Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 72 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie arm_exp.ppt (20)

Aktuellste (20)

Anzeige

arm_exp.ppt

  1. 1. 嵌入式處理器架構與程式設計 王建民 中央研究院 資訊所 2008年 7月
  2. 2. 2 Contents  Introduction  Computer Architecture  ARM Architecture  Development Tools  GNU Development Tools  ARM Instruction Set  ARM Assembly Language  ARM Assembly Programming  GNU ARM ToolChain  Interrupts and Monitor
  3. 3. Lecture 10 Interrupts and Monitor
  4. 4. 4 Outline  Exception Handling and Software Interrupts  ELF: Executable and Linking Format  ARM Monitor and Program Loading
  5. 5. 5 Normal Program Flow vs. Exception  Normally, programs execute sequentially (with a few branches to make life interesting)  Normally, programs execute in user mode  Exceptions and interrupts break the sequential flow of a program, jumping to architecturally- defined memory locations  In ARM, SoftWare Interrupt (SWI) is the “system call” exception
  6. 6. 6 ARM Exceptions  Types of ARM exceptions  Reset: when CPU reset pin is asserted  undefined instruction: when CPU tries to execute an undefined op-code  software interrupt: when CPU executes the SWI instruction  prefetch abort: when CPU tries to execute an instruction pre-fetched from an illegal address  data abort: when data transfer instruction tries to read or write at an illegal address  IRQ: when CPU's external interrupt request pin is asserted  FIQ: when CPU's external fast interrupt request pin is asserted
  7. 7. 7 The Programmer’s Model  Processor Modes (of interest)  User: the “normal” program execution mode.  IRQ: used for general-purpose interrupt handling.  Supervisor: a protected mode for the operating system.  The Register Set  Registers R0-R15 + CPSR  R13: Stack Pointer (by convention)  R14: Link Register (hardwired)  R15: Program Counter where bits 0:1 are ignored (hardwired)
  8. 8. 8 Terminology  The terms exception and interrupt are often confused  Exception usually refers to an internal CPU event  floating point overflow  MMU fault (e.g., page fault)  trap (SWI)  Interrupt usually refers to an external I/O event  I/O device request  reset  In the ARM architecture manuals, the two terms are mixed together
  9. 9. 9 What do SWIs do?  SWIs (often called software traps) allow a user program to “call” the OS that is, SWIs are how system calls are implemented.  When SWIs execute, the processor changes modes (from User to Supervisor mode on the ARM) and disables interrupts.
  10. 10. 10 SWI Example  Types of SWIs in ARM Angel (axd or armsd)  SWI_WriteC(SWI 0) Write a byte to the debug channel  SWI_Write0(SWI 2) Write the nullterminated string to debug channel  SWI_ReadC(SWI 4) Read a byte from the debug channel  SWI_Exit(SWI 0x11) Halt emulation this is how a program exits  SWI_EnterOS(SWI 0x16) Put the processor in supervisor mode  SWI_Clock(SWI 0x61) Return the number of centi- seconds  SWI_Time(SWI 0x63) Return the number of secs since Jan. 1, 1970
  11. 11. 11 What happens on an SWI?1  The ARM architecture defines a Vector Table indexed by exception type  One SWI, CPU does the following: PC <0x08  Also, sets LR_svc, SPSR_svc, CPSR (supervisor mode, no IRQ) ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) SWI Handler 1
  12. 12. 12 What happens on an SWI?2  Not enough space in the table (only one instruction per entry) to hold all of the code for the SWI handler function  This one instruction must transfer control to appropriate SWI Handler  Several options are presented in the next slide ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) SWI Handler 2
  13. 13. 13 “Vectoring” Exceptions to Handlers  Option of choice: Load PC from jump table (shown below)  Another option: Direct branch (limited range) ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program LDR pc, pc, 0x100 LDR pc, pc, 0x100 LDR pc, pc, 0x100 LDR pc, pc, 0x100 LDR pc, pc, 0x100 LDR pc, pc, 0x100 LDR pc, pc, 0x100 LDR pc, pc, 0x100 Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c SWI Handler (S_Handler) 2 &A_Handler &U_Handler &S_Handler &P_Handler ... “Jump” Table 0x108 0x10c 0x110 0x114 ... Why 0x110?
