SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Michael Davis
1000781532
8-2-2014
6.26 Thermal Simulation
A copperBall isheatedwitha small torchin ambientairas shownbelow.
Considerthe heatinputandthe convectionheatTransfer.Derive a differential equationforthe
temperature of the ball.
𝑄𝑖𝑛 − 𝑄 𝑐𝑜𝑛𝑣 = 𝑚𝐶 𝑝 𝑇̇𝑖;𝑤ℎ𝑒𝑟𝑒 𝑚𝐶 𝑝 𝑇̇𝑖 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒
𝑄 𝑐𝑜𝑛𝑣 = ℎ𝐴 𝑠( 𝑇𝑖 − 𝑇∞)
[ 𝜏𝐷 + 1] 𝑇𝑖 = 𝑇∞ +
𝑄𝑖𝑛
ℎ𝐴 𝑠
; 𝑤ℎ𝑒𝑟𝑒 𝜏 =
𝑚𝐶 𝑝
ℎ𝐴 𝑠
The heat inputis200 watts.The diameterof the copperball is100 mm.The convectioncoefficientis50
Watts/m2
°C.The ambientTemperature is25°C. Basedon thislinearsystemmodel,whatare the steady-
state temperature andthe settlingtime?
Material Propertiesof copper@25°C:
𝜌 = 8933
𝑘𝑔
𝑚3 ; 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑉𝑜𝑙𝑢𝑚𝑒 =
4
3
𝜋(
𝑑
2
)
3
𝑚3
𝑚 = 𝜌𝑉 = 4.68 𝑘𝑔; 𝑚𝑎𝑠𝑠
𝐶 𝑝 = 385
𝐽
𝑘𝑔 ∙ 𝐾
; 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝐴 𝑠 = 𝜋𝑑2 = 0.3142 𝑚2; 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
h = convectioncoefficientof air
Under steadystate the transient 𝑇̇𝑖 = 0,therefore:
𝑇𝑖 = 𝑇∞ +
𝑄𝑖𝑛
ℎ𝐴 𝑠
= 152.3°𝐶
The settlingtime isapproximately4𝜏 𝑤ℎ𝑒𝑟𝑒 𝜏 =
𝑚𝐶 𝑝
ℎ 𝐴 𝑠
:
4𝜏 = 4588 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
Ti
Qconv
T∞
Qin
Part 1 Discussion
My initial considerationsof the situationpresented,includedconsiderationthatwe learnedinMaterial
PropertiesClassthatCopperhasa highthermal andelectrical conductivity.Withthatinmind,Ithought
of the size of the material andthe shape,basicallysomethinglike aball bearing.The situationthatIdo
not fullygraspisthe heatintothe iteminwatts. Due to lack of experience andnopractical equivalent
to the 200 watt amountof energyrate in mindotherthana realizationthata 100 watt lightbulbwould
be verywarm ina relativelyshortperiodof time.Myinitial guessforthe steadystate conditionwas2
minutes. These resultswere surprising.
Basedon thistemperature,doyouthinkyoushouldhave included radiation?
Initiallythe guessforconsideringradiationisyesandthiswasbasedona recentprojectcompletedfor
Heat Transferclasswhere we were heatingwaterwithwarmairanddeterminingthe lengthof the pipe
neededtosuccessfullyreachaspecifiedoutputtemperature. Inthisprojectitbecame apparentthat
the waterhas a grosslyhigherheattransfercoefficientascomparedtothe air and wasthe dominant
propertyto considerwhenbalancingthe heatrate intothe control volume.Since the convection
coefficient of airisrelativelylow,thiscouldallow radiationtoplayasignificantrole inthe processof
heatlossto the environment.
