontrar las razones por las que se combinan de esa manera, usando los principios o leyes correspondientes, es otra etapa igualmente difícil e importante. La última parte, la esencia misma del conocimiento científico, es la predicción. Con base en el estudio previo debe ser posible anticipar el resultado de nuevas observaciones al cambiar de diversas formas el arreglo inicial del fenómeno.<br />Lo que sí podemos extraer son algunos de los elementos que parecen siempre estar presentes en una u otra forma en el quehacer científico y en especial en la física; este problema, ciertamente abierto, es materia de la teoría del conocimiento, la epistemología, y ha sido objeto de estudio y reflexión de filósofos e investigadores.<br />Un primer aspecto es la concepción filosófica que el observador tiene de la naturaleza y del conocimiento que sobre ésta puede adquirir; aquella puede ser explícita o tácita. En este mismo nivel hay una serie de principios filosóficos y de reglas lógicas que el investigador establece, usa y que, normalmente, van implícitas en su trabajo. Así, su contribución diaria puede sobreentender un materialismo que da por hecho la existencia de un mundo objetivo independiente de él, una convicción total en el principio de causalidad que justifica buscar el origen de un efecto, o el uso irrestricto de la lógica clásica, que sin temor al abuso se omiten al discutir de política. En la parte que toca a las observaciones mismas, empezamos por elaborar un modelo a priori (antes de empezar) sobre el fenómeno al separarlo en partes, el sistema y sus alrededores, y asociarle una regularidad que nos asegure que al repetirse el fenómeno podremos observar y medir lo mismo.<br />Así, con base en el ingenio, la minuciosidad sistemática, la intuición y la experiencia, como en cada etapa en la dilucidación del fenómeno, se escogen las cantidades relevantes. Acto seguido se determina la forma de medirlas, las posibles fuentes de error y se procede a su cuantificación, estableciendo la consistencia interna y la estadística de los datos obtenidos. Este proceso lleva a la elaboración de expresiones (fórmulas) que vinculan a los símbolos entre sí, sintetizando grandes cantidades de datos. Las reglas para asociar números a símbolos y para manipular y combinar estos últimos constituye el lenguaje que llamamos matemáticas.<br />Las matemáticas son una disciplina teórica que va más allá de un lenguaje o una herramienta, aunque vistas como tales permiten, en manos educadas y hábiles, forjar una imagen abstracta, extremadamente útil y especialmente bella del universo concreto que percibimos. Una virtud de las imágenes así logradas es su capacidad de hablar, a quien las sabe oír, sobre lo que es posible y lo que es probable.<br />La física funciona más o menos como lo hemos esbozado. Al construir una teoría se parte de algunos conceptos primitivos que se dejan sin definir o se apela a la intuición para introducirlos, como la masa, el espacio y el tiempo. Después, se definen cuidadosamente cantidades compuestas, como la densidad, la velocidad y la presión, y acto seguido se postulan ciertas proposiciones (basadas en experimentos), los axiomas o leyes fundamentales, como verdaderas y universales. Su inmensa virtud es que, ante la duda, basta con llevar a cabo un experimento para constatar su validez. A partir de los axiomas se deducen entonces una serie de proposiciones o teoremas que, posteriormente, llegan a ser consecuencias no triviales y lejanas de aquellos postulados originales. En muchos casos los teoremas son formulados como conjeturas basadas en la intuición o como resultado de un experimento. El reto en estas circunstancias es encontrar el procedimiento para deducirlo a partir de los axiomas: encontrar la explicación completa del fenómeno a partir de las leyes fundamentales de la teoría.<br />Para construir un aparato teórico que nos permita entender y explicar el movimiento de los fluidos y de los objetos inmersos en ellos, lo cual observamos todos los días, es necesario introducir tres elementos como punto de partida. El primero es el de los conceptos primitivos de masa, espacio y tiempo, el segundo es el constituido por las cantidades (variables) que usamos para caracterizar y describir a un fluido cualquiera y el tercer elemento es el marco de referencia adecuado para determinar estas variables.<br />El espacio es el escenario que usamos para localizar o ubicar al fluido o a una parte de éste.<br />El segundo punto es más complicado y tiene que ver con cuántas y cuáles cantidades es necesario disponer para contar con una descripción completa y exhaustiva de un fluido.<br />Finalmente, para concluir con los preparativos que nos permitan entrar en el tema, vamos a introducir las variables dependientes, los campos, que nos facilitan la descripción de diversos procesos y la discusión de los principios subyacentes. Dividimos en dos clases a estas variables, los campos escalares y los campos vectoriales. Los campos escalares son relativamente sencillos y los conocemos por la práctica que adquirimos al habitar nuestro planeta. Su especificación en cada punto está dada por un número de acuerdo con una escala universalmente aceptada. Una gráfica o una tabla de datos correspondientes cada uno a puntos distintos, nos da toda la información espacial del campo. Si éste cambia con el tiempo se necesita una tabla para cada tiempo. Los campos escalares usuales son la densidad, la temperatura y la presión, que representamos por r, T y p, respectivamente. El otro campo escalar que usaremos es la presión y, como se dijo en la sección II. 1, está definida como la fuerza normal que actúa sobre un área dada. Si la misma fuerza normal actúa sobre dos áreas distintas, la presión es menor sobre el área mayor. Como ilustración imaginemos un objeto cuyo peso es suficiente como para que al ponerlo encima de un huevo éste se aplaste sin remedio. Siempre podemos poner suficientes huevos como para que el peso se reparta entre todos, de modo que la fuerza que recibe cada uno no exceda su “factor de aplastamiento”. Al distribuirse la fuerza sobre un área mayor, la presión es menor.<br />III. UNA HISTORIA DE LAS IDEAS<br />Una historia no es sólo una secuencia de nombres, fechas, hechos y las anécdotas que los conectan. Es más bien una explicación e interpretación de éstos a partir de hipótesis fundamentadas y basadas en patrones globales del comportamiento; en nuestro caso es la tarea de los profesionales del campo, los historiadores de la ciencia. Más que evocar una historia, lo que haremos será una visita parcial a través del tiempo para recordar pasajes exquisitos del desarrollo del pensamiento humano. Así, pasaremos por algunos aspectos que costaron mucho entender o manejar, por ciertos puntos sencillos y prácticos que nos dejan sospechar las peculiaridades de un fluido y otros más bien curiosos o simplemente divertidos, que aparecen distribuidos en el tiempo y en diferentes sitios, lo cual les da una perspectiva que, al recordar las circunstancias culturales, políticas, sociales o económicas, permite intuir la historia.<br />III. 1. SOBREVIVENCIA, MAGIA, NECESIDADES Y LUJOS<br />   Hasta hace aproximadamente 100 000 años el hombre seguía tratando de acostumbrarse a vivir bajo los árboles. El paso de recolector de frutos, que afortunadamente no hemos abandonado del todo, al del cazador, fue muy largo y es difícil intuir siquiera cómo se llevó a cabo. En este paso inventó y descubrió múltiples utensilios que le hicieron más fácil su existencia en un medio ajeno y hostil que luego dominó y, diríamos ahora, casi se acabó. Inventó la rueda mucho después del vestido y descubrió el fuego antes que aquélla. Desarrolló armas para subsistir, descubrió después el bronce y, hace unos 10 000 años, la agricultura. Probablemente aprendió a manejar los fluidos en forma circunstancial en este proceso. Los primeros que se estaban ahogando por humo dentro de una cueva sacaron al fuego a la intemperie o se buscaron una cueva con el techo más alto, y aprendieron que el aire caliente sube, pero sin intuir en ello el principio de la flotación. Los primeros navegantes tal vez surgieron de una poca afortunada pérdida de equilibrio en la orilla de un río y del fortuito paso de un tronco en la vecindad inmediata. También podemos imaginar que, al observar que ciertos objetos flotaban en un río, a más de uno se le ocurrió aprovechar el hecho para viajar río abajo y, con suerte, al otro lado.<br />   El proceso que va desde arrojar piedras y palos, que a más de una presa sólo debe haber irritado lo suficiente como para comerse al cándido ancestro, hasta la invención del mazo y, mucho más tarde, hace unos 30 000 años, el arco y la flecha, comprende múltiples pruebas e insólitas experiencias. Bajo la presión de la supervivencia el hombre aguzó el ingenio para adaptarse y manejar su ambiente que, gústele o no, lo dominan los fluidos.<br />   En esta etapa de la protohistoria, que abusivamente catalogamos de supervivencia, se hicieron obras notables destinadas al riego. Las necesidades agrícolas de las culturas que florecieron en Mesopotamia y Egipto, al menos 4000 años a.C., llevaron a diseñar y construir presas y diques, cuyos restos aún pueden apreciarse en las márgenes de los correspondientes ríos. Vestigios semejantes, de tiempos casi tan remotos, fueron descubiertos en las riberas de ríos en la India y la China. La construcción de canales para riego, transporte y surtido de agua a las grandes metrópolis de entonces confirma la relación directa entre el nivel de una civilización y la posesión de una tecnología para mantenerla; en particular, la relación con el agua.<br />   El paso de la información en forma oral, de una generación a otra, hizo que gran parte de ella se perdiera en el tiempo. Por otro lado, algunos instrumentos y tal vez sus principios se manejaban con el más meticuloso sigilo por quienes detentaban el poder político o religioso, o ambos, como usualmente sucedía. Los portentos exhibidos en los templos egipcios para mantener la fe, mostrar el beneplácito de los dioses o dejar ver la ira divina, se lograban usando mecanismos hidráulicos ocultos, empleando aire o agua como vehículo; elevar objetos, desplazarlos y, con ingenio, desaparecerlos, fue una práctica desarrollada en ciertas esferas no exclusivas a los cultos a Ra.<br />   Desde el remoto y oscuro pasado hasta el florecimiento de la cultura helénica, el hombre acumuló un vasto conocimiento práctico sobre el comportamiento de los fluidos. De los complejos sistemas de riego a las elaboradas embarcaciones propulsadas por viento y de las aerodinámicas flechas y lanzas, al sifón y la clepsidra..<br />   Las extensas guerras de conquista de Alejandro Magno permitieron a la civilización occidental enriquecerse con el legado asiático. Alejandría sustituyó a Atenas y amalgamó la cultura de la época, resumiendo el conocimiento previo en su legendaria biblioteca.<br />   III. 2. DE LA METAFÍSICA A LA FÍSICA<br />   Los diez siglos que siguen a la caída del Imperio romano y que gestan la aparición de una brillante era en la historia de nuestra civilización, sirven para consolidar el sistema económico feudal y el poder de la iglesia cristiana, asimilándose el legado filosófico griego. Este último aspecto llegó a su climax con la aristotelización del cristianismo por Tomás de Aquino en el siglo XI. La incorporación de las matemáticas, la lógica, la metafísica y la astronomía griegas a la enseñanza en las “universidades” medievales, que fundara Carlomagno en el siglo VIII, llevó a la formulación de la educación escolástica basada en las siete artes liberales agrupadas de la siguiente manera: el trivium (gramática, lógica y retórica) y el quadrivium o artes matemáticas (aritmética, astronomía, geometría y música).<br />   En un siglo de notable esplendor sobresale un hombre que se destacó en todas y cada una de las diversas actividades en las que estuvo interesado. Su universalidad sólo es igualada por su profundidad y calidad. Leonardo da Vinci (1452-1519), en cuanto a la ciencia y a los fluidos se refiere, marca el siguiente paso después de Arquímedes.<br />   De la gran cantidad de observaciones y experimentos que llevó a cabo sobre el comportamiento de los fluidos, Leonardo obtuvo resultados cuantitativos y generalizaciones sorprendentes que no fueron apreciadas sino mucho después, ¡algunas hasta el siglo XIX!<br />   Encontró que el aire y el agua tienen un apellido común. Al comparar en forma sistemática los movimientos de masas de aire (vientos) y agua (estanques, ríos y mares) intuyó, citándolo en forma recurrente, los elementos comunes de su comportamiento.<br />   Al observar el movimiento de aguas en ductos, canales y ríos, descubrió y formuló en forma cuantitativa uno de los principios fundamentales en la mecánica de los fluidos: el principio de continuidad o de conservación de la masa. Si bien es cierto que al menos desde la época de Arquímedes se sabía que el agua que entra por el extremo de un tubo sale por el otro, la relación entre este hecho y la descarga era si acaso sospechada, aun por los constructores romanos. La descarga es la cantidad de fluido que atraviesa una sección de un tubo o de un canal por unidad de tiempo. Por ejemplo, el número de litros por segundo que pasa por cualquier parte de un tubo, cuya sección sea variable, es siempre el mismo.<br />   III. 3. DEL HORROR AL VACÍO, AL AGUA SECA<br />   Es claro que no puede culparse a Aristóteles del estancamiento intelectual que siguió a su muerte. Fue la dogmatización de sus ideas y la exclusión de su actitud crítica y dinámica, que predicó y practicó, lo que casi paralizó la evolución del conocimiento.<br />   La crítica, no es de sorprender, fue iniciada por Galileo. La generación que le sucedió la continuó y la resolvió.<br />   El compañero inseparable de Galileo en los últimos tres meses de su vida fue Evangelista Torricelli (1608-1647). Tras de extender algunos trabajos de aquél en dinámica de proyectiles y de generalizar en forma brillante parte de la obra de Arquímedes, fue invitado a Florencia por el anciano Galileo para discutir y escribir sus últimas ideas. Así, Torricelli se vio expuesto a muy variadas especulaciones y proposiciones que, en su desafortunadamente breve carrera científica, desarrolló al suceder al maestro en su cátedra de matemáticas.<br />   Torricelli se ocupó de diversos problemas en forma teórica y experimental. En el área de fluidos destacan sus estudios sobre el flujo de chorros que salen por el orificio de un recipiente, su descubrimiento del principio del barómetro de mercurio y su uso en el estudio de la presión atmosférica. Con estos trabajos logró, entre otras cosas, acabar con el mito de la imposibilidad del vacío. Uno de sus experimentos consistió en demostrar la existencia de la presión atmosférica y la forma de crear un vacío.   Blaise Pascal (1623-1662) fue quien, repitiendo y extendiendo los experimentos de Torricelli, dio una clara explicación de las observaciones. Al darse cuenta de que los experimentos básicos podían ser explicados por igual en términos de la presión atmosférica en vez de en términos de un parcial horror al vacío, llevó a cabo un experimento de vacío dentro de otro vacío.  En el proceso de estudio de la presión atmosférica Pascal inventó la prensa hidráulica, descubriendo el principio físico subyacente. Según éste la presión en un fluido actúa por igual en todas las direcciones; conocido como el principio de Pascal, es uno de los dos axiomas fundamentales de la hidrostática. El otro es el principio de Arquímedes. A los 31 años de edad y siendo una celebridad por sus variadas contribuciones en física y matemáticas, Pascal se convirtió en asceta; dedicó sus últimos ocho años de vida a la teología con la misma intensidad que dedicara antes a la ciencia.<br />   Unos días antes del primer aniversario de la muerte de Galileo, en el pueblito inglés de Woolsthorpe, nació Isaac Newton (1642-1728). Como Da Vinci en su época, la luz de Newton brilla por encima del estrellado cielo de sus contemporáneos.<br />   Característico de la revolución científica del siglo XVII, y en la mejor tradición cartesiana de la época, partió de la base de un universo real cuyo comportamiento podía y debía ser explicado solamente en términos de sus elementos y sus relaciones. Sobre esta base filosófica desarrolló la herramienta matemática requerida y formuló las leyes de la mecánica. Su trabajo Philosophiae rasetic Principia rasetica, publicado hasta 1687, es, además de su obra maestra, uno de los trabajos más importantes de toda la ciencia moderna.<br />   La contribución de Newton a los fluidos fue múltiple y a niveles muy diferentes. Abarcó desde sus fundamentos, en forma indirecta, hasta los meticulosos experimentos que llevó a cabo sobre vórtices (remolinos) y viscosidad (fricción interna).<br />   Desde el punto de vista general, el marco teórico, el aparato matemático y las leyes físicas que Newton estableció, fueron, y siguen siendo, los ingredientes esenciales de la teoría de los fluidos.<br />   III. 4. EL SIGLO SINCRÉTICO<br />   En los cien años comprendidos entre 1750 y 1850 se sentaron las bases teóricas y experimentales de la mecánica de los fluidos. Ese siglo sirvió para resumir, ordenar y extender el conocimiento que sobre los fluidos se había acumulado durante miles de años. Desde entonces hasta la fecha la tarea ha sido la de extraer de estos principios, formulados en forma matemática, la información necesaria para poder entender y predecir el comportamiento de los fluidos.<br />   En la primera mitad de este notable periodo aparecieron, junto a las históricas obras de carácter teórico, una serie de memorias clásicas de cuidadosos trabajos experimentales. Destacan el veneciano Giovanni rase (1683-1781), el inglés John Smeaton (1724-1792) y la escuela francesa, en particular Henri de Pitot (1695-1771), Antoine Chézy (1718-1798), Jean Charles de Borda (1733-1799), el mismo D’Alambert, Charles Bossut (1730-1814) y Pierre Louis George DuBuat (1734-1809).<br />   El periodo de gestación asociado a los últimos cincuenta años del siglo XVIII no se limitó, desde luego y antes bien al contrario, a los fluidos, a la parte académica o a la intelectual. La sociedad estaba fraguando una lucha contra el hambre, contra la injusticia y por la libertad e igualdad. Así, se entiende la intensa actividad que se aprecia en los fluidos; nada sorprende pues que Lagrange visitara a Voltaire a instancias de D’Alambert y que este último dirigiera y participara en una extensa obra de coordinación y planeación de vías fluviales, navegación y canalización en toda Francia. Con la segunda etapa, correspondiente a la primera mitad del siglo XIX, concluye el nacimiento de la mecánica de los fluidos. Mucho se ha hecho desde entonces y mucho, seguramente mejor, habrá de hacerse en el futuro. La criatura nació y creció, llegando a su infancia al empezar el último siglo del milenio. Veamos cómo acabó de formarse y qué dones (y defectos) trajo al mundo. Para hablar de su madurez habrá que esperar, al menos, un ratito.