  14. 14. 14 What happens on SWI completion?  Vectoring to the S_Handler starts executing the SWI handler  When the handler is done, it returns to the program at the instruction following the SWI  MOVS restores the original CPSR as well as changing pc ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) 3 MOVS pc, lr SWI Handler (S_Handler)
  15. 15. 15 How to determine the SWI number?  All SWIs go to 0x08 ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) SWI Handler must serve as clearing house for different SWIs MOVS pc, lr SWI Handler (S_Handler)
  16. 16. 16 SWI Instruction Format  Example: SWI 0x18 24-bit “comment” field (ignored by processor) 1 1 1 1 cond 0 23 24 27 31 28 SWI number
  17. 17. 17 Executing SWI Instruction On SWI, the processor (1) copies CPSR to SPSR_SVC (2) set the CPSR mode bits to supervisor mode (3) sets the CPSR IRQ to disable (4) stores the value (PC + 4) into LR_SVC (5) forces PC to 0x08 ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) LDR r0,[lr,#4] BIC r0,r0,#0xff000000 R0 holds SWI number MOVS pc, lr SWI Handler (S_Handler) 24-bit “comment” field (ignored by processor) 1 1 1 1 cond
  18. 18. 18 Jump to “Service Routine” ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) LDR r0,[lr,#4] BIC r0,r0,#0xff000000 switch (r0){ case 0x00: service_SWI1(); case 0x01: service_SWI2(); case 0x02: service_SWI3(); … } MOVS pc, lr SWI Handler (S_Handler) 24-bit “comment” field (ignored by processor) 1 1 1 1 cond On SWI, the processor (1) copies CPSR to SPSR_SVC (2) set the CPSR mode bits to supervisor mode (3) sets the CPSR IRQ to disable (4) stores the value (PC + 4) into LR_SVC (5) forces PC to 0x08
  19. 19. 19 Problem with The Current Handler On SWI, the processor (1) copies CPSR to SPSR_SVC (2) set the CPSR mode bits to supervisor mode (3) sets the CPSR IRQ to disable (4) stores the value (PC + 4) into LR_SVC (5) forces PC to 0x08 ADD r0,r0,r1 SWI 0x10 SUB r2,r2,r0 USER Program to R_Handler to U_Handler to S_Handler to P_Handler to D_Handler ... to I_Handler to F_Handler Vector Table (spring board) starting at 0x00 in memory 0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c (Reset (Undef instr.) (SWI) (Prefetch abort) (Data abort) (Reserved) (IRQ) (FIQ) LDR r0,[lr,#4] BIC r0,r0,#0xff000000 switch (r0){ case 0x00: service_SWI1(); case 0x01: service_SWI2(); case 0x02: service_SWI3(); … } MOVS pc, lr SWI Handler (S_Handler) What was in R0? User program may have been using this register. Therefore, cannot just use it must first save it
  20. 20. 20 Full SWI Handler S_Handler: SUB sp, sp, #4 @ leave room on stack for SPSR STMFD sp!, {r0r12, lr} @ store user's gp registers MRS r2, spsr @ get SPSR into gp registers STR r2, [sp, #14*4] @ store SPSR above gp registers MOV r1, sp @ pointer to parameters on stack LDR r0, [lr, #4] @ extract the SWI number BIC r0,r0,#0xff000000 @ get SWI # by bit-masking BL C_SWI_handler @ go to handler (see next slide) LDR r2, [sp, #14*4] @ restore SPSR (NOT “sp!”) MSR spsr_csxf, r2 @ csxf flags LDMFD sp!, {r0r12, lr} @ unstack user's registers ADD sp, sp, #4 @ remove space used to store SPSR MOVS pc, lr @ return from handler gp = general-purpose SPSR is stored above gp registers since the registers may contain system call parameters (sp in r1)