Nowconsiderthe radiationterminyourmodelingequationsandderiveastate-space modelforinternal
temperature.
𝑄𝑖𝑛 − 𝑄 𝑐𝑜𝑛𝑣 − 𝑄 𝑟𝑎𝑑 = 𝑚𝐶 𝑝 𝑇̇𝑖
𝑄 𝑐𝑜𝑛𝑣 = ℎ𝐴 𝑠( 𝑇𝑖 − 𝑇∞)
𝑄 𝑟𝑎𝑑 = 𝐹𝑒 𝐹𝑣 𝜎𝐴 𝑠( 𝑇𝑖
4
− 𝑇∞
4
);
𝑊ℎ𝑒𝑟𝑒 𝐹𝑒 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = 1 𝑎𝑛𝑑 𝐹𝑣 = 𝑣𝑖𝑒𝑤 𝑓𝑎𝑐𝑡𝑜𝑟 = 1 𝑎𝑛𝑑
𝜎 = 𝑡ℎ𝑒 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 56.68 × 10−9
𝑤𝑎𝑡𝑡
𝑚2°𝐾4
𝑈 ≜ 𝑄𝑖𝑛
𝑥(1) ≜ 𝑇𝑖
𝑥̇(1) ≜ 𝑇̇𝑖 =
1
𝑚𝐶 𝑝
[ 𝑈 − ℎ𝐴 𝑠( 𝑥(1) − 𝑇∞) − 𝜎𝐴 𝑠(𝑥(1)4 − 𝑇∞
4
)]
Ti
Qconv
T∞
Qin
Qrad
Performa MATLAB simulationof the systemneglectingradiation.
Performa MATLAB simulationof the systemconsideringradiation.
Plotthe two inthe same graph. Expressthe internal temperature indegreesCelsius(notKelvin).
Compare the difference inthe final temperature andthe settlingtime.
MATLAB CODE
clc;
clear all;
%Main Program for Dynamic Simulation
n = 1; %order of the system
x0 = zeros (n,1); %reserves x0
x0(1) = 25+273; %initial conditions
Tinit = 0; %initial time
Tfinal =8000; %final time
Tspan = [Tinit,Tfinal];
%integrate
[t,x] = ode45(@template_hx1,Tspan,x0);
%plot output
n = 1; %order of the system
y0 = zeros (n,1); %reserves x0
y0(1) = 25+273; %initial conditions
Tinit = 0; %initial time
Tfinal =8000; %final time
Tspan = [Tinit,Tfinal];
%integrate
[z,y] = ode45(@template_hx2,Tspan,y0);
%plot output
figure
plot(t,x(:,1)-273,'--');hold on
plot(z,y(:,1)-273,'-o');hold on
grid
legend('Convection','Convection and Radiation')
legend('Location','Southeast')
xlabel('Time (s)')
ylabel ('Internal Temperature, T_i^{circ}C','fontsize',16)
Dx = zeros (1,1);
Tin=25+273;
Q=200;
h=50;
d=(100/1000);
As=pi*d^(2);
V=(4/3)*pi*(d/2)^(3);
cp = 385;
p=8933;
m=p*V;
tau = (m*cp)/(h*As);
Dx(1)=(1/tau)*(Tin+(Q/(h*As))-x(1));
function Dy=template_hx2(z,y)
Dy = zeros (1,1);
Tin=25+273;
Q=200;
hc=50;
d=(100/1000);
As=pi*d^(2);
V=(4/3)*pi*(d/2)^(3);
cp = 385;
p=8933;
m=p*V;
s=56.68*10^(-9);
Dy(1)=(1/(m*cp))*(Q -(hc*As*(y(1)-Tin))-(s*As*(y(1)^4-Tin^4)));
PLOT:
Lookingat the MATLAB createdarrays for eachfunctionplottedthe (4tau,0.98*T) positionwas
obtained. Forthe convectiononlycase the pointisat (4540 s , 149°C) and for the convectionand
radiationcase the correspondingpointis(3340s , 128°C). Tfinal forthe convectiononlycase was152°C
and Tfinal forthe convectionandradiationcase was 131°C. Comparingthese results itisapparentthat
withconvectionandradiationthatthe final temperature isloweranditreachessteadystate faster. This
resultiseasiertoobtainif youconsiderthe equivalentradiationheattransfercoefficienththerefore
0 1000 2000 3000 4000 5000 6000 7000 8000
20
40
60
80
100
120
140
160
Time (s)
InternalTemperature,Ti