<br />   Desde el punto de vista experimental, el siglo XIX se inició con una sólida tradición. Se contaba con una gran variedad de técnicas y métodos muy confiables y, en consecuencia, de resultados razonablemente precisos, en especial sobre la resistencia de obstáculos a un flujo. La hidráulica había avanzado en forma casi independiente de la hidrodinámica teórica. En cierto sentido, caminaban por veredas distintas, aunque paralelas, compartiendo problemas y perspectivas pero difiriendo en métodos, prioridades y lenguaje.<br />   En 1821 se presentó ante la Academia de Ciencias, en París, un trabajo de Claude Louis Marie Henri Navier (1785-1836), ingeniero de formación y vocación. En éste se deducían las ecuaciones fundamentales de la elasticidad, que hoy en día llevan su nombre, para describir el equilibrio y las vibraciones en un sólido. Estas resultaban de un análisis puramente matemático en el que los átomos, entonces entes hipotéticos, se imaginaban como partículas que interactuaban por medio de resortes. No sorprende que fuese Navier el primero en construir un puente colgante a partir de un proyecto y de un cálculo; previamente las construcciones se hacían sobre bases empíricas.<br />   Las ideas de Navier sobre la atracción y repulsión entre las moléculas, como origen de la viscosidad, fueron seguidas y ampliadas por dos excelentes matemáticos de la época: Simeon Denis Poisson (1781-1840) y Agoustin Lonis de Cauchy (1789-1857). El carácter especulativo de las hipótesis “microscópicas” que usaron le da a sus trabajos en este particular un interés sólo histórico.<br />   Sería difícil hallar a un científico cuyo nombre esté asociado a más resultados que el de Stokes. En matemáticas hay un importante teorema que lleva su nombre, en fluidos las ecuaciones básicas llevan su apellido, al igual que una ley de movimiento para esferas y una paradoja; en óptica, unas líneas espectrales y el corrimiento de la luminiscencia son sus hijas registradas y bautizadas.<br />   Con el establecimiento de las ecuaciones básicas, el éxito de las primeras e importantes aplicaciones de ellas, el gran cúmulo de precisas observaciones y el desarrollo de muy diversos métodos de investigación experimental y analítica, la ciencia de los fluidos tomaba la forma que tiene tal y como hoy la conocemos. Los cimientos del trabajo de las generaciones futuras estaban completos.<br />   III .5. MATRIMONIO POR CONVENIENCIA<br />   Una visión antropomórfica de la ciencia de los fluidos nos puede ayudar a entender la situación.<br />   Se podría pensar que con las bases de la teoría bien establecidas, una sistemática educación daría a la criatura una madurez de brillante productividad. Como suele suceder, lo que podía salir mal, salió mal. Apareció un problema que hasta la fecha no ha sido resuelto satisfactoriamente: las matemáticas necesarias para resolver las recién descubiertas ecuaciones (no lineales) no se habían desarrollado (¿inventado?, ¿descubierto?...). Así, al comenzar la segunda parte del siglo XIX , los interesados en la hidrodinámica se encontraron con un problema claramente planteado pero con insuficientes herramientas para resolverlo.<br />   No es de sorprender que el mismo Stokes iniciara uno de los enfoques para abordar el problema. “Si no puedes agarrar al toro por los cuernos, ¡corre!”, dice un adagio azteca, y así lo hizo. Argumentado cuidadosamente, simplificó las ecuaciones de manera que pudiera domesticarlas y sacarles provecho. Los resultados que obtuvo por la aproximación tuvieron tal éxito que hoy en día se siguen explotando estas mismas ecuaciones que, desde luego, también llevan su nombre. Su análisis del movimiento de una esfera en un líquido sigue siendo uno de los resultados clásicos de la mecánica de fluidos; la expresión que relaciona a la fuerza que arrastra a la esfera con el producto de la velocidad de la corriente el radio de la esfera y la viscosidad del fluido, se conoce como la ley de Stokes. La utilidad de un resultado tan “simple” como éste ha sido amplia y de la más diversa índole.<br />   Vale la pena hacer notar que el problema aún está lejos de resolverse. Una gran cantidad de trabajos experimentales sobre el flujo en tuberías se sigue publicando en la bibliografía especializada; innumerables tablas empíricas se han publicado para su uso en el diseño de sistemas de drenaje, plantas industriales de diferentes características, etc., y complicadas relaciones entre parámetros del flujo siguen siendo elaboradas. Para las condiciones que se dan en la práctica, el movimiento de un líquido es sumamente complicado y la teoría ha sido, hasta la fecha, incapaz de dilucidar el problema. Las predicciones teóricas del siglo XIX, desde luego aproximadas, han podido mejorarse muy poco.<br />   Un protagonista singular de esta época es Osborne Reynolds (1842-1912). Estudiando casi los mismos problemas que Boussinesq, cultivó el otro lado de la relación que nos ocupa, la hidráulica. Aun así, cada uno destacó en la contraparte; Reynolds se sublimó en la hidrodinámica. Sus meticulosos trabajos experimentes eran delicadamente contrapunteados con resultados analíticos; algo parecido a lo que Mozart hubiese logrado si en lugar de componer su exquisita e insuperable música se hubiera concentrado en jugar con charcos y la teoría correspondiente. ¡De lo que se perdieron los fluidos y lo que ganamos todos!<br />   Reynolds, prototipo del profesor distraído, introdujo conceptos y métodos que siguen siendo aprovechados por quienes nos ganamos el pan con los fluidos. Como “para muestra basta un botón”, caracterizó la forma en que un fluido pasa de un estado de movimiento laminar (regular) a uno turbulento (caótico), introduciendo, entre otras cosas, un parámetro adimensional conocido ahora como el número de Reynolds.<br />   La idea básica es como sigue. Una madre ingeniosa decide jugar en la cocina de su casa con unos popotes. A pesar de las protestas de su familia, averigua cómo se mueve el jugo de mandarina en su “dispositivo experimental” y, como es de suponerse publica un artículo sobre el tema. Meses más tarde y en otro país, en una oficina con poca luz, un ingeniero del Departamento de Aguas debe rediseñar el sistema de drenaje de un barrio, dentro del cual se encuentra su casa; es decir, le interesa que funcione. ¿Le sirve lo que escribió la susodicha mamá? Ella trabajó con el jugo de un cítrico, tubos de plástico y una sana curiosidad; él debe hacerlo con… otros materiales. Gracias a la dama y a Reynolds, el ingeniero puede evitar hacer pruebas costosas y, tal vez, desagradables.<br />   Al iniciarse el siglo XX, el cortejo entre la hidrodinámica y la hidráulica parecía no tener futuro alguno; los intereses comunes o bien se expresaban en lenguajes diferentes o parecían inútiles o muy complicados. Las obras de rase Lamb y de A. A. Flamant ilustran bien la situación; la primera cubre los aspectos teóricos y la otra los experimentales, con poco material común. La hidrodinámica se interesaba principalmente en los flujos invícidos o ideales, lateralmente en los flujos viscosos laminares y no hacía caso de los flujos turbulentos, siendo esta última la característica más importante para la hidráulica. Así, las excelentes virtudes de una disciplina eran ignoradas por la otra.<br />   En estas condiciones, en 1904, se presentó un trabajo experimental, en un congreso de matemáticas, en la ciudad de Heidelberg, Alemania. El autor, un brillante ingeniero llamado Ludwig Prandtl (1875-1953), iniciaba una conspiración para unir a la caprichosa pareja. A raíz de esa participación, Prandtl fue invitado a trabajar y colaborar en uno de los ambientes más estimulantes y fértiles para la investigación de que se tiene memoria. Con ese trabajo, titulado Sobre el movimiento de fluidos con viscosidad pequeña, empezaba una profunda revolución mecánica de fluidos.<br />   Las contribuciones sobresalientes de Prandtl no quedaron ahí, ni fue éste el último de los brillantes investigadores en el tema; algunos de los que faltan, varias ideas y métodos, como las que abordan la turbulencia o el uso de las computadoras, aparecerán más adelante.<br />   V. LA TURBULENCIA<br />   Al iniciarse la década de los años setenta se abrieron varias perspectivas teóricas y experimentales de muy diversa índole. Cada una por separado parecía ser la adecuada para atacar en forma definitiva el problema. Cada una de ellas inició una etapa de intenso, extenso y excitante trabajo en todo el mundo. Combinando ideas y métodos recién desarrollados en las matemáticas, desde las muy abstractas como la topología diferencial, hasta las más prácticas como el análisis numérico (aunado a la construcción de computadoras cada vez más grandes y veloces), se revisaron experimentos clásicos desde una nueva perspectiva y se encontraron elementos que estaban a la vista, pero que no se habían buscado o que simplemente se ignoraban invocando diversos argumentos. También, nuevas técnicas experimentales y cuidadosas observaciones hicieron cambiar algunas ideas preconcebidas y el enfoque teórico que sistemáticamente se había estado siguiendo. Así, se revisaron las teorías y repitieron experimentos. Si bien cada una de las nuevas ideas y métodos, teóricos y experimentales, siguen en una efervescente actividad, el optimismo inicial sobre la comprensión del fenómeno de la turbulencia ha ido decayendo con el tiempo en vista de los exiguos resultados específicos. Muchas cosas han quedado más claras y los horizontes por explorar se han abierto en forma sorprendente.<br />   Algo claro e irreversible que sucedió a lo largo de este proceso, fue el inicio de un cambio en la actitud de la mayoría de los físicos; en los que no se ha dado es porque no lo requerían o porque todavía no lo pueden aceptar.<br />   Todavía hace poco se decía que las leyes básicas habían sido encontradas en la primera mitad del siglo XX y que con esto se cerraba una etapa gloriosa del pensamiento humano (algo parecido se pensaba hace cien años con la mecánica newtoniana y el electromagnetismo de Maxwell). Aun suponiendo que conocemos estas leyes fundamentales, en forma clara y precisa, lo que sería decepcionantemente pretencioso, algo ha cambiado. Se ha puesto de manifiesto que esto no es suficiente y que para explicar el mundo se requiere mucho más.<br />   El argumento es más o menos el siguiente. La dirección opuesta al reduccionismo, creciendo en grado de complejidad, ha traído sorpresas que muy pocos preveían. A partir de casi cualquier punto en esta dirección aparecen nuevos fenómenos, ricos y variados, con elementos ausentes en el nivel anterior, más sencillo; se generan nuevas simetrías y emergen formas nuevas de organización. Si a un nivel de descripción parece sólo haber desorden, al siguiente aparece orden en el caos, como en un acto de magia medieval donde los encantamientos son las fuerzas ocultas que nos desafían a descubrirlas. El comportamiento de grupos de átomos o moléculas parece tener poco que ver con sus elementos constituyentes, cúmulos de estos grupos tienen aún menos memoria de sus elementos básicos. Estos cúmulos se autorganizan, duplican y evolucionan solos; confabulados en grupos de cúmulos cada vez más grandes llegan a producir patrones de flujo cuya belleza adorna la superficie de algunos planetas, a ladrar en las esquinas oscuras de colonias olvidadas o se atreven a construir máquinas que empiezan a pensar sobre ellas mismas...<br />   V.1. LA LEY DE KOLMOGOROV<br />   Lewis Fry Richardson (1881-1953), uno de los pioneros de la meteorogía moderna y miembro representativo de la tradición científica inglesa, estudió la dinámica atmosférica y, desde luego, se enfrentó con la turbulencia, siempre presente en el monumental laboratorio de la atmósfera. En un poema sencillo, que todavía se cita en los textos, resumió lo que Da Vinci plasmó en sus lienzos al observar el fluir de las aguas y lo que los científicos creen que sucede en un fluido excitado.<br />   Dejando a un lado el adagio latino de quot;
traductor, ¡traidor!quot;
, el contenido del verso expresa el proceso que parece sufrir la energía que se le comunica a un fluido para mantenerlo en estado turbulento, el llamado modelo de la cascada de energía.<br />   Imaginemos un tanque con agua, a la que agitamos con una paleta de cierto tamaño (escala). Al mover la paleta se producen vórtices de la misma escala. Observamos que estos vórtices migran y se desintegran, generándose en el proceso otros vórtices de una escala menor. Este mecanismo se continúa de una escala a otra, hasta que la escala es lo suficientemente pequeña como para que el movimiento de los vorticillos resultantes sea dominado por los efectos de la fricción interna del fluido, la viscosidad. Ahí, los pequeños remolinos comienzan una etapa de decaimiento, disipándose hasta desaparecer; la longitud típica de esta última escala es de fracciones de milímetro.<br />   De acuerdo con estas ideas, la energía pasa de una escala a otra, como en una cascada en la que el agua cae de un nivel a otro, perdiendo altura (energía potencial) pero ganando movimiento (energía cinética). En el fondo de las escalas el movimiento se convierte en calor, disipándose la energía, y queda el fluido en reposo. En la medida en que se siga agitando la paleta (inyectando energía al fluido) se podrán apreciar las estructuras en las distintas escalas, siendo la más pequeña la más difícil de ver.<br />   Por consiguiente el estudio de la dinámica de vórtices es uno de los más importantes en los trabajos de turbulencia. El objetivo es entonces entender cómo se generan, cómo interaccionan entre sí, cómo se rompen y, finalmente, cómo decaen. Algunas de las teorías más comunes abordan estos problemas desde diversos puntos de vista, tratando de encontrar cantidades que se conserven en este proceso y estudiando la forma en que van cambiando otras, al pasar a través de las distintas escalas.<br />   La famosa expresión establece en forma cuantitativa varios aspectos relacionados con la cascada de energía propuesta por Richardson. Para percibir la esencia del resultado seguiremos a Kolmogorov en su razonamiento. Empezaremos por formular el resultado, que parece más un criptograma de la Guerra Fría que una descripción de lo que puede pasarle a un fluido. Después, intentaremos descifrarlo.<br />   La ley de los dos tercios de Kolmogorov, como se le conoce, afirma lo siguiente. En un flujo turbulento, la autocorrelación de velocidades entre dos puntos separados por una distancia l, dentro del subintervalo inercial, es igual a C([pic]l) 2/3; C es una constante numérica universal y [pic]es el flujo promedio de la energía (por unidad de masa). Todo indica que para entender el enunciado harían falta estudios serios de paleología. Realmente no es así, es suficiente con algo de física y de matemáticas; para apreciar el sabor basta un poco de paciencia.<br />   La cascada de energía quot;
a la Richardsonquot;
, sugiere la existencia de una serie de escalas a través de las cuales la energía transita, hasta disiparse en calor. En la escala más grande, las estructuras (vórtices) llevan quot;
impresaquot;
 la forma en que fueron generadas. Chorros y estelas ejemplifican este hecho; cada uno parece estar estructurado de manera muy distinta. A este nivel, son aspectos como la geometría del sistema los que definen el tamaño y la forma de los vórtices portadores de la mayor parte de la energía. En el otro extremo, los vorticillos más pequeños consumen toda la energía al disiparse por efecto directo de la viscosidad. En este proceso de cascada, en el que las estructuras se van descomponiendo en otras más pequeñas, el flujo va perdiendo la memoria del mecanismo generador de la turbulencia.<br />   V.2. ESTRUCTURAS COHERENTES<br />   La tecnología usada en la investigación experimental se ha mantenido en constante desarrollo a través del tiempo. Una parte considerable de la llamada tecnología de punta ha sido el fruto de las necesidades específicas de la investigación en diversos campos de la física; tristemente, han sido las aplicaciones a la industria de la violencia las que han sido argumentadas para justificarla y el motor para su desarrollo.<br />   El uso de computadoras cada vez más grandes y veloces, de electrónica cada vez más rápida y versátil, de sondas mecánicas, ópticas y acústicas más complejas y delicadas han dado lugar a una revolución en la forma de hacer experimentos en las ciencias naturales. Los laboratorios dedicados al estudio de la turbulencia no son la excepción, es más, son un excelente ejemplo. No sería exagerado afirmar que, por ejemplo, el desarrollo de computadoras cada vez más grandes ha tenido como principal promotora a la dinámica de fluidos. Sin embargo, aún no existe un problema de turbulencia que se pueda solucionar con la computadora más grande disponible, aunque ya se empiezan a acercar...<br />   Hay la sospecha fuerte de que una de las mejores formas de acorralar a las elusivas estructuras coherentes es estudiar el problema en términos de la vorticidad, y los enfoques teóricos se mueven en esta dirección. De esta manera, los experimentales tratan de medir la vorticidad y los teóricos de ver cómo se distribuye en el espacio y el tiempo. Aquí, de nuevo, los investigadores depositan sus esperanzas en las computadoras. Los experimentales, para la adquisición, manejo y análisis de grandes cantidades de datos; sin ellas, este trabajo tomaría cientos de miles de años, de todos aquellos que trabajan en el tema, ¡para un solo caso! A los teóricos les pasa algo semejante. Para todos se ha convertido en la herramienta indispensable y la fuente de inspiración para muchos estudios, desde las simulaciones directas de flujos sobresimplificados hasta el terreno de juego para los experimentos pensados.<br />   El estado actual de esta situación es todavía nebuloso (¡turbulento!), si bien hay múltiples ideas cualitativas sobre el papel que desempeñan las estructuras coherentes. Estas ideas platicadas son el motor del trabajo experimental y teórico que se puede consultar en la bibliografía especializada. La forma de plantear matemáticamente lo que sugiere la intuición y la información acumulada es parte de la tarea para llevar a casa.<br />   El problema continúa abierto y ofrece la posibilidad de ganarse el pan cotidiano a muchos curiosos y necesitados de la ciencia y el conocimiento, ya sea motivados por razones prácticas o estéticas.<br />   V.3. ATRACTORES EXTRAÑOS Y CAOS<br />   Una serie de revolucionarias ideas y de descubrimientos paralelos a los anteriormente descritos, independientes, diferentes y aparentemente desconectados, pero sobre el mismo problema general de la turbulencia, ocurrieron en la misma prolífica década en que se descubrieron las estructuras coherentes. Describiremos sólo una parte, pero no tocaremos las sugerentes ideas e importantes teorías como las de Mitchel Feigenbaum, Benoit Mandelbrot, Pierre Manneville e Yves Pomeau.