  21. 21. 21 C_SWI_Handler void C_SWI_handler(unsigned number, unsigned *regs) { switch (number){ case 0: /* SWI number 0 code */ break; case 1: /* SWI number 1 code */ break; ... case 0x100: puts(“SWI 0x100 trigged!n”); break; ... case XXX: /* SWI number XXX code */ break; default: } /* end switch */ } /* end C_SWI_handler() */ spsr_svc lr_svc r4 r3 r12 r11 r10 r9 r8 r7 r6 r5 r2 r1 r0 Previous sp_svc sp_svc regs[12] regs[0] (also *regs)
  22. 22. 22 Loading the Vector Table /* For 18-349, the Vector Table will use the ``LDR PC, PC, * offset'' springboard approach */ unsigned Install_Handler(unsigned int routine, unsigned int *vector) { unsigned int pcload_instr, old_handler, *soft_vector; pcload_instr = *vector; /* read the Vector Table instr (LDR ...) */ pcload_instr &= 0xfff; /* compute offset of jump table entry */ pcload_instr += 0x8 + (unsigned)vector; /* == offset adjusted by PC and prefetch */ soft_vector = (unsigned *)pcload_instr; /* address to load pc from */ old_handler = *soft_vector; /* remember the old handler */ *soft_vector = routine; /* set up new handler in jump table */ return (old_handler); /* return old handler address */ } /* end Install_Handler() */ Called as Install_Handler ((unsigned) S_Handler, swivec); where, unsigned *swivec = (unsigned *) 0x08;
  23. 23. 23 .text .align 2 .global trigger trigger: STMFD sp!, {lr} SWI #0x100 LDMFD sp!, {pc} extern void S_Handler(); extern void trigger(); int main() { unsigned *swivec = (unsigned *) 0x08; unsigned backup; backup = Install_Handler ((unsigned) S_Handler, swivec); trigger(); Install_Handler (backup, swivec); } Example: SWI Application
  24. 24. 24 Exercise #3  Write a service routine that receives a file name from a trigger and display the first lines of the file on the screen.  Void service101(char *filename);  Write a trigger that pass a file name as an argument to the above service routine through SWI #0x101.  void trigger101(char *filename);  Write a main program to perform a demonstration.
  25. 25. 25 Outline  Exception Handling and Software Interrupts  ELF: Executable and Linking Format  ARM Monitor and Program Loading
  26. 26. 26 Introduction to ELF  Executable and Linking Format  Developed by Unix System Lab.  Default binary format on Linux, Solaris 2.x, etc…  Some of the capabilities of ELF are dynamic linking, dynamic loading, imposing runtime control on a program, and an improved method for creating shared libraries.  The ELF representation of control data in an object file is platform independent.
  27. 27. 27 Three Types of ELF Files  Relocatable file  describes how it should be linked with other object files to create an executable file or shared library.  Executable file  supplies information necessary for the operating system to create a process image suitable for executing the code and accessing the data contained within the file.  Shared object file  contains information needed in both static and dynamic linking.
  28. 28. 28 ELF File Format  Two views for each of the three file types.  Linking view and execution view  These views support both the linking and execution of a program.  Linking view is partitioned by sections.  Execution view is partitioned by segments.  The ELF access library, libelf, provides tools to extract and manipulate ELF object files.