C
Convection
Convection and Radiation
linearizingthe convectionandradiationscenario. Consideringthishvalue the equationforthe
convectionandradiationcase is:
[ 𝜏𝐷 + 1] 𝑇𝑖 = 𝑇∞ +
𝑄𝑖𝑛
(ℎ 𝑐𝑜𝑛𝑣 + ℎ 𝑟𝑎𝑑)𝐴𝑠
; 𝑤ℎ𝑒𝑟𝑒 𝜏 =
𝑚𝐶 𝑝
(ℎ 𝑐𝑜𝑛𝑣 + ℎ 𝑟𝑎𝑑)𝐴𝑠
Basicallyitiseasyto see that the final steadystate temperaturewillvaryfromthe convectiononlycase
by the size of the radiationheattransferconvectioncoefficientrelationandthisisthe same forthe time
constantfor the system.

Weitere ähnliche Inhalte

Was ist angesagt?

Controlled dropout: a different dropout for improving training speed on deep ...
Controlled dropout: a different dropout for improving training speed on deep ...Controlled dropout: a different dropout for improving training speed on deep ...
Controlled dropout: a different dropout for improving training speed on deep ...Byung Soo Ko
 
Analysis of Algorithm (Bubblesort and Quicksort)
Analysis of Algorithm (Bubblesort and Quicksort)Analysis of Algorithm (Bubblesort and Quicksort)
Analysis of Algorithm (Bubblesort and Quicksort)Flynce Miguel
 
Solar Thermoelectricity
Solar ThermoelectricitySolar Thermoelectricity
Solar ThermoelectricityNaveed Rehman
 
Prim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithmPrim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithmAcad
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
 
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...Lawrence kok
 
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB  LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB sanjay kumar pediredla
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Vissarion Fisikopoulos
 
Matlab solved tutorials 2017 june.
Matlab solved tutorials  2017 june.Matlab solved tutorials  2017 june.
Matlab solved tutorials 2017 june.musadoto
 

Was ist angesagt? (20)

Controlled dropout: a different dropout for improving training speed on deep ...
Controlled dropout: a different dropout for improving training speed on deep ...Controlled dropout: a different dropout for improving training speed on deep ...
Controlled dropout: a different dropout for improving training speed on deep ...
 
Minimum spanning tree
Minimum spanning treeMinimum spanning tree
Minimum spanning tree
 
Rumus vb
Rumus vbRumus vb
Rumus vb
 
Sketch root locus
Sketch root locusSketch root locus
Sketch root locus
 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
 
Analysis of Algorithm (Bubblesort and Quicksort)
Analysis of Algorithm (Bubblesort and Quicksort)Analysis of Algorithm (Bubblesort and Quicksort)
Analysis of Algorithm (Bubblesort and Quicksort)
 
Thermodynamic, examples b
Thermodynamic, examples bThermodynamic, examples b
Thermodynamic, examples b
 
Solar Thermoelectricity
Solar ThermoelectricitySolar Thermoelectricity
Solar Thermoelectricity
 
minimum spanning tree
minimum spanning tree minimum spanning tree
minimum spanning tree
 
Prim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithmPrim Algorithm and kruskal algorithm
Prim Algorithm and kruskal algorithm
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
IB Chemistry Collision Theory, Arrhenius Equation and Maxwell Boltzmann Distr...
 
Chapter 10-pid-1
Chapter 10-pid-1Chapter 10-pid-1
Chapter 10-pid-1
 
Programming project
Programming projectProgramming project
Programming project
 
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB  LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
 
Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.Oracle-based algorithms for high-dimensional polytopes.
Oracle-based algorithms for high-dimensional polytopes.
 