<br />   Uno de los antecedentes fue el descubrimiento hecho por otro meteorólogo, Edward N. Lorenz, en 1963. Estaba interesado en comprender ciertos aspectos de la atmósfera terrestre con el propósito de avanzar en los métodos para la predicción del tiempo. Con esto en mente elaboró un modelo muy sencillo para estudiar lo que le pasa a un fluido sometido a una diferencia de temperaturas en presencia del campo gravitacional, conocido como el problema de Rayleigh- Bénard. A partir de las ecuaciones básicas de la mecánica de fluidos, las de Navier- Stokes, introdujo varias hipótesis para reducir las ecuaciones a lo que en su opinión aún tenía elementos suficientes para generar una dinámica interesante. Luego, procedió a resolverlo en forma numérica. Cuál no sería su sorpresa al encontrar que, para ciertos valores de los parámetros que caracterizaban al problema, la solución mostraba un comportamiento errático. Curiosamente, no tiró a la basura los resultados.<br />   ¿Cómo era posible que el resultado de una ecuación, compuesta por términos bien definidos y perfectamente regulares, diera lugar a un comportamiento no determinista? Otros, seguramente, hubieran descartado los resultados y pensado que había algo equivocado con el método de solución o con la computadora misma. Para Lorenz había algo nuevo y profundo en lo que acababa de encontrar; había descubierto a los atractores extraños. Pasaron varios años para que la comunidad cientifica se percatara de la enorme importancia de su hallazgo. Baste decir que gracias a su trabajo, ahora sabemos que nunca podremos predecir el tiempo más allá de siete días. Si oímos que se espera buen clima para la semana próxima, podemos asegurar que es precisamente eso, una esperanza.<br />   En el espacio en el que viven estos movimientos, que llamamos variedades, hay diferentes tipos de atractores: puntos (como en el caso de osciladores con fricción), curvas (como en el caso de los osciladores no amortiguados, de dimensión uno), superficies (de dimensión dos), etc.; objetos más o menos simples. Antes de Lorenz se creía que todos eran de este tipo y fue entonces que aparecieron los extraños, que resultaron ser cosas (variedades) conocidas, aunque eran consideradas como curiosidades matemáticas sin conexión alguna con el mundo real. Baste decir que su dimensión no es ningun número entero (si no serán raros). Como lo indica la nueva teoría, después de un par de transiciones aparece la turbulencia. Desechada la teoría de Landau, heredó el foro la nueva prima donna (excepto que ahora no está sola...); pero al igual que con los aplaudidos artistas, deportistas, etc., su tiempo dura en tanto llegan los nuevos.<br />   VI. SUPERFLUIDOS<br />   Todos los elementos están formados por tres tipos de partículas distintas: electrones (con carga eléctrica negativa), protones (con carga eléctrica positiva) y neutrones (sin carga); los protones y los neutrones son más de mil veces más pesados que los electrones. La diferencia entre un elemento y otro es sólo la cantidad de electrones que tienen, que siempre es igual a la de los protones, lo cual asegura la neutralidad eléctrica de los átomos. Los llamados isótopos son variedades de un mismo elemento que difieren en el número de neutrones que, junto a los protones, se encuentran en el núcleo.<br />   El hidrógeno es la sencilla unión de un electrón con un protón, mientras el uranio U238 tiene 92 electrones en movimiento alrededor de un núcleo con 238 partículas, entre protones y neutrones. Hinchado así, no es sorprendente que frecuentemente arroje cosas (partículas-a, que son núcleos de helio, por ejemplo) y se transforme con el paso del tiempo en otro elemento, como el plomo (Pb206); ésta es la radiactividad.<br />   Hay dos isótopos del helio en la naturaleza llamados 4He y 3He (helio cuatro y helio tres). Ambos tienen dos electrones y la diferencia está en el número de componentes del núcleo; además de los dos protones, el helio cuatro tiene dos neutrones y el tres tiene sólo uno, por lo que el 3He es más ligero. Por ser el más abundante en la naturaleza y por ser el protagonista principal de lo que sigue nos referiremos al 4He como helio.<br />   Como paréntesis aclaratorio (que puede contribuir a la confusión), es conveniente mencionar que en realidad hay algunas quot;
cosasquot;
 adicionales aparte de los átomos. La luz, por ejemplo, nada tiene que ver con los átomos; está hecha de fotones. Además, hay otros entes exóticos que pululan el Cosmos, como los neutrinos, los muones, los cuarks, los positrones y antipartículas varias.<br />   ¿Qué son en realidad los átomos, los electrones, los neutrinos y demás objetos microscópicos? La teoría correspondiente, que llamamos genéricamente mecánica cuántica, y cuyo idioma natural es el de las matemáticas, nos dice claramente qué son y qué hacen. Permite hacer predicciones notables sobre los eventos más probables, los valores esperados para velocidades, masas, energías, fuerzas, vidas y milagros de estas peculiares criaturas.<br />   Otro elemento totalmente novedoso que forma parte esencial de la mecánica cuántica es la relación que hay entre el objeto bajo estudio y el observador. A diferencia de lo que sucede al estudiar otro tipo de sistemas, no tan pequeños, en los que el objeto de estudio tiene un comportamiento independiente del observador, los sistemas cuánticos sufren las acciones del investigador y modifican su comportamiento detallado en forma impredecible.<br />   Al estudiar un electrón, por ejemplo, es inevitable afectarlo en forma incontrolada. Para estudiar su movimiento hay que quot;
iluminarloquot;
 para quot;
tomarle una películaquot;
 y determinar gracias a ella su velocidad. Sin embargo, cuando intentamos iluminar al electrón, este se desvía al chocar con el primer fotón (la onda-partícula que constituye la luz), impidiéndonos saber qué velocidad llevaba; al llegar la luz, mostrándonos en qué sitio se encontraba, desaparece la posibilidad se saber a dónde iba. Es decir, posiciones y velocidades son cantidades incompatibles. La precisión en la determinación de una es a costa de la otra. Este tipo de efectos trae como consecuencia la existencia de límites naturales ineludibles en la precisión con la que es posible determinar ciertas cantidades, simultáneamente. Estas limitaciones tienen el carácter de leyes fundamentales y forman parte de los postulados básicos de la mecánica cuántica. Se conocen como las relaciones de incertidumbre de Heisenberg.<br />   VI. 1. EL HELIO Y EL FRÍO<br />   El helio fue descubierto como uno de los componentes de la atmósfera solar, de donde viene su nombre (del griego helios, Sol), en la segunda mitad del siglo XIX por P. Janssen y J. N. Lockyer, independientemente. Casi veinte años más tarde se encontró en la Tierra disuelto en minerales y un poco después en mezclas de gases naturales; al separarlo siempre se obtenía helio en su fase gaseosa.<br />   El primer derivado de las reacciones nucleares que ocurren en el interior de las estrellas es el helio. Las enormes presiones que existen en el interior de las estrellas dan como resultado que se fusionen los átomos de hidrógeno, formando helio, liberándose así enormes cantidades de energía. El hidrógeno es el quot;
combustiblequot;
 más usado por las estrellas para iluminar el cielo (de noche solamente, claro). Agotado el hidrógeno se siguen con el helio, formando átomos cada vez más pesados, que a la larga se combinan para formar moléculas y éstas, agrupadas en cúmulos, forman partículas que a la larga se autorganizan y mugen en medio de verdes pastizales.<br />   Decir que somos polvo de estrellas, además de una frase poética saturada de meloso romanticismo, es una afirmación científica literal.<br />   Descubrir cada elemento, para después caracterizarlo y conocer sus propiedades más distintivas, fue un proceso arduo y tedioso que tomó muchos siglos. Tras de lograr purificar una cantidad razonable de cada uno se procedía, entre otras cosas, a determinar las condiciones bajo las cuales el elemento se encontraba en las fases sólida, líquida o gaseosa. Se aprendió que bajando la temperatura de un gas se convertía en líquido y que enfriándolo más el líquido se solidificaba. Así empezó el desarrollo de la tecnología de bajas temperaturas.<br />   Contar con un sibil (sitio fresco o frío para guardar comida o pieles), ciertamente era común desde tiempo inmemorial, por lo que sorprende que no fuera sino hasta el siglo XVIII cuando se desarrollaran los primeros procesos para enfriar artificialmente. De hecho, la primera máquina para producir hielo se construyó hasta 1755 por William Cullen. Sin embargo, fue el interés por licuar a todos los gases el que motivó el desarrollo de métodos para producir temperaturas cada vez más bajas.<br />   Al iniciarse el siglo XX, el helio se empezaba a obtener en cantidades apenas suficientes para ser estudiado en laboratorios muy especializados. A las temperaturas más bajas que entonces se podían producir (8ºK), el helio sólo podía mantenerse en forma de gas, lo que había generado una verdadera carrera internacional para poder lograr su licuefacción. Varios grupos de científicos de mucho prestigio trabajaron intensamente para lograr este objetivo. Finalmente, el 10 de julio de 1908, Heike Kamerlingh-Onnes (1853-1926) logró enfriar helio hasta licuarlo, en Leyden, Holanda. La temperatura que requirió alcanzar fue menor que 4ºK (-269ºC), y se encontró que la temperatura de ebullición del helio es de 4.2ºK. Con esa fecha podría darse la fe de bautismo a la criogenia (del griego kryos, frío y gennao, engendrar, generar frío), el estudio de las bajas temperaturas. Kamerlingh-Onnes fue honrado con el premio Nobel, en 1913, por haber producido temperaturas tan bajas y por los consecuentes descubrimientos sobre el comportamiento de la materia en estas condiciones.<br />   A partir de 1986, cuando J. Georg Bednorz y K. Alex Müller descubrieron superconductores con temperaturas mucho más altas que las usuales, en los laboratorios de IBM en Suiza, se inició una etapa de investigación que produjo más de 20 000 publicaciones en cinco años. Tomando en cuenta que, de superconductores con temperaturas inferiores a los 20º K, se habían descubierto unos con temperaturas cercanas a los 90º K, las posibilidades tecnológicas y económicas presagiaban un inusitado interés. Lo que no se esperaba era la explosión bibliográfica de dudosa calidad, que parece (y es) absurda, en vista de los escasos resultados realmente novedosos o valiosos que se han obtenido desde entonces. La fiebre inicial afortunadamente bajó, sin que hubiese subido la temperatura de los superconductores calientes y sin que se tenga un buen indicio de la teoría correcta, aunque cada vez hay más investigadores dedicados al tema de lo que la sensatez sugiere. Claro que, después de todo, hay un premio Nobel en juego.<br />   En resumen, no se sabe cómo producir superconductores con temperaturas mayores a los 125º K, el máximo registrado y confirmado a finales de 1991, y no parece haber indicios de una teoría que los explique.<br />   VI. 2. UN FLUIDO IDEAL QUE SÍ EXISTE<br />   Como sucede con los materiales superconductores, el helio presenta un comportamiento insólito cuando su temperatura es suficientemente baja, es decir, cuando se encuentra en la fase líquida. Otra vez, la naturaleza nos muestra su extraña cara cuántica. La superfluidez, como ahora se le llama al fenómeno que en forma exclusiva presenta el helio líquido, en cualquiera de sus variedades, fue descubierta 30 años después de la superconductividad y explicada 20 años antes.<br />   Una vez licuado el helio, la siguiente meta fue solidificarlo, cosa que nunca se pudo lograr a presión atmosférica. En la década de los veinte se construyó la curva de coexistencia líquido-sólido. Esto quiere decir que se encontraron los valores de la presión y la temperatura a los que el helio líquido se solidifica. A presiones altas se logró licuar y solidificar al gusto del investigador. Por ejemplo, en 1930, se determinó que el helio gaseoso se solidifica a una temperatura de 42º K si la presión es de 5 800 atmósferas, y que si ésta es menor de 25 atmósferas el helio jamás pasa a la fase sólida, aun a cero absoluto (sí se pudiese alcanzar); esto es lo que se llama un resultado asintótico o límite.<br />   Con diversos colaboradores, W. H. Keesom continuó la tradición holandesa de Kammerlingh-Onnes, en Leyden, trabajando a presión atmosférica con helio líquido y encontró que al seguir bajando la temperatura y llegar a 2.3º K, aparecía una nueva fase líquida del helio. Así, el gélido líquido que se producía del gas a 4.2º K fue rebautizado como helio I y a la nueva fase se le llamó helio II; a la temperatura en que ocurría la transformación (temperatura de transición) se le conoce ahora como el punto l (lambda).<br />   El helio, además de ser el único fluido que permanece como tal en el cero absoluto, hace trucos igualmente únicos cuando se encuentra con el disfraz de helio II.<br />   Se había observado que el helio II burbujeaba como cualquier otro líquido cuando se encuentra en ebullición. Al llegar al punto l el efecto desaparecía y quedaba una superficie en total reposo; había que agitar el sistema para convencerse de que aún se encontraba ahí. Al descubrir que era capaz de conducir el calor 200 veces más rápido que el cobre se pudo explicar el hecho anterior: la eficiencia de la conducción es tal que lleva el calor de las paredes a la superficie del líquido sin necesidad de aspavientos, como el burbujeo que los otros líquidos requieren, incluido el helio I. La dificultad era que no había forma de entender cómo podía conducir tan rápido; daba al traste con las ideas comunes y corrientes. Estas se salvaron a costa de ideas aún más exóticas.<br />   VI. 3. MEZCLAS CUÁNTICAS<br />   El elemento que llamamos helio, como ya vimos, viene en dos presentaciones isotópicas, el helio tres y el helio cuatro. A su vez, cuando este último se encuentra en la fase líquida recibe el nombre de helio I, si su temperatura está por encima del punto l, y helio II cuando está por debajo. Ahí no acaba la cosa.<br />   De acuerdo con la teoría de Landau, el helio II está formado por una mezcla de dos fluidos, conocidos como la componente normal y la componente superfluida. En el punto l todo el helio II es normal y conforme va disminuyendo la temperatura empieza a crearse la componente superfluida hasta que, a cero grados Kelvin, todo el helio II es superfluido. En cierto sentido, la parte normal es la que tiene temperatura y la superfluida siempre esta en el cero absoluto. De esta manera, si compramos unos litros de helio y los enfriamos a 1º K, tendremos un líquido en el que una pequeña parte es helio tres y la parte restante es helio cuatro, el que a su vez, hallándose en su forma de helio II, tiene una parte normal a 1º K y una superfluida a 0º K (ésta es la parte fácil).<br />   No hay que perder de vista que en realidad se trata de un solo fluido hecho de los mismos átomos y que la imagen de una mezcla es una analogía para interpretar quot;
hechos consumadosquot;
. Lo que sucede es que, al igual que la gente, los átomos van cambiando su comportamiento conforme baja la temperatura. A nadie le llama la atención que al poner agua en un congelador se convierta en hielo, aun sabiendo que está constituido por las mismas moléculas de agua (H2O); de algún modo, lo que sucede es que sólo se han organizado de otra manera.<br />   Según la teoría, el helio II presenta dos tipos de movimientos simultáneos e independientes, el del superfluido y el del normal. Mientras que para caracterizar un flujo común y corriente basta con determinar la velocidad en cada punto, para este pintoresco líquido hay que hallar dos velocidades en cada punto, la de cada componente de la mezcla. Se advirtió que sería un tanto raro y ahora es claro que no es nada intuitivo (excepto por el hecho de que las personas raras son frías). Las diferencias más notables entre las componentes de la mezcla son las siguientes. La componente superfluida no tiene viscosidad, se mueve sin problema alguno por cualquier rendija (capilar o capa delgada), y no transporta calor. Es el fluido ideal con el que soñaron los físicos y desearían utilizar los ingenieros. Por su lado, la componente normal es la que tiene todos los defectos, empezando por ser real. Se mueve sobre —¿dentro?— un fondo ideal absolutamente helado que no lo afecta y transporta calor en forma muy eficiente.<br />   Curiosamente, al pasar por la temperatura de transición superfluida, aparecen dos tipos de superfluido, el 3He-A y el 3He-B. Estos nuevos fluidos tienen la inesperada característica de tener textura, lo cual no adorna al otro superfluido conocido, el helio II. La razón para que aparezca esta singular característica es que los pares de Cooper pueden ser alineados por la presencia de agentes externos, como campos magnéticos o superficies, en forma parecida a los cristales líquidos.<br />   Sin entrar en detalles de lo que es un cristal líquido, casi todos hemos visto las gracias que hacen estos materiales; en los relojes y demás aparatos electrónicos modernos, que tienen lo que se llama carátula digital, hemos visto cómo aparecen y desaparecen zonas oscuras. Ahí hay un cristal líquido y lo que ocurre es que al hacer pasar una pequeña corriente a través de ellos se calientan, pasan por una transición y se orientan cambiando de color y textura. Algo análogo pasa con las variedades A y B de 3He superfluido. Los vórtices que aparecen en estos medios son verdaderamente extravagantes, más que los del 4He, y son los responsables (casi siempre) de la textura que tienen.<br />   Las teorías existentes sugieren la posibilidad de mezclas de estos helios superfluidos de hasta tres componentes y los comportamientos serían igualmente ajenos a toda intuición. Las temperaturas para lograr estas combinaciones de fluidos raros, cercanas a la milmillonésima parte de un grado Kelvin, son por ahora inalcanzables, aunque los quot;
criogenicistasquot;
 van acercándose. Como siempre sucede, hay más por decir y hacer que lo dicho y hecho. Este vago y extraño mundo que hemos esbozado de los superfluidos es más para sugerir un panorama que para describir un paisaje. Ciertamente hay otros comportamientos igualmente interesantes que se han descubierto (con sus correspondientes explicaciones teóricas) además de los que aquí hemos tratado. También, lo que es igualmente importante, sigue completamente abierta la puerta para hacer, descubrir y explicar.<br />   La pasión por buscar caminos nuevos en las artes y las ciencias es insaciable, sus fuentes son inagotables.<br />
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen
Fluidos Apellido De LíQuidos Y Gases Resumen

