Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Intelligent tools-mitja-jermol-2013-bali-7 may2013

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 38 Anzeige
Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Intelligent tools-mitja-jermol-2013-bali-7 may2013 (20)

Anzeige

Weitere von MediaMixerCommunity (19)

Intelligent tools-mitja-jermol-2013-bali-7 may2013

  1. 1. Advanced methods and tools for Web-Based education Technologies for Structuring, Analyzing, Modelling, Personalisation OCWC Global Conference 2013 Bali
  2. 2. Organiser and Sponsors • Knowledge 4 All Foundation, London (http://www.k4all.org/) • FP7 project Translectures (http://www.translectures.eu/) • FP7 project MediaMixer (http://mediamixer.eu/) • FP7 project X-Like (http://www.xlike.org/) • FP7 project Pascal2 (http://pascallin2.ecs.soton.ac.uk/)
  3. 3. Agenda • Brief introduction to the workshop (Mitja Jermol, K4A, JSI) (15’) • Introducing K4A (Colin de La Higuera, K4A, Nantes) (15’) • Some challenges in using Machine Learning in OER (Colin de La Higuera, K4A, Nantes) (15’) • Break • Technologies and solutions for content structuring (Marko Grobelnik, K4A, JSI) (45’) • Technologies and solutions for user modelling and analytics (Marko Grobelnik, K4A, JSI) (30’) • Break • Technologies, solutions and prospects of OER in the Videolectures.net case (Mitja Jermol, K4A, JSI) (45’) • Wrap up and discussion (20’)
  4. 4. Multimodal and multilingual content structuring Learning analytics and user modelling Personalisation, recommendation
  5. 5. Technologies Graph/Social Network Analysis (GraphGarden/SNAP, IST-World, FPIntelligence) Complex Data Visualization (DocAtlas, NewsExplorer, SearchPoint) Computational Linguistics (Enrycher, AnswerArt) Social Computing/Web2.0 (LiveNetLife) Decision Support (DEX) Light-Weight Semantic Technologies (OntoGen, OntoBridge) Deep Semantics & Reasoning (Cyc) Statistical Machine Learning Data/Web/Text/Stream-Mining (TextGarden Suite of tools)
  6. 6. From libraries to courses…
  7. 7. From courses to lectures….
  8. 8. From lectures to mass education…
  9. 9. From mass education to mass accreditation…
  10. 10. Videolectures.net development
  11. 11. WSA UNESCO AWARD
  12. 12. Personalisation Modeling (Needs and preferences) Adaptation
  13. 13. Towards personalisation @ videolectures.net Enrycher (Contextualisation of content objects) Quintelligence Miner (user modeling and segmentation) Recommender (Content/user matching) Content/learning object Userbehavior TEL environment (videolectures.net)
  14. 14. Transcribing and Translating Videos
  15. 15. Translectures Our aim is to develop innovative, cost-effective solutions to produce accurate transcriptions and translations in VideoLectures, with generality across other Matterhorn-related repositories. Three scientific and technological objectives: • Improvement of transcription and translation quality by massive adaptation. • Improvement of transcription and translation quality by intelligent interaction. • Integration into Matterhorn to enable real-life evaluation. 4 June 2013 17
  16. 16. Results Freely available tools and services for accurate transcriptions and translations: - Automatic transcription of videos: English, Slovenian, German, French, Spanish - Automated translation of videos: en⇆es, en⇆sl, en fr and en de. Initial implementation: - Videolectures - poliMedia - Matterhorn 18
  17. 17. Project factsheet • Total Cost: €4,491,143.00 • EC Contribution: €3,125,000.00 • Execution: From: 11/2011 To: 10/2014 19 No Name Short name Country Exit Month Exit month 1 UNIVERSITAT POLITECNICA DE VALENCIA UPV Spain 1 36 2 XEROX SAS XEROX France 1 36 3 INSTITUT JOZEF STEFAN JSI Slovenia 1 36 3+ KNOWLEDGE FOR ALL FOUNDATION K4A UK 1 36 4 RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN RWTH Germany 1 36 5 EUROPEAN MEDIA LABORATORY GMBH EML Germany 1 36 6 Deluxe Digital Studios Ltd DDS UK 1 36
  18. 18. Massive Adaptation 22 massive train from large and diverse data collections adaptation target test domain
  19. 19. Overview About Adaptation 23 acoustic model adaptation translation model adaptation ASR SMT language model adaptation investigate • conditions • models • adaptation techniques (time-aligned slides) decide
  20. 20. Languages and Training Data • ASR 24 Repository Language Acoustic Model Training Hours Language Model Running Words videolectures.net English 768 4657 million Slovenian 27 75 million poliMedia Spanish 390 1609 million