Thermodynamic, part 5
Thermodynamic, part 5Thermodynamic, part 5
Thermodynamic, part 5
 
report
reportreport
report
 
Matlab solved tutorials 2017 june.
Matlab solved tutorials  2017 june.Matlab solved tutorials  2017 june.
Matlab solved tutorials 2017 june.
 

Andere mochten auch

Lab11 основное задание
Lab11 основное заданиеLab11 основное задание
Lab11 основное заданиеIarvailor
 
Try hard until you suceed (1)
Try hard until you suceed (1)Try hard until you suceed (1)
Try hard until you suceed (1)nikkinikhita
 
Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...
Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...
Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...Goto Pablo
 
051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...
051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...
051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...Derek Tustin
 
AutoControls using Matlab and Simulink
AutoControls using Matlab and SimulinkAutoControls using Matlab and Simulink
AutoControls using Matlab and SimulinkMichael Davis
 
Steps to the college process
Steps to the college processSteps to the college process
Steps to the college processHeidi Wilson
 
Spring Data and In-Memory Data Management in Action
Spring Data and In-Memory Data Management in ActionSpring Data and In-Memory Data Management in Action
Spring Data and In-Memory Data Management in ActionJohn Blum
 
White Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The NamesWhite Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The Names1guestupington
 
TrainingCoursesfullpage5_7_15
TrainingCoursesfullpage5_7_15TrainingCoursesfullpage5_7_15
TrainingCoursesfullpage5_7_15Marcus Lawson
 
White Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The NamesWhite Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The Names1guestupington
 
Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...
Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...
Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...1guestupington
 
Tracee Owens - Resume 100615
Tracee Owens - Resume 100615Tracee Owens - Resume 100615
Tracee Owens - Resume 100615Tracee Owens
 
10 things to know before visiting South Africa
10 things to know before visiting South Africa10 things to know before visiting South Africa
10 things to know before visiting South Africa1guestupington
 

Andere mochten auch (20)

Epoca precolombina tema 1
Epoca precolombina tema 1Epoca precolombina tema 1
Epoca precolombina tema 1
 
Lab11 основное задание
Lab11 основное заданиеLab11 основное задание
Lab11 основное задание
 
Try hard until you suceed (1)
Try hard until you suceed (1)Try hard until you suceed (1)
Try hard until you suceed (1)
 
Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...
Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...
Laparoscopy-assisted distal gastrectomy with D1+β compared with D1+α lymph no...
 
051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...
051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...
051 - Searching for the Ifaupan River - A Remote e-xploration of Pulau Misool...
 
AutoControls using Matlab and Simulink
AutoControls using Matlab and SimulinkAutoControls using Matlab and Simulink
AutoControls using Matlab and Simulink
 
Steps to the college process
Steps to the college processSteps to the college process
Steps to the college process
 
About Specilization
About SpecilizationAbout Specilization
About Specilization
 
Spring Data and In-Memory Data Management in Action
Spring Data and In-Memory Data Management in ActionSpring Data and In-Memory Data Management in Action
Spring Data and In-Memory Data Management in Action
 
Group 18
Group 18Group 18
Group 18
 
White Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The NamesWhite Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The Names
 
Adhir Kumar Shukla Resume.
Adhir Kumar Shukla Resume.Adhir Kumar Shukla Resume.
Adhir Kumar Shukla Resume.
 
TrainingCoursesfullpage5_7_15
TrainingCoursesfullpage5_7_15TrainingCoursesfullpage5_7_15
TrainingCoursesfullpage5_7_15
 
White Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The NamesWhite Genocide In South Africa - Here Are The Names
White Genocide In South Africa - Here Are The Names
 
Matthew Hartman cv.docx
Matthew Hartman cv.docxMatthew Hartman cv.docx
Matthew Hartman cv.docx
 
Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...
Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...
Weerstand teen teksgebonde navorsing: 'n bydrae tot 'n omgekeerde benadering ...
 