Weitere ähnliche Inhalte

Was ist angesagt?

Brazo hidraulico 1
Brazo hidraulico 1Brazo hidraulico 1
Brazo hidraulico 1ALE MUÑOZ
 
Tarea principio de pascal – práctica 3
Tarea principio de pascal – práctica 3Tarea principio de pascal – práctica 3
Tarea principio de pascal – práctica 3xuyus
 
informe sobre cohete hidrodinamico
informe sobre cohete hidrodinamicoinforme sobre cohete hidrodinamico
informe sobre cohete hidrodinamicoValentina Marchena
 
Fluidos
FluidosFluidos
FluidosEPFAA
 
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12 MOVIMIENTO OSCILATORIO LIBRO ALONS...
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12  MOVIMIENTO OSCILATORIO LIBRO ALONS...SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12  MOVIMIENTO OSCILATORIO LIBRO ALONS...
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12 MOVIMIENTO OSCILATORIO LIBRO ALONS..... ..
 
Medicion y errores en la medida
Medicion y errores en la medidaMedicion y errores en la medida
Medicion y errores en la medidaMargarita Patiño
 
Fisica.- Solidos: Dureza y Fragilidad
Fisica.- Solidos: Dureza y FragilidadFisica.- Solidos: Dureza y Fragilidad
Fisica.- Solidos: Dureza y FragilidadMarkusBlade
 
Leyes de kepler completo
Leyes de kepler completoLeyes de kepler completo
Leyes de kepler completoCarlosDMG
 
Dispersión de rayos X, neutrones y luz mediante fonones
Dispersión de rayos X, neutrones y luz mediante fononesDispersión de rayos X, neutrones y luz mediante fonones
Dispersión de rayos X, neutrones y luz mediante fononesJavier García Molleja
 

Was ist angesagt? (20)

Brazo hidraulico 1
Brazo hidraulico 1Brazo hidraulico 1
Brazo hidraulico 1
 
Tarea principio de pascal – práctica 3
Tarea principio de pascal – práctica 3Tarea principio de pascal – práctica 3
Tarea principio de pascal – práctica 3
 
Mapa conceptual fisica
Mapa conceptual fisicaMapa conceptual fisica
Mapa conceptual fisica
 
Mecanica fluidos-ppt
Mecanica fluidos-pptMecanica fluidos-ppt
Mecanica fluidos-ppt
 
MOMENTO DE INERCIA
MOMENTO DE INERCIAMOMENTO DE INERCIA
MOMENTO DE INERCIA
 
informe sobre cohete hidrodinamico
informe sobre cohete hidrodinamicoinforme sobre cohete hidrodinamico
informe sobre cohete hidrodinamico
 
Capilaridad
CapilaridadCapilaridad
Capilaridad
 
Fluidos
FluidosFluidos
Fluidos
 
La Dinamica
La DinamicaLa Dinamica
La Dinamica
 
La Teoría Cuántica de Max Planck
La Teoría Cuántica de Max PlanckLa Teoría Cuántica de Max Planck
La Teoría Cuántica de Max Planck
 
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12 MOVIMIENTO OSCILATORIO LIBRO ALONS...
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12  MOVIMIENTO OSCILATORIO LIBRO ALONS...SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12  MOVIMIENTO OSCILATORIO LIBRO ALONS...
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12 MOVIMIENTO OSCILATORIO LIBRO ALONS...
 
Medicion y errores en la medida
Medicion y errores en la medidaMedicion y errores en la medida
Medicion y errores en la medida
 
Fisica.- Solidos: Dureza y Fragilidad
Fisica.- Solidos: Dureza y FragilidadFisica.- Solidos: Dureza y Fragilidad
Fisica.- Solidos: Dureza y Fragilidad
 
Segunda ley de newton
Segunda  ley  de newtonSegunda  ley  de newton
Segunda ley de newton
 
Movimient circular uniforme
Movimient circular uniformeMovimient circular uniforme
Movimient circular uniforme
 
Apuntes de hidrostática
Apuntes de hidrostáticaApuntes de hidrostática
Apuntes de hidrostática
 
Historia de la luz (1)
Historia de la luz (1)Historia de la luz (1)
Historia de la luz (1)
 
Principio de pascal
Principio de pascalPrincipio de pascal
Principio de pascal
 
Leyes de kepler completo
Leyes de kepler completoLeyes de kepler completo
Leyes de kepler completo
 
Dispersión de rayos X, neutrones y luz mediante fonones
Dispersión de rayos X, neutrones y luz mediante fononesDispersión de rayos X, neutrones y luz mediante fonones
Dispersión de rayos X, neutrones y luz mediante fonones
 

Ähnlich wie Fluidos Apellido De LíQuidos Y Gases Resumen

Ähnlich wie Fluidos Apellido De LíQuidos Y Gases Resumen (20)

Fisica contemporanea
Fisica contemporaneaFisica contemporanea
Fisica contemporanea
 
Estado dela materia
Estado dela materiaEstado dela materia
Estado dela materia
 
Quimicacovaeb
QuimicacovaebQuimicacovaeb
Quimicacovaeb
 
Quimicacovaeb
QuimicacovaebQuimicacovaeb
Quimicacovaeb
 
Principio antrópico y finalismo en la naturaleza
Principio antrópico y finalismo en la naturalezaPrincipio antrópico y finalismo en la naturaleza
Principio antrópico y finalismo en la naturaleza
 
Biologia
BiologiaBiologia
Biologia
 
El Origen de la vida (Maricarmen alcala)
El Origen de la vida (Maricarmen alcala)El Origen de la vida (Maricarmen alcala)
El Origen de la vida (Maricarmen alcala)
 
clase1nutricion.pptx
clase1nutricion.pptxclase1nutricion.pptx
clase1nutricion.pptx
 
Fq1 u1 t1_contenidos_v02
Fq1 u1 t1_contenidos_v02Fq1 u1 t1_contenidos_v02
Fq1 u1 t1_contenidos_v02
 
TEORÍA ATÓMICO-MOLECULAR
TEORÍA ATÓMICO-MOLECULARTEORÍA ATÓMICO-MOLECULAR
TEORÍA ATÓMICO-MOLECULAR
 
LOS TEMAS 23docx.docx
LOS TEMAS 23docx.docxLOS TEMAS 23docx.docx
LOS TEMAS 23docx.docx
 
1quimica Materia Y Sus Propiedades
1quimica Materia Y Sus Propiedades1quimica Materia Y Sus Propiedades
1quimica Materia Y Sus Propiedades
 
Guia Introduccion a Qca I 2017.pdf
Guia Introduccion a Qca I 2017.pdfGuia Introduccion a Qca I 2017.pdf
Guia Introduccion a Qca I 2017.pdf
 
Dalton: el hombre que pesó los átomos
Dalton: el hombre que pesó los átomosDalton: el hombre que pesó los átomos
Dalton: el hombre que pesó los átomos
 
Breve historia de lo que somos
Breve historia de lo que somosBreve historia de lo que somos
Breve historia de lo que somos
 
40 diapositivas
40 diapositivas40 diapositivas
40 diapositivas
 
40 diapositivas
40 diapositivas40 diapositivas
40 diapositivas
 
MISHEL CHIRIBOGA
MISHEL CHIRIBOGA  MISHEL CHIRIBOGA
MISHEL CHIRIBOGA
 
La materia
La materiaLa materia
La materia
 
El origen de la vida 2
El origen de la vida 2El origen de la vida 2
El origen de la vida 2
 