  21. 21. Language Pairs and Training Data • SMT 25 Repository Language Pair Bilingual Sentences Monolingual Running Words poliMedia Spanish to English 12.9 million 57 million videolectures.net English to Spanish 12.9 million 34 million English to Slovenian 4.7 million 378 million English to French 4.0 million 119 million English to German 2.2 million 621 million Slovenian to English 1.1 million 57 million
  22. 22. Mixing media fragments
  23. 23. Media fragments Media mixing is the process by which self-contained parts of media (fragments) are identified and exposed via media repository interfaces, so that consumers can access and re-use only the parts they are interested in. Media Mixer Hub AV Content Provider (1-n) AV Content Demander (1-m) 1) AV material analysis and annotation 2) Fragment Definition 3) Rights and Cost Assignment 6) Search. Browsing 7) Rights and Cost Assessment 8) Download 4) Fragment Upload 5) Clearing (Sell) 9) Composition of new AV materials 10) Clearing (Buy) annotated & linked Media Fragments
  24. 24. Mediamixer (http://mediamixer.eu/) • Community set-up and networking for the reMIXing of online MEDIA fragments • to set up and sustain a community of video producers, hosters, and redistributors who will be supported in the adoption of semantic multimedia technology in their systems and workflows to build a European market for media fragment re-purposing and re-selling. • http://community.mediamixer.eu/
  25. 25. Matterhorn (Opencast)
  26. 26. Matterhorn – Opencast http://opencast.org/matterhorn/home
  27. 27. Matterhorn basic facts • Opensource (http://opencast.org/matterhorn/download) • Started July 2009 • Official Ver 1.3.1, March 2012, Ver 1.4 in testing • Starting 2Y funds by: • The Andrew W. Mellon: 1M US • The William and Flora Hewlett foundations: 0.5 US • Now supported by institutions itself
  28. 28. Adopting organisations University College Cork University of Applied Sciences Osnabrück University of Bergen University of California Berkeley University of California Davis University of Cape Town University of Helsinki University of Manchester University of Nebraska-Lincoln University of New Mexico University of Osnabrueck University of Saskatchewan University Of The Arts London University of Vigo Vienna University of Technology Visionaire Campus Universidad Carlos III de Madrid Universidad Distrital Francisco Jose de Caldas Ben - Gurion University Boise State University Entwine ETH Zurich Ghent university Loughborough University North-West University Northwestern University OBIS/Oxford Brookes University, Oxford UK Polytechnical University of Valencia (UPV) Reformed Theological Seminary Rice University Rochester Institute of Technology RRZE Uni-Erlangen Tel Aviv University Teltek Video Research The Institute for Global Outreach Developments International UNINETT AS
  29. 29. New and emerging models
  30. 30. Video journal - status • Video Journal of Machine Learning Abstracts • Volume 1, 2, 3 – now preparing Vol. 4 • 146 video abstracts, 15k views • Building up review committes • PlanetData NoE - Video Journal of Semantic Data Management Abstracts • Volume 1, now preparing Vol.2  Feedback from the community  Have separate tracks  Have different selection criteria (no need to check sound, etc).  Allow submissions of more multimedia-like presentations
  31. 31. Live streaming via Ncast
  32. 32. UNESCO collaboration • VideoLectures Winner of WSA in 2009 • March 2013 WSIS+10 Global Champion • VideoLectures.Net was selected as the winner in the “e- Science & Technology” category • 2 directors attended the Gala ceremony • meeting with Mr Qian Tang, Assistant Director-General for Education, UNESCO and discussed: • Boost-up education in UNESCO member states • Provide a hub for MA, MSc, PhD video content exchange • Bring the latest research and development in Africa and globally to institutions in Africa • Potential to improve and facilitate mobile learning • Creation of AI training/research in developing countrires • Visit of UNESCO director-general Irina Bokova in Ljubljana 9.4.2013
  33. 33. Already taken actions towards the future • Future (not so distant) • Responsive learning environments • Learning companions • New academia/research • Speaker modelling
  34. 34. Links and contacts Davor Orlic Davor.Orlic@k4all.org http://www.translectures.eu/ ajuan@dsic.upv.es Alfons Juan-Ciscar Universitat Politècnica de València (DSIC) http://www.xlike.org/ Marko Grobelnik Jozef Stefan Institute marko.grobelnik@ijs.si http://www.k4all.org/ http://mediamixer.eu/ Lyndon Nixon STI - International lyndon.nixon@sti2.org
  35. 35. Cronicle.com

×