Tracee Owens - Resume 100615
Tracee Owens - Resume 100615Tracee Owens - Resume 100615
Tracee Owens - Resume 100615
 
CV
CVCV
CV
 
Jerry Resume
Jerry ResumeJerry Resume
Jerry Resume
 
10 things to know before visiting South Africa
10 things to know before visiting South Africa10 things to know before visiting South Africa
10 things to know before visiting South Africa
 

Ähnlich wie Thermal simulation of heated copper ball compares effects of convection and radiation heat transfer

Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.Nagesh NARASIMHA PRASAD
 
Heat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive NetworkHeat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive Networkssurgnier
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
Master's Thesis Slides
Master's Thesis SlidesMaster's Thesis Slides
Master's Thesis SlidesMatthew Motoki
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxAYMENGOODKid
 
Tp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initialesTp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initialespapillontuba
 
Introduction of Quantum Annealing and D-Wave Machines
Introduction of Quantum Annealing and D-Wave MachinesIntroduction of Quantum Annealing and D-Wave Machines
Introduction of Quantum Annealing and D-Wave MachinesArithmer Inc.
 
An introduction to inverse problems with applications
An introduction to inverse problems with applicationsAn introduction to inverse problems with applications
An introduction to inverse problems with applicationsSpringer
 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingvimala elumalai
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014Edhole.com
 
Heat Transfer Final Project, Peden
Heat Transfer Final Project, PedenHeat Transfer Final Project, Peden
Heat Transfer Final Project, PedenDrew Peden
 
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsThe Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsAkinola Oyedele
 

Ähnlich wie Thermal simulation of heated copper ball compares effects of convection and radiation heat transfer (20)

numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
 
Heatequationincfd
HeatequationincfdHeatequationincfd
Heatequationincfd
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.Projectwork on different boundary conditions in FDM.
Projectwork on different boundary conditions in FDM.
 
Heat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive NetworkHeat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive Network
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
Master's Thesis Slides
Master's Thesis SlidesMaster's Thesis Slides
Master's Thesis Slides
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
Tp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initialesTp problèmes-à-valeurs-initiales
Tp problèmes-à-valeurs-initiales
 
Introduction of Quantum Annealing and D-Wave Machines
Introduction of Quantum Annealing and D-Wave MachinesIntroduction of Quantum Annealing and D-Wave Machines
Introduction of Quantum Annealing and D-Wave Machines
 
An introduction to inverse problems with applications
An introduction to inverse problems with applicationsAn introduction to inverse problems with applications
An introduction to inverse problems with applications
 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processing
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Ch19 ssm
Ch19 ssmCh19 ssm
Ch19 ssm
 
Ch35 ssm
Ch35 ssmCh35 ssm
Ch35 ssm
 
Heat Transfer Final Project, Peden
Heat Transfer Final Project, PedenHeat Transfer Final Project, Peden
Heat Transfer Final Project, Peden
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
 
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsThe Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
 

Thermal simulation of heated copper ball compares effects of convection and radiation heat transfer