Fluidos Apellido De LíQuidos Y Gases Resumen

  • 1. Fluidos apellido de líquidos y gases<br /> Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los más comunes y, como punto de referencia, los mantendremos en mente como prototipos de un fluido. Su ubicuidad les confiere su importancia. El manejo de los fluidos ha estado íntimamente ligado al desarrollo de la sociedad. No es de sorprender entonces que desde los inicios de la civilización la imagen del Universo incluyera a los fluidos como elementos primarios de su constitución; aire, agua, fuego y tierra son la versión clásica y medieval de gas, líquido, plasma y sólido, o sucintamente, fluidos y sólidos.<br /> Completar nuestra descripción y comprensión del comportamiento de los fluidos es, además de un fascinante juego, una imperiosa necesidad por manejar nuestro entorno. El aire y el agua son parte esencial de la vida en la forma que la conocemos. El transporte marítimo y aéreo depende de este conocimiento; también la agricultura, que no puede ya lograrse si sólo se depende de un buen clima, sino de sistemas de riego, vastos y eficientes, que permitan optimizar los recursos locales y suplir las deficiencias naturales. La predicción del clima y de sus más violentas manifestaciones, como huracanes y tornados, es mucho más que una curiosidad académica (aunque también lo es). Entender éstos y muchos otros problemas en los que los fluidos participan como protagonistas principales, requiere de una labor creativa y de un trabajo sistemático y sostenido. Los resultados los demanda la sociedad por razones culturales, estéticas y, especialmente, prácticas.<br /> Del inmenso proyecto general de la física nos ocuparemos de la parte que estudia los fluidos desde el punto de vista macroscópico, es decir, como los percibimos en forma más o menos directa a través de nuestros sentidosII. ¿Qué son y como los describimos?<br /> II. 1. UNA INDEFINICIÓN PRECISA<br /> La materia, es decir, todo lo que nos rodea y que percibimos a través de los sentidos, viene en tres presentaciones aparentemente distintas y exclusivas: en sólido, en líquido o en gas. Buscando características genéricas, comunes, y las razones para que éstas se manifiesten, llegamos al estudio de la materia en sus diferentes estados de agregación (formas de presentación), que en última instancia hemos reducido a sólidos y fluidos.<br /> “Un fluido es un material que fluye”. Así, además de risa, la definición no da más que pena y sorprendería que pudiera servir para caracterizar a una sustancia. Una sustancia que bajo la acción de una fuerza cortante, por pequeña que ésta sea, se deforma sin límite se dice que fluye. ¡Un fluido es un material que fluye! Ahora ya no parece tan tautológica la definición. Así, el mar bajo la acción del viento, que produce una fuerza cortante sobre su superficie, se deforma sin límite, se mueve continuamente sin lograr frenar al viento por tenue que éste sea: la deformación resultante es la que percibimos como oleaje, hipnotizando a unos y mareando a otros.<br /> A las rarezas las tratamos en forma especial, en subgrupos, según las circunstancias. Materiales tan familiares como el vidrio, la pintura y el pavimento pertenecen a esta clase exótica de materiales. El vidrio, que se comporta como sólido cuando lo estudiamos en un laboratorio (o cuando una pelota de béisbol es bateada en la dirección equivocada y va a dar precisamente a…), resulta ser un fluido cuando los tiempos de observación son suficientemente largos. Se puede ver en los emplomados de las viejas catedrales góticas que la parte inferior es mucho más gruesa que la superior. La razón es que el vidrio ha fluido, por cientos de años bajo la acción de la gravedad.<br /> También hay sustancias que presentan comportamiento simultáneo de fluido y sólido. Su tratamiento requiere de consideraciones particulares que caen en el área conocida como la reología. Materiales de este tipo, con propiedades que genéricamente son llamadas visco elásticas, son por lo general soluciones con gran cantidad de partículas (polímeros) disueltas en ellas. Casos típicos son las resinas, los plásticos, múltiples derivados del petróleo y diversos tipos de champú (el aire de la ciudad de México parecería un buen candidato).<br /> II. 2. LOS ÁTOMOS Y LA VENTAJA DE IGNORARLOS<br /> La concepción atomística de la naturaleza, según la cual todas las cosas están constituidas por elementos indivisibles e inmutables, se remonta al origen de nuestra civilización.<br /> En la antigua Grecia es donde aparece no sólo la idea general del atomismo, sino las diversas formas que éste adquiere. La existencia de los átomos y del vacío que los rodea, como una necesidad en la explicación de la constitución del mundo, es planteada por razones filosóficas, manteniendo este carácter hasta el renacimiento europeo.<br /> Para Demócríto la naturaleza estaba formada de un número infinito de corpúsculos invisibles por su tamaño, que diferían entre sí sólo en forma, dimensión y estado de movimiento. Comparte con Parménides la idea de un Universo cualitativamente inmutable, pero difiere de éste en cuanto al aspecto cuantitativo, pues atribuye los cambios a la multiplicidad de maneras en que estos átomos se combinan, manteniendo su naturaleza.<br /> En la misma época, Empédocles propone la idea de un Universo formado de cuatro elementos básicos, aire, agua, tierra y fuego, que al mezclarse en distintas proporciones generan la inmensa variedad observada. Este modelo, que domina el panorama a todo lo largo de la Edad Media. Estas ideas, compartidas y desarrolladas por Platón un siglo más tarde, y la concepción de su discípulo, Aristóteles, en torno a la desaparición de las partes al formar un todo, impidieron el florecimiento y desarrollo del atomismo en la civilización helénica.<br /> En las décadas alrededor de 1600, mientras Galileo Galilei y Francis Bacon establecen las bases del método científico o experimental, Pierre Gassendi revive el atomismo clásico para una época mas madura. Daniel Sennert y Robert Doyle, aceptando la idea atomista, le dan su verdadera dimensión al buscar su contenido en la experimentación. Así, Boyle logra descartar en forma definitiva el sobresimplificado esquema de los cuatro elementos. Un siglo más tarde, Antoine Laurent de Lavoisier desarrolla la metodología del análisis químico y define en la práctica a los elementos químicos. La generación que le sigue establece los fundamentos de la teoría atómica moderna, con la obra de John Dalton, al identificar elementos químicos con átomos y proponer las formas en que éstos se combinan para formar compuestos.<br /> Cada etapa muestra los cambios indispensables para alcanzar la madurez. Si bien los átomos, concebidos como constituyentes últimos de la materia, han sido sustituidos por las partículas elementales, como el electrón y el neutrino, se ha mantenido el atomismo que imaginara Demócrito. Por otro lado, se ha perdido el carácter inmutable de aquellos átomos de raseti y de Dalton; los nuevos átomos, en el verdadero sentido etimológico del término, pueden combinarse para disolverse en luz. Creemos tener una idea bastante cercana y correcta sobre estos pequeños bloques universales con los que se construye todo lo que observamos. Otro es el problema de cómo éstos se combinan para formar átomos, éstos a su vez formar moléculas y éstas agruparse para conformar un elote. No deja de llamar la atención que lo que damos ya como un hecho, la existencia de los átomos, sea en realidad algo que no se puede intuir fácilmente. Es difícil imaginar que el humo de un cigarro esté formado de moléculas relativamente complejas o que al aire que respiramos lo componen moléculas simples separadas unas de otras millares de veces la distancia que caracteriza su tamaño. Para tener una idea de las dimensiones atómicas tendríamos que imaginar todo amplificado, de manera que por ejemplo una manzana fuese del tamaño de la Tierra. ¡Un átomo de la manzana sería entonces del tamaño de una canica! Si toda esta concepción es cierta, y todo parece indicar que así es, la tarea de explicar, por ejemplo, el movimiento del agua al salir de un tubo, en términos de átomos, parece equivalente a tratar de construir la Torre de Babel.<br />II. 3. APEROS: FRASCOS Y TUBOS, IDEAS, MATEMÁTICAS Y… FLUIDOS<br />El estudio de un fenómeno, o un grupo de ellos, se inicia con una serie de observaciones que permiten apreciar cuáles son los aspectos más importantes, los que gobiernan el proceso. En el fondo, lo que se busca es la forma de simplificar el análisis, aislando las causas que determinan el efecto principal e ignorando aquellas que desempeñan un papel secundario. Establecer cuáles cantidades y la forma en que éstas contribuyen es una parte medular del proceso de entendimiento. Encontrar las razones por las que se combinan de esa manera, usando los principios o leyes correspondientes, es otra etapa igualmente difícil e importante. La última parte, la esencia misma del conocimiento científico, es la predicción. Con base en el estudio previo debe ser posible anticipar el resultado de nuevas observaciones al cambiar de diversas formas el arreglo inicial del fenómeno.<br />Lo que sí podemos extraer son algunos de los elementos que parecen siempre estar presentes en una u otra forma en el quehacer científico y en especial en la física; este problema, ciertamente abierto, es materia de la teoría del conocimiento, la epistemología, y ha sido objeto de estudio y reflexión de filósofos e investigadores.<br />Un primer aspecto es la concepción filosófica que el observador tiene de la naturaleza y del conocimiento que sobre ésta puede adquirir; aquella puede ser explícita o tácita. En este mismo nivel hay una serie de principios filosóficos y de reglas lógicas que el investigador establece, usa y que, normalmente, van implícitas en su trabajo. Así, su contribución diaria puede sobreentender un materialismo que da por hecho la existencia de un mundo objetivo independiente de él, una convicción total en el principio de causalidad que justifica buscar el origen de un efecto, o el uso irrestricto de la lógica clásica, que sin temor al abuso se omiten al discutir de política. En la parte que toca a las observaciones mismas, empezamos por elaborar un modelo a priori (antes de empezar) sobre el fenómeno al separarlo en partes, el sistema y sus alrededores, y asociarle una regularidad que nos asegure que al repetirse el fenómeno podremos observar y medir lo mismo.<br />Así, con base en el ingenio, la minuciosidad sistemática, la intuición y la experiencia, como en cada etapa en la dilucidación del fenómeno, se escogen las cantidades relevantes. Acto seguido se determina la forma de medirlas, las posibles fuentes de error y se procede a su cuantificación, estableciendo la consistencia interna y la estadística de los datos obtenidos. Este proceso lleva a la elaboración de expresiones (fórmulas) que vinculan a los símbolos entre sí, sintetizando grandes cantidades de datos. Las reglas para asociar números a símbolos y para manipular y combinar estos últimos constituye el lenguaje que llamamos matemáticas.<br />Las matemáticas son una disciplina teórica que va más allá de un lenguaje o una herramienta, aunque vistas como tales permiten, en manos educadas y hábiles, forjar una imagen abstracta, extremadamente útil y especialmente bella del universo concreto que percibimos. Una virtud de las imágenes así logradas es su capacidad de hablar, a quien las sabe oír, sobre lo que es posible y lo que es probable.<br />La física funciona más o menos como lo hemos esbozado. Al construir una teoría se parte de algunos conceptos primitivos que se dejan sin definir o se apela a la intuición para introducirlos, como la masa, el espacio y el tiempo. Después, se definen cuidadosamente cantidades compuestas, como la densidad, la velocidad y la presión, y acto seguido se postulan ciertas proposiciones (basadas en experimentos), los axiomas o leyes fundamentales, como verdaderas y universales. Su inmensa virtud es que, ante la duda, basta con llevar a cabo un experimento para constatar su validez. A partir de los axiomas se deducen entonces una serie de proposiciones o teoremas que, posteriormente, llegan a ser consecuencias no triviales y lejanas de aquellos postulados originales. En muchos casos los teoremas son formulados como conjeturas basadas en la intuición o como resultado de un experimento. El reto en estas circunstancias es encontrar el procedimiento para deducirlo a partir de los axiomas: encontrar la explicación completa del fenómeno a partir de las leyes fundamentales de la teoría.<br />Para construir un aparato teórico que nos permita entender y explicar el movimiento de los fluidos y de los objetos inmersos en ellos, lo cual observamos todos los días, es necesario introducir tres elementos como punto de partida. El primero es el de los conceptos primitivos de masa, espacio y tiempo, el segundo es el constituido por las cantidades (variables) que usamos para caracterizar y describir a un fluido cualquiera y el tercer elemento es el marco de referencia adecuado para determinar estas variables.<br />El espacio es el escenario que usamos para localizar o ubicar al fluido o a una parte de éste.<br />El segundo punto es más complicado y tiene que ver con cuántas y cuáles cantidades es necesario disponer para contar con una descripción completa y exhaustiva de un fluido.<br />Finalmente, para concluir con los preparativos que nos permitan entrar en el tema, vamos a introducir las variables dependientes, los campos, que nos facilitan la descripción de diversos procesos y la discusión de los principios subyacentes. Dividimos en dos clases a estas variables, los campos escalares y los campos vectoriales. Los campos escalares son relativamente sencillos y los conocemos por la práctica que adquirimos al habitar nuestro planeta. Su especificación en cada punto está dada por un número de acuerdo con una escala universalmente aceptada. Una gráfica o una tabla de datos correspondientes cada uno a puntos distintos, nos da toda la información espacial del campo. Si éste cambia con el tiempo se necesita una tabla para cada tiempo. Los campos escalares usuales son la densidad, la temperatura y la presión, que representamos por r, T y p, respectivamente. El otro campo escalar que usaremos es la presión y, como se dijo en la sección II. 1, está definida como la fuerza normal que actúa sobre un área dada. Si la misma fuerza normal actúa sobre dos áreas distintas, la presión es menor sobre el área mayor. Como ilustración imaginemos un objeto cuyo peso es suficiente como para que al ponerlo encima de un huevo éste se aplaste sin remedio. Siempre podemos poner suficientes huevos como para que el peso se reparta entre todos, de modo que la fuerza que recibe cada uno no exceda su “factor de aplastamiento”. Al distribuirse la fuerza sobre un área mayor, la presión es menor.<br />III. UNA HISTORIA DE LAS IDEAS<br />Una historia no es sólo una secuencia de nombres, fechas, hechos y las anécdotas que los conectan. Es más bien una explicación e interpretación de éstos a partir de hipótesis fundamentadas y basadas en patrones globales del comportamiento; en nuestro caso es la tarea de los profesionales del campo, los historiadores de la ciencia. Más que evocar una historia, lo que haremos será una visita parcial a través del tiempo para recordar pasajes exquisitos del desarrollo del pensamiento humano. Así, pasaremos por algunos aspectos que costaron mucho entender o manejar, por ciertos puntos sencillos y prácticos que nos dejan sospechar las peculiaridades de un fluido y otros más bien curiosos o simplemente divertidos, que aparecen distribuidos en el tiempo y en diferentes sitios, lo cual les da una perspectiva que, al recordar las circunstancias culturales, políticas, sociales o económicas, permite intuir la historia.<br />III. 1. SOBREVIVENCIA, MAGIA, NECESIDADES Y LUJOS<br /> Hasta hace aproximadamente 100 000 años el hombre seguía tratando de acostumbrarse a vivir bajo los árboles. El paso de recolector de frutos, que afortunadamente no hemos abandonado del todo, al del cazador, fue muy largo y es difícil intuir siquiera cómo se llevó a cabo. En este paso inventó y descubrió múltiples utensilios que le hicieron más fácil su existencia en un medio ajeno y hostil que luego dominó y, diríamos ahora, casi se acabó. Inventó la rueda mucho después del vestido y descubrió el fuego antes que aquélla. Desarrolló armas para subsistir, descubrió después el bronce y, hace unos 10 000 años, la agricultura. Probablemente aprendió a manejar los fluidos en forma circunstancial en este proceso. Los primeros que se estaban ahogando por humo dentro de una cueva sacaron al fuego a la intemperie o se buscaron una cueva con el techo más alto, y aprendieron que el aire caliente sube, pero sin intuir en ello el principio de la flotación. Los primeros navegantes tal vez surgieron de una poca afortunada pérdida de equilibrio en la orilla de un río y del fortuito paso de un tronco en la vecindad inmediata. También podemos imaginar que, al observar que ciertos objetos flotaban en un río, a más de uno se le ocurrió aprovechar el hecho para viajar río abajo y, con suerte, al otro lado.<br /> El proceso que va desde arrojar piedras y palos, que a más de una presa sólo debe haber irritado lo suficiente como para comerse al cándido ancestro, hasta la invención del mazo y, mucho más tarde, hace unos 30 000 años, el arco y la flecha, comprende múltiples pruebas e insólitas experiencias. Bajo la presión de la supervivencia el hombre aguzó el ingenio para adaptarse y manejar su ambiente que, gústele o no, lo dominan los fluidos.<br /> En esta etapa de la protohistoria, que abusivamente catalogamos de supervivencia, se hicieron obras notables destinadas al riego. Las necesidades agrícolas de las culturas que florecieron en Mesopotamia y Egipto, al menos 4000 años a.C., llevaron a diseñar y construir presas y diques, cuyos restos aún pueden apreciarse en las márgenes de los correspondientes ríos. Vestigios semejantes, de tiempos casi tan remotos, fueron descubiertos en las riberas de ríos en la India y la China. La construcción de canales para riego, transporte y surtido de agua a las grandes metrópolis de entonces confirma la relación directa entre el nivel de una civilización y la posesión de una tecnología para mantenerla; en particular, la relación con el agua.<br /> El paso de la información en forma oral, de una generación a otra, hizo que gran parte de ella se perdiera en el tiempo. Por otro lado, algunos instrumentos y tal vez sus principios se manejaban con el más meticuloso sigilo por quienes detentaban el poder político o religioso, o ambos, como usualmente sucedía. Los portentos exhibidos en los templos egipcios para mantener la fe, mostrar el beneplácito de los dioses o dejar ver la ira divina, se lograban usando mecanismos hidráulicos ocultos, empleando aire o agua como vehículo; elevar objetos, desplazarlos y, con ingenio, desaparecerlos, fue una práctica desarrollada en ciertas esferas no exclusivas a los cultos a Ra.<br /> Desde el remoto y oscuro pasado hasta el florecimiento de la cultura helénica, el hombre acumuló un vasto conocimiento práctico sobre el comportamiento de los fluidos. De los complejos sistemas de riego a las elaboradas embarcaciones propulsadas por viento y de las aerodinámicas flechas y lanzas, al sifón y la clepsidra..<br /> Las extensas guerras de conquista de Alejandro Magno permitieron a la civilización occidental enriquecerse con el legado asiático. Alejandría sustituyó a Atenas y amalgamó la cultura de la época, resumiendo el conocimiento previo en su legendaria biblioteca.<br /> III. 2. DE LA METAFÍSICA A LA FÍSICA<br /> Los diez siglos que siguen a la caída del Imperio romano y que gestan la aparición de una brillante era en la historia de nuestra civilización, sirven para consolidar el sistema económico feudal y el poder de la iglesia cristiana, asimilándose el legado filosófico griego. Este último aspecto llegó a su climax con la aristotelización del cristianismo por Tomás de Aquino en el siglo XI. La incorporación de las matemáticas, la lógica, la metafísica y la astronomía griegas a la enseñanza en las “universidades” medievales, que fundara Carlomagno en el siglo VIII, llevó a la formulación de la educación escolástica basada en las siete artes liberales agrupadas de la siguiente manera: el trivium (gramática, lógica y retórica) y el quadrivium o artes matemáticas (aritmética, astronomía, geometría y música).<br /> En un siglo de notable esplendor sobresale un hombre que se destacó en todas y cada una de las diversas actividades en las que estuvo interesado. Su universalidad sólo es igualada por su profundidad y calidad. Leonardo da Vinci (1452-1519), en cuanto a la ciencia y a los fluidos se refiere, marca el siguiente paso después de Arquímedes.<br /> De la gran cantidad de observaciones y experimentos que llevó a cabo sobre el comportamiento de los fluidos, Leonardo obtuvo resultados cuantitativos y generalizaciones sorprendentes que no fueron apreciadas sino mucho después, ¡algunas hasta el siglo XIX!<br /> Encontró que el aire y el agua tienen un apellido común. Al comparar en forma sistemática los movimientos de masas de aire (vientos) y agua (estanques, ríos y mares) intuyó, citándolo en forma recurrente, los elementos comunes de su comportamiento.<br /> Al observar el movimiento de aguas en ductos, canales y ríos, descubrió y formuló en forma cuantitativa uno de los principios fundamentales en la mecánica de los fluidos: el principio de continuidad o de conservación de la masa. Si bien es cierto que al menos desde la época de Arquímedes se sabía que el agua que entra por el extremo de un tubo sale por el otro, la relación entre este hecho y la descarga era si acaso sospechada, aun por los constructores romanos. La descarga es la cantidad de fluido que atraviesa una sección de un tubo o de un canal por unidad de tiempo. Por ejemplo, el número de litros por segundo que pasa por cualquier parte de un tubo, cuya sección sea variable, es siempre el mismo.<br /> III. 3. DEL HORROR AL VACÍO, AL AGUA SECA<br /> Es claro que no puede culparse a Aristóteles del estancamiento intelectual que siguió a su muerte. Fue la dogmatización de sus ideas y la exclusión de su actitud crítica y dinámica, que predicó y practicó, lo que casi paralizó la evolución del conocimiento.<br /> La crítica, no es de sorprender, fue iniciada por Galileo. La generación que le sucedió la continuó y la resolvió.<br /> El compañero inseparable de Galileo en los últimos tres meses de su vida fue Evangelista Torricelli (1608-1647). Tras de extender algunos trabajos de aquél en dinámica de proyectiles y de generalizar en forma brillante parte de la obra de Arquímedes, fue invitado a Florencia por el anciano Galileo para discutir y escribir sus últimas ideas. Así, Torricelli se vio expuesto a muy variadas especulaciones y proposiciones que, en su desafortunadamente breve carrera científica, desarrolló al suceder al maestro en su cátedra de matemáticas.<br /> Torricelli se ocupó de diversos problemas en forma teórica y experimental. En el área de fluidos destacan sus estudios sobre el flujo de chorros que salen por el orificio de un recipiente, su descubrimiento del principio del barómetro de mercurio y su uso en el estudio de la presión atmosférica. Con estos trabajos logró, entre otras cosas, acabar con el mito de la imposibilidad del vacío. Uno de sus experimentos consistió en demostrar la existencia de la presión atmosférica y la forma de crear un vacío. Blaise Pascal (1623-1662) fue quien, repitiendo y extendiendo los experimentos de Torricelli, dio una clara explicación de las observaciones. Al darse cuenta de que los experimentos básicos podían ser explicados por igual en términos de la presión atmosférica en vez de en términos de un parcial horror al vacío, llevó a cabo un experimento de vacío dentro de otro vacío. En el proceso de estudio de la presión atmosférica Pascal inventó la prensa hidráulica, descubriendo el principio físico subyacente. Según éste la presión en un fluido actúa por igual en todas las direcciones; conocido como el principio de Pascal, es uno de los dos axiomas fundamentales de la hidrostática. El otro es el principio de Arquímedes. A los 31 años de edad y siendo una celebridad por sus variadas contribuciones en física y matemáticas, Pascal se convirtió en asceta; dedicó sus últimos ocho años de vida a la teología con la misma intensidad que dedicara antes a la ciencia.<br /> Unos días antes del primer aniversario de la muerte de Galileo, en el pueblito inglés de Woolsthorpe, nació Isaac Newton (1642-1728). Como Da Vinci en su época, la luz de Newton brilla por encima del estrellado cielo de sus contemporáneos.<br /> Característico de la revolución científica del siglo XVII, y en la mejor tradición cartesiana de la época, partió de la base de un universo real cuyo comportamiento podía y debía ser explicado solamente en términos de sus elementos y sus relaciones. Sobre esta base filosófica desarrolló la herramienta matemática requerida y formuló las leyes de la mecánica. Su trabajo Philosophiae rasetic Principia rasetica, publicado hasta 1687, es, además de su obra maestra, uno de los trabajos más importantes de toda la ciencia moderna.<br /> La contribución de Newton a los fluidos fue múltiple y a niveles muy diferentes. Abarcó desde sus fundamentos, en forma indirecta, hasta los meticulosos experimentos que llevó a cabo sobre vórtices (remolinos) y viscosidad (fricción interna).<br /> Desde el punto de vista general, el marco teórico, el aparato matemático y las leyes físicas que Newton estableció, fueron, y siguen siendo, los ingredientes esenciales de la teoría de los fluidos.<br /> III. 4. EL SIGLO SINCRÉTICO<br /> En los cien años comprendidos entre 1750 y 1850 se sentaron las bases teóricas y experimentales de la mecánica de los fluidos. Ese siglo sirvió para resumir, ordenar y extender el conocimiento que sobre los fluidos se había acumulado durante miles de años. Desde entonces hasta la fecha la tarea ha sido la de extraer de estos principios, formulados en forma matemática, la información necesaria para poder entender y predecir el comportamiento de los fluidos.<br /> En la primera mitad de este notable periodo aparecieron, junto a las históricas obras de carácter teórico, una serie de memorias clásicas de cuidadosos trabajos experimentales. Destacan el veneciano Giovanni rase (1683-1781), el inglés John Smeaton (1724-1792) y la escuela francesa, en particular Henri de Pitot (1695-1771), Antoine Chézy (1718-1798), Jean Charles de Borda (1733-1799), el mismo D’Alambert, Charles Bossut (1730-1814) y Pierre Louis George DuBuat (1734-1809).<br /> El periodo de gestación asociado a los últimos cincuenta años del siglo XVIII no se limitó, desde luego y antes bien al contrario, a los fluidos, a la parte académica o a la intelectual. La sociedad estaba fraguando una lucha contra el hambre, contra la injusticia y por la libertad e igualdad. Así, se entiende la intensa actividad que se aprecia en los fluidos; nada sorprende pues que Lagrange visitara a Voltaire a instancias de D’Alambert y que este último dirigiera y participara en una extensa obra de coordinación y planeación de vías fluviales, navegación y canalización en toda Francia. Con la segunda etapa, correspondiente a la primera mitad del siglo XIX, concluye el nacimiento de la mecánica de los fluidos. Mucho se ha hecho desde entonces y mucho, seguramente mejor, habrá de hacerse en el futuro. La criatura nació y creció, llegando a su infancia al empezar el último siglo del milenio. Veamos cómo acabó de formarse y qué dones (y defectos) trajo al mundo. Para hablar de su madurez habrá que esperar, al menos, un ratito.<br /> Desde el punto de vista experimental, el siglo XIX se inició con una sólida tradición. Se contaba con una gran variedad de técnicas y métodos muy confiables y, en consecuencia, de resultados razonablemente precisos, en especial sobre la resistencia de obstáculos a un flujo. La hidráulica había avanzado en forma casi independiente de la hidrodinámica teórica. En cierto sentido, caminaban por veredas distintas, aunque paralelas, compartiendo problemas y perspectivas pero difiriendo en métodos, prioridades y lenguaje.<br /> En 1821 se presentó ante la Academia de Ciencias, en París, un trabajo de Claude Louis Marie Henri Navier (1785-1836), ingeniero de formación y vocación. En éste se deducían las ecuaciones fundamentales de la elasticidad, que hoy en día llevan su nombre, para describir el equilibrio y las vibraciones en un sólido. Estas resultaban de un análisis puramente matemático en el que los átomos, entonces entes hipotéticos, se imaginaban como partículas que interactuaban por medio de resortes. No sorprende que fuese Navier el primero en construir un puente colgante a partir de un proyecto y de un cálculo; previamente las construcciones se hacían sobre bases empíricas.<br /> Las ideas de Navier sobre la atracción y repulsión entre las moléculas, como origen de la viscosidad, fueron seguidas y ampliadas por dos excelentes matemáticos de la época: Simeon Denis Poisson (1781-1840) y Agoustin Lonis de Cauchy (1789-1857). El carácter especulativo de las hipótesis “microscópicas” que usaron le da a sus trabajos en este particular un interés sólo histórico.<br /> Sería difícil hallar a un científico cuyo nombre esté asociado a más resultados que el de Stokes. En matemáticas hay un importante teorema que lleva su nombre, en fluidos las ecuaciones básicas llevan su apellido, al igual que una ley de movimiento para esferas y una paradoja; en óptica, unas líneas espectrales y el corrimiento de la luminiscencia son sus hijas registradas y bautizadas.<br /> Con el establecimiento de las ecuaciones básicas, el éxito de las primeras e importantes aplicaciones de ellas, el gran cúmulo de precisas observaciones y el desarrollo de muy diversos métodos de investigación experimental y analítica, la ciencia de los fluidos tomaba la forma que tiene tal y como hoy la conocemos. Los cimientos del trabajo de las generaciones futuras estaban completos.<br /> III .5. MATRIMONIO POR CONVENIENCIA<br /> Una visión antropomórfica de la ciencia de los fluidos nos puede ayudar a entender la situación.<br /> Se podría pensar que con las bases de la teoría bien establecidas, una sistemática educación daría a la criatura una madurez de brillante productividad. Como suele suceder, lo que podía salir mal, salió mal. Apareció un problema que hasta la fecha no ha sido resuelto satisfactoriamente: las matemáticas necesarias para resolver las recién descubiertas ecuaciones (no lineales) no se habían desarrollado (¿inventado?, ¿descubierto?...). Así, al comenzar la segunda parte del siglo XIX , los interesados en la hidrodinámica se encontraron con un problema claramente planteado pero con insuficientes herramientas para resolverlo.<br /> No es de sorprender que el mismo Stokes iniciara uno de los enfoques para abordar el problema. “Si no puedes agarrar al toro por los cuernos, ¡corre!”, dice un adagio azteca, y así lo hizo. Argumentado cuidadosamente, simplificó las ecuaciones de manera que pudiera domesticarlas y sacarles provecho. Los resultados que obtuvo por la aproximación tuvieron tal éxito que hoy en día se siguen explotando estas mismas ecuaciones que, desde luego, también llevan su nombre. Su análisis del movimiento de una esfera en un líquido sigue siendo uno de los resultados clásicos de la mecánica de fluidos; la expresión que relaciona a la fuerza que arrastra a la esfera con el producto de la velocidad de la corriente el radio de la esfera y la viscosidad del fluido, se conoce como la ley de Stokes. La utilidad de un resultado tan “simple” como éste ha sido amplia y de la más diversa índole.<br /> Vale la pena hacer notar que el problema aún está lejos de resolverse. Una gran cantidad de trabajos experimentales sobre el flujo en tuberías se sigue publicando en la bibliografía especializada; innumerables tablas empíricas se han publicado para su uso en el diseño de sistemas de drenaje, plantas industriales de diferentes características, etc., y complicadas relaciones entre parámetros del flujo siguen siendo elaboradas. Para las condiciones que se dan en la práctica, el movimiento de un líquido es sumamente complicado y la teoría ha sido, hasta la fecha, incapaz de dilucidar el problema. Las predicciones teóricas del siglo XIX, desde luego aproximadas, han podido mejorarse muy poco.