  • 1. Michael Davis 1000781532 8-2-2014 6.26 Thermal Simulation A copperBall isheatedwitha small torchin ambientairas shownbelow. Considerthe heatinputandthe convectionheatTransfer.Derive a differential equationforthe temperature of the ball. 𝑄𝑖𝑛 − 𝑄 𝑐𝑜𝑛𝑣 = 𝑚𝐶 𝑝 𝑇̇𝑖;𝑤ℎ𝑒𝑟𝑒 𝑚𝐶 𝑝 𝑇̇𝑖 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑄 𝑐𝑜𝑛𝑣 = ℎ𝐴 𝑠( 𝑇𝑖 − 𝑇∞) [ 𝜏𝐷 + 1] 𝑇𝑖 = 𝑇∞ + 𝑄𝑖𝑛 ℎ𝐴 𝑠 ; 𝑤ℎ𝑒𝑟𝑒 𝜏 = 𝑚𝐶 𝑝 ℎ𝐴 𝑠 The heat inputis200 watts.The diameterof the copperball is100 mm.The convectioncoefficientis50 Watts/m2 °C.The ambientTemperature is25°C. Basedon thislinearsystemmodel,whatare the steady- state temperature andthe settlingtime? Material Propertiesof copper@25°C: 𝜌 = 8933 𝑘𝑔 𝑚3 ; 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑉𝑜𝑙𝑢𝑚𝑒 = 4 3 𝜋( 𝑑 2 ) 3 𝑚3 𝑚 = 𝜌𝑉 = 4.68 𝑘𝑔; 𝑚𝑎𝑠𝑠 𝐶 𝑝 = 385 𝐽 𝑘𝑔 ∙ 𝐾 ; 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐴 𝑠 = 𝜋𝑑2 = 0.3142 𝑚2; 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 h = convectioncoefficientof air Under steadystate the transient 𝑇̇𝑖 = 0,therefore: 𝑇𝑖 = 𝑇∞ + 𝑄𝑖𝑛 ℎ𝐴 𝑠 = 152.3°𝐶 The settlingtime isapproximately4𝜏 𝑤ℎ𝑒𝑟𝑒 𝜏 = 𝑚𝐶 𝑝 ℎ 𝐴 𝑠 : 4𝜏 = 4588 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 Ti Qconv T∞ Qin
  • 2. Part 1 Discussion My initial considerationsof the situationpresented,includedconsiderationthatwe learnedinMaterial PropertiesClassthatCopperhasa highthermal andelectrical conductivity.Withthatinmind,Ithought of the size of the material andthe shape,basicallysomethinglike aball bearing.The situationthatIdo not fullygraspisthe heatintothe iteminwatts. Due to lack of experience andnopractical equivalent to the 200 watt amountof energyrate in mindotherthana realizationthata 100 watt lightbulbwould be verywarm ina relativelyshortperiodof time.Myinitial guessforthe steadystate conditionwas2 minutes. These resultswere surprising. Basedon thistemperature,doyouthinkyoushouldhave included radiation? Initiallythe guessforconsideringradiationisyesandthiswasbasedona recentprojectcompletedfor Heat Transferclasswhere we were heatingwaterwithwarmairanddeterminingthe lengthof the pipe neededtosuccessfullyreachaspecifiedoutputtemperature. Inthisprojectitbecame apparentthat the waterhas a grosslyhigherheattransfercoefficientascomparedtothe air and wasthe dominant propertyto considerwhenbalancingthe heatrate intothe control volume.Since the convection coefficient of airisrelativelylow,thiscouldallow radiationtoplayasignificantrole inthe processof heatlossto the environment. Nowconsiderthe radiationterminyourmodelingequationsandderiveastate-space modelforinternal temperature. 𝑄𝑖𝑛 − 𝑄 𝑐𝑜𝑛𝑣 − 𝑄 𝑟𝑎𝑑 = 𝑚𝐶 𝑝 𝑇̇𝑖 𝑄 𝑐𝑜𝑛𝑣 = ℎ𝐴 𝑠( 𝑇𝑖 − 𝑇∞) 𝑄 𝑟𝑎𝑑 = 𝐹𝑒 𝐹𝑣 𝜎𝐴 𝑠( 𝑇𝑖 4 − 𝑇∞ 4 ); 𝑊ℎ𝑒𝑟𝑒 𝐹𝑒 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = 1 𝑎𝑛𝑑 𝐹𝑣 = 𝑣𝑖𝑒𝑤 𝑓𝑎𝑐𝑡𝑜𝑟 = 1 𝑎𝑛𝑑 𝜎 = 𝑡ℎ𝑒 𝑆𝑡𝑒𝑓𝑎𝑛 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 56.68 × 10−9 𝑤𝑎𝑡𝑡 𝑚2°𝐾4 𝑈 ≜ 𝑄𝑖𝑛 𝑥(1) ≜ 𝑇𝑖 𝑥̇(1) ≜ 𝑇̇𝑖 = 1 𝑚𝐶 𝑝 [ 𝑈 − ℎ𝐴 𝑠( 𝑥(1) − 𝑇∞) − 𝜎𝐴 𝑠(𝑥(1)4 − 𝑇∞ 4 )] Ti Qconv T∞ Qin Qrad