<br /> Un protagonista singular de esta época es Osborne Reynolds (1842-1912). Estudiando casi los mismos problemas que Boussinesq, cultivó el otro lado de la relación que nos ocupa, la hidráulica. Aun así, cada uno destacó en la contraparte; Reynolds se sublimó en la hidrodinámica. Sus meticulosos trabajos experimentes eran delicadamente contrapunteados con resultados analíticos; algo parecido a lo que Mozart hubiese logrado si en lugar de componer su exquisita e insuperable música se hubiera concentrado en jugar con charcos y la teoría correspondiente. ¡De lo que se perdieron los fluidos y lo que ganamos todos!<br /> Reynolds, prototipo del profesor distraído, introdujo conceptos y métodos que siguen siendo aprovechados por quienes nos ganamos el pan con los fluidos. Como “para muestra basta un botón”, caracterizó la forma en que un fluido pasa de un estado de movimiento laminar (regular) a uno turbulento (caótico), introduciendo, entre otras cosas, un parámetro adimensional conocido ahora como el número de Reynolds.<br /> La idea básica es como sigue. Una madre ingeniosa decide jugar en la cocina de su casa con unos popotes. A pesar de las protestas de su familia, averigua cómo se mueve el jugo de mandarina en su “dispositivo experimental” y, como es de suponerse publica un artículo sobre el tema. Meses más tarde y en otro país, en una oficina con poca luz, un ingeniero del Departamento de Aguas debe rediseñar el sistema de drenaje de un barrio, dentro del cual se encuentra su casa; es decir, le interesa que funcione. ¿Le sirve lo que escribió la susodicha mamá? Ella trabajó con el jugo de un cítrico, tubos de plástico y una sana curiosidad; él debe hacerlo con… otros materiales. Gracias a la dama y a Reynolds, el ingeniero puede evitar hacer pruebas costosas y, tal vez, desagradables.<br /> Al iniciarse el siglo XX, el cortejo entre la hidrodinámica y la hidráulica parecía no tener futuro alguno; los intereses comunes o bien se expresaban en lenguajes diferentes o parecían inútiles o muy complicados. Las obras de rase Lamb y de A. A. Flamant ilustran bien la situación; la primera cubre los aspectos teóricos y la otra los experimentales, con poco material común. La hidrodinámica se interesaba principalmente en los flujos invícidos o ideales, lateralmente en los flujos viscosos laminares y no hacía caso de los flujos turbulentos, siendo esta última la característica más importante para la hidráulica. Así, las excelentes virtudes de una disciplina eran ignoradas por la otra.<br /> En estas condiciones, en 1904, se presentó un trabajo experimental, en un congreso de matemáticas, en la ciudad de Heidelberg, Alemania. El autor, un brillante ingeniero llamado Ludwig Prandtl (1875-1953), iniciaba una conspiración para unir a la caprichosa pareja. A raíz de esa participación, Prandtl fue invitado a trabajar y colaborar en uno de los ambientes más estimulantes y fértiles para la investigación de que se tiene memoria. Con ese trabajo, titulado Sobre el movimiento de fluidos con viscosidad pequeña, empezaba una profunda revolución mecánica de fluidos.<br /> Las contribuciones sobresalientes de Prandtl no quedaron ahí, ni fue éste el último de los brillantes investigadores en el tema; algunos de los que faltan, varias ideas y métodos, como las que abordan la turbulencia o el uso de las computadoras, aparecerán más adelante.<br /> V. LA TURBULENCIA<br /> Al iniciarse la década de los años setenta se abrieron varias perspectivas teóricas y experimentales de muy diversa índole. Cada una por separado parecía ser la adecuada para atacar en forma definitiva el problema. Cada una de ellas inició una etapa de intenso, extenso y excitante trabajo en todo el mundo. Combinando ideas y métodos recién desarrollados en las matemáticas, desde las muy abstractas como la topología diferencial, hasta las más prácticas como el análisis numérico (aunado a la construcción de computadoras cada vez más grandes y veloces), se revisaron experimentos clásicos desde una nueva perspectiva y se encontraron elementos que estaban a la vista, pero que no se habían buscado o que simplemente se ignoraban invocando diversos argumentos. También, nuevas técnicas experimentales y cuidadosas observaciones hicieron cambiar algunas ideas preconcebidas y el enfoque teórico que sistemáticamente se había estado siguiendo. Así, se revisaron las teorías y repitieron experimentos. Si bien cada una de las nuevas ideas y métodos, teóricos y experimentales, siguen en una efervescente actividad, el optimismo inicial sobre la comprensión del fenómeno de la turbulencia ha ido decayendo con el tiempo en vista de los exiguos resultados específicos. Muchas cosas han quedado más claras y los horizontes por explorar se han abierto en forma sorprendente.<br /> Algo claro e irreversible que sucedió a lo largo de este proceso, fue el inicio de un cambio en la actitud de la mayoría de los físicos; en los que no se ha dado es porque no lo requerían o porque todavía no lo pueden aceptar.<br /> Todavía hace poco se decía que las leyes básicas habían sido encontradas en la primera mitad del siglo XX y que con esto se cerraba una etapa gloriosa del pensamiento humano (algo parecido se pensaba hace cien años con la mecánica newtoniana y el electromagnetismo de Maxwell). Aun suponiendo que conocemos estas leyes fundamentales, en forma clara y precisa, lo que sería decepcionantemente pretencioso, algo ha cambiado. Se ha puesto de manifiesto que esto no es suficiente y que para explicar el mundo se requiere mucho más.<br /> El argumento es más o menos el siguiente. La dirección opuesta al reduccionismo, creciendo en grado de complejidad, ha traído sorpresas que muy pocos preveían. A partir de casi cualquier punto en esta dirección aparecen nuevos fenómenos, ricos y variados, con elementos ausentes en el nivel anterior, más sencillo; se generan nuevas simetrías y emergen formas nuevas de organización. Si a un nivel de descripción parece sólo haber desorden, al siguiente aparece orden en el caos, como en un acto de magia medieval donde los encantamientos son las fuerzas ocultas que nos desafían a descubrirlas. El comportamiento de grupos de átomos o moléculas parece tener poco que ver con sus elementos constituyentes, cúmulos de estos grupos tienen aún menos memoria de sus elementos básicos. Estos cúmulos se autorganizan, duplican y evolucionan solos; confabulados en grupos de cúmulos cada vez más grandes llegan a producir patrones de flujo cuya belleza adorna la superficie de algunos planetas, a ladrar en las esquinas oscuras de colonias olvidadas o se atreven a construir máquinas que empiezan a pensar sobre ellas mismas...<br /> V.1. LA LEY DE KOLMOGOROV<br /> Lewis Fry Richardson (1881-1953), uno de los pioneros de la meteorogía moderna y miembro representativo de la tradición científica inglesa, estudió la dinámica atmosférica y, desde luego, se enfrentó con la turbulencia, siempre presente en el monumental laboratorio de la atmósfera. En un poema sencillo, que todavía se cita en los textos, resumió lo que Da Vinci plasmó en sus lienzos al observar el fluir de las aguas y lo que los científicos creen que sucede en un fluido excitado.<br /> Dejando a un lado el adagio latino de quot; traductor, ¡traidor!quot; , el contenido del verso expresa el proceso que parece sufrir la energía que se le comunica a un fluido para mantenerlo en estado turbulento, el llamado modelo de la cascada de energía.<br /> Imaginemos un tanque con agua, a la que agitamos con una paleta de cierto tamaño (escala). Al mover la paleta se producen vórtices de la misma escala. Observamos que estos vórtices migran y se desintegran, generándose en el proceso otros vórtices de una escala menor. Este mecanismo se continúa de una escala a otra, hasta que la escala es lo suficientemente pequeña como para que el movimiento de los vorticillos resultantes sea dominado por los efectos de la fricción interna del fluido, la viscosidad. Ahí, los pequeños remolinos comienzan una etapa de decaimiento, disipándose hasta desaparecer; la longitud típica de esta última escala es de fracciones de milímetro.<br /> De acuerdo con estas ideas, la energía pasa de una escala a otra, como en una cascada en la que el agua cae de un nivel a otro, perdiendo altura (energía potencial) pero ganando movimiento (energía cinética). En el fondo de las escalas el movimiento se convierte en calor, disipándose la energía, y queda el fluido en reposo. En la medida en que se siga agitando la paleta (inyectando energía al fluido) se podrán apreciar las estructuras en las distintas escalas, siendo la más pequeña la más difícil de ver.<br /> Por consiguiente el estudio de la dinámica de vórtices es uno de los más importantes en los trabajos de turbulencia. El objetivo es entonces entender cómo se generan, cómo interaccionan entre sí, cómo se rompen y, finalmente, cómo decaen. Algunas de las teorías más comunes abordan estos problemas desde diversos puntos de vista, tratando de encontrar cantidades que se conserven en este proceso y estudiando la forma en que van cambiando otras, al pasar a través de las distintas escalas.<br /> La famosa expresión establece en forma cuantitativa varios aspectos relacionados con la cascada de energía propuesta por Richardson. Para percibir la esencia del resultado seguiremos a Kolmogorov en su razonamiento. Empezaremos por formular el resultado, que parece más un criptograma de la Guerra Fría que una descripción de lo que puede pasarle a un fluido. Después, intentaremos descifrarlo.<br /> La ley de los dos tercios de Kolmogorov, como se le conoce, afirma lo siguiente. En un flujo turbulento, la autocorrelación de velocidades entre dos puntos separados por una distancia l, dentro del subintervalo inercial, es igual a C([pic]l) 2/3; C es una constante numérica universal y [pic]es el flujo promedio de la energía (por unidad de masa). Todo indica que para entender el enunciado harían falta estudios serios de paleología. Realmente no es así, es suficiente con algo de física y de matemáticas; para apreciar el sabor basta un poco de paciencia.<br /> La cascada de energía quot; a la Richardsonquot; , sugiere la existencia de una serie de escalas a través de las cuales la energía transita, hasta disiparse en calor. En la escala más grande, las estructuras (vórtices) llevan quot; impresaquot; la forma en que fueron generadas. Chorros y estelas ejemplifican este hecho; cada uno parece estar estructurado de manera muy distinta. A este nivel, son aspectos como la geometría del sistema los que definen el tamaño y la forma de los vórtices portadores de la mayor parte de la energía. En el otro extremo, los vorticillos más pequeños consumen toda la energía al disiparse por efecto directo de la viscosidad. En este proceso de cascada, en el que las estructuras se van descomponiendo en otras más pequeñas, el flujo va perdiendo la memoria del mecanismo generador de la turbulencia.<br /> V.2. ESTRUCTURAS COHERENTES<br /> La tecnología usada en la investigación experimental se ha mantenido en constante desarrollo a través del tiempo. Una parte considerable de la llamada tecnología de punta ha sido el fruto de las necesidades específicas de la investigación en diversos campos de la física; tristemente, han sido las aplicaciones a la industria de la violencia las que han sido argumentadas para justificarla y el motor para su desarrollo.<br /> El uso de computadoras cada vez más grandes y veloces, de electrónica cada vez más rápida y versátil, de sondas mecánicas, ópticas y acústicas más complejas y delicadas han dado lugar a una revolución en la forma de hacer experimentos en las ciencias naturales. Los laboratorios dedicados al estudio de la turbulencia no son la excepción, es más, son un excelente ejemplo. No sería exagerado afirmar que, por ejemplo, el desarrollo de computadoras cada vez más grandes ha tenido como principal promotora a la dinámica de fluidos. Sin embargo, aún no existe un problema de turbulencia que se pueda solucionar con la computadora más grande disponible, aunque ya se empiezan a acercar...<br /> Hay la sospecha fuerte de que una de las mejores formas de acorralar a las elusivas estructuras coherentes es estudiar el problema en términos de la vorticidad, y los enfoques teóricos se mueven en esta dirección. De esta manera, los experimentales tratan de medir la vorticidad y los teóricos de ver cómo se distribuye en el espacio y el tiempo. Aquí, de nuevo, los investigadores depositan sus esperanzas en las computadoras. Los experimentales, para la adquisición, manejo y análisis de grandes cantidades de datos; sin ellas, este trabajo tomaría cientos de miles de años, de todos aquellos que trabajan en el tema, ¡para un solo caso! A los teóricos les pasa algo semejante. Para todos se ha convertido en la herramienta indispensable y la fuente de inspiración para muchos estudios, desde las simulaciones directas de flujos sobresimplificados hasta el terreno de juego para los experimentos pensados.<br /> El estado actual de esta situación es todavía nebuloso (¡turbulento!), si bien hay múltiples ideas cualitativas sobre el papel que desempeñan las estructuras coherentes. Estas ideas platicadas son el motor del trabajo experimental y teórico que se puede consultar en la bibliografía especializada. La forma de plantear matemáticamente lo que sugiere la intuición y la información acumulada es parte de la tarea para llevar a casa.<br /> El problema continúa abierto y ofrece la posibilidad de ganarse el pan cotidiano a muchos curiosos y necesitados de la ciencia y el conocimiento, ya sea motivados por razones prácticas o estéticas.<br /> V.3. ATRACTORES EXTRAÑOS Y CAOS<br /> Una serie de revolucionarias ideas y de descubrimientos paralelos a los anteriormente descritos, independientes, diferentes y aparentemente desconectados, pero sobre el mismo problema general de la turbulencia, ocurrieron en la misma prolífica década en que se descubrieron las estructuras coherentes. Describiremos sólo una parte, pero no tocaremos las sugerentes ideas e importantes teorías como las de Mitchel Feigenbaum, Benoit Mandelbrot, Pierre Manneville e Yves Pomeau.<br /> Uno de los antecedentes fue el descubrimiento hecho por otro meteorólogo, Edward N. Lorenz, en 1963. Estaba interesado en comprender ciertos aspectos de la atmósfera terrestre con el propósito de avanzar en los métodos para la predicción del tiempo. Con esto en mente elaboró un modelo muy sencillo para estudiar lo que le pasa a un fluido sometido a una diferencia de temperaturas en presencia del campo gravitacional, conocido como el problema de Rayleigh- Bénard. A partir de las ecuaciones básicas de la mecánica de fluidos, las de Navier- Stokes, introdujo varias hipótesis para reducir las ecuaciones a lo que en su opinión aún tenía elementos suficientes para generar una dinámica interesante. Luego, procedió a resolverlo en forma numérica. Cuál no sería su sorpresa al encontrar que, para ciertos valores de los parámetros que caracterizaban al problema, la solución mostraba un comportamiento errático. Curiosamente, no tiró a la basura los resultados.<br /> ¿Cómo era posible que el resultado de una ecuación, compuesta por términos bien definidos y perfectamente regulares, diera lugar a un comportamiento no determinista? Otros, seguramente, hubieran descartado los resultados y pensado que había algo equivocado con el método de solución o con la computadora misma. Para Lorenz había algo nuevo y profundo en lo que acababa de encontrar; había descubierto a los atractores extraños. Pasaron varios años para que la comunidad cientifica se percatara de la enorme importancia de su hallazgo. Baste decir que gracias a su trabajo, ahora sabemos que nunca podremos predecir el tiempo más allá de siete días. Si oímos que se espera buen clima para la semana próxima, podemos asegurar que es precisamente eso, una esperanza.<br /> En el espacio en el que viven estos movimientos, que llamamos variedades, hay diferentes tipos de atractores: puntos (como en el caso de osciladores con fricción), curvas (como en el caso de los osciladores no amortiguados, de dimensión uno), superficies (de dimensión dos), etc.; objetos más o menos simples. Antes de Lorenz se creía que todos eran de este tipo y fue entonces que aparecieron los extraños, que resultaron ser cosas (variedades) conocidas, aunque eran consideradas como curiosidades matemáticas sin conexión alguna con el mundo real. Baste decir que su dimensión no es ningun número entero (si no serán raros). Como lo indica la nueva teoría, después de un par de transiciones aparece la turbulencia. Desechada la teoría de Landau, heredó el foro la nueva prima donna (excepto que ahora no está sola...); pero al igual que con los aplaudidos artistas, deportistas, etc., su tiempo dura en tanto llegan los nuevos.<br /> VI. SUPERFLUIDOS<br /> Todos los elementos están formados por tres tipos de partículas distintas: electrones (con carga eléctrica negativa), protones (con carga eléctrica positiva) y neutrones (sin carga); los protones y los neutrones son más de mil veces más pesados que los electrones. La diferencia entre un elemento y otro es sólo la cantidad de electrones que tienen, que siempre es igual a la de los protones, lo cual asegura la neutralidad eléctrica de los átomos. Los llamados isótopos son variedades de un mismo elemento que difieren en el número de neutrones que, junto a los protones, se encuentran en el núcleo.<br /> El hidrógeno es la sencilla unión de un electrón con un protón, mientras el uranio U238 tiene 92 electrones en movimiento alrededor de un núcleo con 238 partículas, entre protones y neutrones. Hinchado así, no es sorprendente que frecuentemente arroje cosas (partículas-a, que son núcleos de helio, por ejemplo) y se transforme con el paso del tiempo en otro elemento, como el plomo (Pb206); ésta es la radiactividad.<br /> Hay dos isótopos del helio en la naturaleza llamados 4He y 3He (helio cuatro y helio tres). Ambos tienen dos electrones y la diferencia está en el número de componentes del núcleo; además de los dos protones, el helio cuatro tiene dos neutrones y el tres tiene sólo uno, por lo que el 3He es más ligero. Por ser el más abundante en la naturaleza y por ser el protagonista principal de lo que sigue nos referiremos al 4He como helio.<br /> Como paréntesis aclaratorio (que puede contribuir a la confusión), es conveniente mencionar que en realidad hay algunas quot; cosasquot; adicionales aparte de los átomos. La luz, por ejemplo, nada tiene que ver con los átomos; está hecha de fotones. Además, hay otros entes exóticos que pululan el Cosmos, como los neutrinos, los muones, los cuarks, los positrones y antipartículas varias.<br /> ¿Qué son en realidad los átomos, los electrones, los neutrinos y demás objetos microscópicos? La teoría correspondiente, que llamamos genéricamente mecánica cuántica, y cuyo idioma natural es el de las matemáticas, nos dice claramente qué son y qué hacen. Permite hacer predicciones notables sobre los eventos más probables, los valores esperados para velocidades, masas, energías, fuerzas, vidas y milagros de estas peculiares criaturas.<br /> Otro elemento totalmente novedoso que forma parte esencial de la mecánica cuántica es la relación que hay entre el objeto bajo estudio y el observador. A diferencia de lo que sucede al estudiar otro tipo de sistemas, no tan pequeños, en los que el objeto de estudio tiene un comportamiento independiente del observador, los sistemas cuánticos sufren las acciones del investigador y modifican su comportamiento detallado en forma impredecible.<br /> Al estudiar un electrón, por ejemplo, es inevitable afectarlo en forma incontrolada. Para estudiar su movimiento hay que quot; iluminarloquot; para quot; tomarle una películaquot; y determinar gracias a ella su velocidad. Sin embargo, cuando intentamos iluminar al electrón, este se desvía al chocar con el primer fotón (la onda-partícula que constituye la luz), impidiéndonos saber qué velocidad llevaba; al llegar la luz, mostrándonos en qué sitio se encontraba, desaparece la posibilidad se saber a dónde iba. Es decir, posiciones y velocidades son cantidades incompatibles. La precisión en la determinación de una es a costa de la otra. Este tipo de efectos trae como consecuencia la existencia de límites naturales ineludibles en la precisión con la que es posible determinar ciertas cantidades, simultáneamente. Estas limitaciones tienen el carácter de leyes fundamentales y forman parte de los postulados básicos de la mecánica cuántica. Se conocen como las relaciones de incertidumbre de Heisenberg.<br /> VI. 1. EL HELIO Y EL FRÍO<br /> El helio fue descubierto como uno de los componentes de la atmósfera solar, de donde viene su nombre (del griego helios, Sol), en la segunda mitad del siglo XIX por P. Janssen y J. N. Lockyer, independientemente. Casi veinte años más tarde se encontró en la Tierra disuelto en minerales y un poco después en mezclas de gases naturales; al separarlo siempre se obtenía helio en su fase gaseosa.<br /> El primer derivado de las reacciones nucleares que ocurren en el interior de las estrellas es el helio. Las enormes presiones que existen en el interior de las estrellas dan como resultado que se fusionen los átomos de hidrógeno, formando helio, liberándose así enormes cantidades de energía. El hidrógeno es el quot; combustiblequot; más usado por las estrellas para iluminar el cielo (de noche solamente, claro). Agotado el hidrógeno se siguen con el helio, formando átomos cada vez más pesados, que a la larga se combinan para formar moléculas y éstas, agrupadas en cúmulos, forman partículas que a la larga se autorganizan y mugen en medio de verdes pastizales.<br /> Decir que somos polvo de estrellas, además de una frase poética saturada de meloso romanticismo, es una afirmación científica literal.<br /> Descubrir cada elemento, para después caracterizarlo y conocer sus propiedades más distintivas, fue un proceso arduo y tedioso que tomó muchos siglos. Tras de lograr purificar una cantidad razonable de cada uno se procedía, entre otras cosas, a determinar las condiciones bajo las cuales el elemento se encontraba en las fases sólida, líquida o gaseosa. Se aprendió que bajando la temperatura de un gas se convertía en líquido y que enfriándolo más el líquido se solidificaba. Así empezó el desarrollo de la tecnología de bajas temperaturas.<br /> Contar con un sibil (sitio fresco o frío para guardar comida o pieles), ciertamente era común desde tiempo inmemorial, por lo que sorprende que no fuera sino hasta el siglo XVIII cuando se desarrollaran los primeros procesos para enfriar artificialmente. De hecho, la primera máquina para producir hielo se construyó hasta 1755 por William Cullen. Sin embargo, fue el interés por licuar a todos los gases el que motivó el desarrollo de métodos para producir temperaturas cada vez más bajas.<br /> Al iniciarse el siglo XX, el helio se empezaba a obtener en cantidades apenas suficientes para ser estudiado en laboratorios muy especializados. A las temperaturas más bajas que entonces se podían producir (8ºK), el helio sólo podía mantenerse en forma de gas, lo que había generado una verdadera carrera internacional para poder lograr su licuefacción. Varios grupos de científicos de mucho prestigio trabajaron intensamente para lograr este objetivo. Finalmente, el 10 de julio de 1908, Heike Kamerlingh-Onnes (1853-1926) logró enfriar helio hasta licuarlo, en Leyden, Holanda. La temperatura que requirió alcanzar fue menor que 4ºK (-269ºC), y se encontró que la temperatura de ebullición del helio es de 4.2ºK. Con esa fecha podría darse la fe de bautismo a la criogenia (del griego kryos, frío y gennao, engendrar, generar frío), el estudio de las bajas temperaturas. Kamerlingh-Onnes fue honrado con el premio Nobel, en 1913, por haber producido temperaturas tan bajas y por los consecuentes descubrimientos sobre el comportamiento de la materia en estas condiciones.<br /> A partir de 1986, cuando J. Georg Bednorz y K. Alex Müller descubrieron superconductores con temperaturas mucho más altas que las usuales, en los laboratorios de IBM en Suiza, se inició una etapa de investigación que produjo más de 20 000 publicaciones en cinco años. Tomando en cuenta que, de superconductores con temperaturas inferiores a los 20º K, se habían descubierto unos con temperaturas cercanas a los 90º K, las posibilidades tecnológicas y económicas presagiaban un inusitado interés. Lo que no se esperaba era la explosión bibliográfica de dudosa calidad, que parece (y es) absurda, en vista de los escasos resultados realmente novedosos o valiosos que se han obtenido desde entonces. La fiebre inicial afortunadamente bajó, sin que hubiese subido la temperatura de los superconductores calientes y sin que se tenga un buen indicio de la teoría correcta, aunque cada vez hay más investigadores dedicados al tema de lo que la sensatez sugiere. Claro que, después de todo, hay un premio Nobel en juego.<br /> En resumen, no se sabe cómo producir superconductores con temperaturas mayores a los 125º K, el máximo registrado y confirmado a finales de 1991, y no parece haber indicios de una teoría que los explique.<br /> VI. 2. UN FLUIDO IDEAL QUE SÍ EXISTE<br /> Como sucede con los materiales superconductores, el helio presenta un comportamiento insólito cuando su temperatura es suficientemente baja, es decir, cuando se encuentra en la fase líquida. Otra vez, la naturaleza nos muestra su extraña cara cuántica. La superfluidez, como ahora se le llama al fenómeno que en forma exclusiva presenta el helio líquido, en cualquiera de sus variedades, fue descubierta 30 años después de la superconductividad y explicada 20 años antes.<br /> Una vez licuado el helio, la siguiente meta fue solidificarlo, cosa que nunca se pudo lograr a presión atmosférica. En la década de los veinte se construyó la curva de coexistencia líquido-sólido. Esto quiere decir que se encontraron los valores de la presión y la temperatura a los que el helio líquido se solidifica. A presiones altas se logró licuar y solidificar al gusto del investigador. Por ejemplo, en 1930, se determinó que el helio gaseoso se solidifica a una temperatura de 42º K si la presión es de 5 800 atmósferas, y que si ésta es menor de 25 atmósferas el helio jamás pasa a la fase sólida, aun a cero absoluto (sí se pudiese alcanzar); esto es lo que se llama un resultado asintótico o límite.<br /> Con diversos colaboradores, W. H. Keesom continuó la tradición holandesa de Kammerlingh-Onnes, en Leyden, trabajando a presión atmosférica con helio líquido y encontró que al seguir bajando la temperatura y llegar a 2.3º K, aparecía una nueva fase líquida del helio. Así, el gélido líquido que se producía del gas a 4.2º K fue rebautizado como helio I y a la nueva fase se le llamó helio II; a la temperatura en que ocurría la transformación (temperatura de transición) se le conoce ahora como el punto l (lambda).<br /> El helio, además de ser el único fluido que permanece como tal en el cero absoluto, hace trucos igualmente únicos cuando se encuentra con el disfraz de helio II.<br /> Se había observado que el helio II burbujeaba como cualquier otro líquido cuando se encuentra en ebullición. Al llegar al punto l el efecto desaparecía y quedaba una superficie en total reposo; había que agitar el sistema para convencerse de que aún se encontraba ahí. Al descubrir que era capaz de conducir el calor 200 veces más rápido que el cobre se pudo explicar el hecho anterior: la eficiencia de la conducción es tal que lleva el calor de las paredes a la superficie del líquido sin necesidad de aspavientos, como el burbujeo que los otros líquidos requieren, incluido el helio I. La dificultad era que no había forma de entender cómo podía conducir tan rápido; daba al traste con las ideas comunes y corrientes. Estas se salvaron a costa de ideas aún más exóticas.<br /> VI. 3. MEZCLAS CUÁNTICAS<br /> El elemento que llamamos helio, como ya vimos, viene en dos presentaciones isotópicas, el helio tres y el helio cuatro. A su vez, cuando este último se encuentra en la fase líquida recibe el nombre de helio I, si su temperatura está por encima del punto l, y helio II cuando está por debajo. Ahí no acaba la cosa.<br /> De acuerdo con la teoría de Landau, el helio II está formado por una mezcla de dos fluidos, conocidos como la componente normal y la componente superfluida. En el punto l todo el helio II es normal y conforme va disminuyendo la temperatura empieza a crearse la componente superfluida hasta que, a cero grados Kelvin, todo el helio II es superfluido. En cierto sentido, la parte normal es la que tiene temperatura y la superfluida siempre esta en el cero absoluto. De esta manera, si compramos unos litros de helio y los enfriamos a 1º K, tendremos un líquido en el que una pequeña parte es helio tres y la parte restante es helio cuatro, el que a su vez, hallándose en su forma de helio II, tiene una parte normal a 1º K y una superfluida a 0º K (ésta es la parte fácil).<br /> No hay que perder de vista que en realidad se trata de un solo fluido hecho de los mismos átomos y que la imagen de una mezcla es una analogía para interpretar quot; hechos consumadosquot; . Lo que sucede es que, al igual que la gente, los átomos van cambiando su comportamiento conforme baja la temperatura. A nadie le llama la atención que al poner agua en un congelador se convierta en hielo, aun sabiendo que está constituido por las mismas moléculas de agua (H2O); de algún modo, lo que sucede es que sólo se han organizado de otra manera.<br /> Según la teoría, el helio II presenta dos tipos de movimientos simultáneos e independientes, el del superfluido y el del normal. Mientras que para caracterizar un flujo común y corriente basta con determinar la velocidad en cada punto, para este pintoresco líquido hay que hallar dos velocidades en cada punto, la de cada componente de la mezcla. Se advirtió que sería un tanto raro y ahora es claro que no es nada intuitivo (excepto por el hecho de que las personas raras son frías). Las diferencias más notables entre las componentes de la mezcla son las siguientes. La componente superfluida no tiene viscosidad, se mueve sin problema alguno por cualquier rendija (capilar o capa delgada), y no transporta calor. Es el fluido ideal con el que soñaron los físicos y desearían utilizar los ingenieros. Por su lado, la componente normal es la que tiene todos los defectos, empezando por ser real. Se mueve sobre —¿dentro?— un fondo ideal absolutamente helado que no lo afecta y transporta calor en forma muy eficiente.<br /> Curiosamente, al pasar por la temperatura de transición superfluida, aparecen dos tipos de superfluido, el 3He-A y el 3He-B. Estos nuevos fluidos tienen la inesperada característica de tener textura, lo cual no adorna al otro superfluido conocido, el helio II. La razón para que aparezca esta singular característica es que los pares de Cooper pueden ser alineados por la presencia de agentes externos, como campos magnéticos o superficies, en forma parecida a los cristales líquidos.<br /> Sin entrar en detalles de lo que es un cristal líquido, casi todos hemos visto las gracias que hacen estos materiales; en los relojes y demás aparatos electrónicos modernos, que tienen lo que se llama carátula digital, hemos visto cómo aparecen y desaparecen zonas oscuras. Ahí hay un cristal líquido y lo que ocurre es que al hacer pasar una pequeña corriente a través de ellos se calientan, pasan por una transición y se orientan cambiando de color y textura. Algo análogo pasa con las variedades A y B de 3He superfluido. Los vórtices que aparecen en estos medios son verdaderamente extravagantes, más que los del 4He, y son los responsables (casi siempre) de la textura que tienen.<br /> Las teorías existentes sugieren la posibilidad de mezclas de estos helios superfluidos de hasta tres componentes y los comportamientos serían igualmente ajenos a toda intuición. Las temperaturas para lograr estas combinaciones de fluidos raros, cercanas a la milmillonésima parte de un grado Kelvin, son por ahora inalcanzables, aunque los quot; criogenicistasquot; van acercándose. Como siempre sucede, hay más por decir y hacer que lo dicho y hecho. Este vago y extraño mundo que hemos esbozado de los superfluidos es más para sugerir un panorama que para describir un paisaje. Ciertamente hay otros comportamientos igualmente interesantes que se han descubierto (con sus correspondientes explicaciones teóricas) además de los que aquí hemos tratado. También, lo que es igualmente importante, sigue completamente abierta la puerta para hacer, descubrir y explicar.<br /> La pasión por buscar caminos nuevos en las artes y las ciencias es insaciable, sus fuentes son inagotables.<br />