  • 3. Performa MATLAB simulationof the systemneglectingradiation. Performa MATLAB simulationof the systemconsideringradiation. Plotthe two inthe same graph. Expressthe internal temperature indegreesCelsius(notKelvin). Compare the difference inthe final temperature andthe settlingtime. MATLAB CODE clc; clear all; %Main Program for Dynamic Simulation n = 1; %order of the system x0 = zeros (n,1); %reserves x0 x0(1) = 25+273; %initial conditions Tinit = 0; %initial time Tfinal =8000; %final time Tspan = [Tinit,Tfinal]; %integrate [t,x] = ode45(@template_hx1,Tspan,x0); %plot output n = 1; %order of the system y0 = zeros (n,1); %reserves x0 y0(1) = 25+273; %initial conditions Tinit = 0; %initial time Tfinal =8000; %final time Tspan = [Tinit,Tfinal]; %integrate [z,y] = ode45(@template_hx2,Tspan,y0); %plot output figure plot(t,x(:,1)-273,'--');hold on plot(z,y(:,1)-273,'-o');hold on grid legend('Convection','Convection and Radiation') legend('Location','Southeast') xlabel('Time (s)') ylabel ('Internal Temperature, T_i^{circ}C','fontsize',16) Dx = zeros (1,1); Tin=25+273; Q=200; h=50; d=(100/1000); As=pi*d^(2); V=(4/3)*pi*(d/2)^(3); cp = 385; p=8933; m=p*V; tau = (m*cp)/(h*As);
  • 4. Dx(1)=(1/tau)*(Tin+(Q/(h*As))-x(1)); function Dy=template_hx2(z,y) Dy = zeros (1,1); Tin=25+273; Q=200; hc=50; d=(100/1000); As=pi*d^(2); V=(4/3)*pi*(d/2)^(3); cp = 385; p=8933; m=p*V; s=56.68*10^(-9); Dy(1)=(1/(m*cp))*(Q -(hc*As*(y(1)-Tin))-(s*As*(y(1)^4-Tin^4))); PLOT: Lookingat the MATLAB createdarrays for eachfunctionplottedthe (4tau,0.98*T) positionwas obtained. Forthe convectiononlycase the pointisat (4540 s , 149°C) and for the convectionand radiationcase the correspondingpointis(3340s , 128°C). Tfinal forthe convectiononlycase was152°C and Tfinal forthe convectionandradiationcase was 131°C. Comparingthese results itisapparentthat withconvectionandradiationthatthe final temperature isloweranditreachessteadystate faster. This resultiseasiertoobtainif youconsiderthe equivalentradiationheattransfercoefficienththerefore 0 1000 2000 3000 4000 5000 6000 7000 8000 20 40 60 80 100 120 140 160 Time (s) InternalTemperature,Ti  C Convection Convection and Radiation
  • 5. linearizingthe convectionandradiationscenario. Consideringthishvalue the equationforthe convectionandradiationcase is: [ 𝜏𝐷 + 1] 𝑇𝑖 = 𝑇∞ + 𝑄𝑖𝑛 (ℎ 𝑐𝑜𝑛𝑣 + ℎ 𝑟𝑎𝑑)𝐴𝑠 ; 𝑤ℎ𝑒𝑟𝑒 𝜏 = 𝑚𝐶 𝑝 (ℎ 𝑐𝑜𝑛𝑣 + ℎ 𝑟𝑎𝑑)𝐴𝑠 Basicallyitiseasyto see that the final steadystate temperaturewillvaryfromthe convectiononlycase by the size of the radiationheattransferconvectioncoefficientrelationandthisisthe same forthe time constantfor the system.