  29. 29. 29 ELF File Format (cont.)  Linking View Execution View ELF header Program header table (optional) Section 1 … Section n … … Section header table ELF header Program header table Segment 1 … Segment n … … Section header table (optional)
  30. 30. 30 Example: readelf  We can use “readelf” to output ELF information  Example  use “-e” option to read all header from the executable file of “hello.c” $ cat hello.c /* hello.c, a simple example program */ #define GREETING "Hello, World!n" int main() { puts(GREETING); } $ arm-elf-gcc –o hello.elf hello.c $ arm-elf-readelf –e hello.elf
  31. 31. 31 Example: ELF Header ELF Header: Magic: 7f 45 4c 46 01 01 01 61 00 00 00 00 00 00 00 00 Class: ELF32 Data: 2's complement, little endian Version: 1 (current) OS/ABI: ARM ABI Version: 0 Type: EXEC (Executable file) Machine: ARM Version: 0x1 Entry point address: 0x8100 Start of program headers: 52 (bytes into file) Start of section headers: 168152 (bytes into file) Flags: 0x202, has entry point, GNU EABI, software FP Size of this header: 52 (bytes) Size of program headers: 32 (bytes) Number of program headers: 1 Size of section headers: 40 (bytes) Number of section headers: 25 Section header string table index: 22
  32. 32. 32 Example: Section Header Section Headers: [Nr] Name Type Addr Off Size ES Flg Lk Inf Al [ 0] NULL 00000000 000000 000000 00 0 0 0 [ 1] .init PROGBITS 00008000 008000 000020 00 AX 0 0 4 [ 2] .text PROGBITS 00008020 008020 0030e8 00 AX 0 0 4 [ 3] .fini PROGBITS 0000b108 00b108 00001c 00 AX 0 0 4 [ 4] .rodata PROGBITS 0000b124 00b124 000020 00 A 0 0 4 [ 5] .data PROGBITS 0000b244 00b244 00092c 00 WA 0 0 4 [ 6] .eh_frame PROGBITS 0000bb70 00bb70 000004 00 A 0 0 4 [ 7] .ctors PROGBITS 0000bb74 00bb74 000008 00 WA 0 0 4 [ 8] .dtors PROGBITS 0000bb7c 00bb7c 000008 00 WA 0 0 4 [ 9] .jcr PROGBITS 0000bb84 00bb84 000004 00 WA 0 0 4 [10] .bss NOBITS 0000bb88 00bb88 00010c 00 WA 0 0 4 [11] .comment PROGBITS 00000000 00bb88 000288 00 0 0 1 [12] .debug_aranges PROGBITS 00000000 00be10 000420 00 0 0 8 [13] .debug_pubnames PROGBITS 00000000 00c230 000726 00 0 0 1 [14] .debug_info PROGBITS 00000000 00c956 011f48 00 0 0 1 [15] .debug_abbrev PROGBITS 00000000 01e89e 0031f4 00 0 0 1 [16] .debug_line PROGBITS 00000000 021a92 002a14 00 0 0 1 [17] .debug_frame PROGBITS 00000000 0244a8 000a14 00 0 0 4 [18] .debug_str PROGBITS 00000000 024ebc 001406 01 MS 0 0 1 [19] .debug_loc PROGBITS 00000000 0262c2 002be0 00 0 0 1 [20] .stack PROGBITS 00080000 028ea2 000000 00 W 0 0 1 [21] .debug_ranges PROGBITS 00000000 028ea2 000150 00 0 0 1 [22] .shstrtab STRTAB 00000000 028ff2 0000e3 00 0 0 1 [23] .symtab SYMTAB 00000000 0294c0 001590 10 24 ef 4 [24] .strtab STRTAB 00000000 02aa50 0007f9 00 0 0 1 Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings) I (info), L (link order), G (group), x (unknown) O (extra OS processing required) o (OS specific), p (processor specific)
  33. 33. 33 Example: Program Header Program Headers: Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align LOAD 0x008000 0x00008000 0x00008000 0x03b88 0x03c94 RWE 0x8000 Section to Segment mapping: Segment Sections... 00 .init .text .fini .rodata .data .eh_frame .ctors .dtors .jcr .bss
  34. 34. 34 Data Representation  Support various processors with 8-bit bytes and 32-bit architectures.  Intended to be extensible to larger or smaller architecture. Name Size Alignment Purpose Elf32_Addr 4 4 Unsigned program address Elf32_Half 2 2 Unsigned medium integer Elf32_Off 4 4 Unsigned file offset Elf32_Sword 4 4 Signed large integer Elf32_Word 4 4 Unsigned large integer unsigned char 1 1 Unsigned small integer
  35. 35. 35 ELF Header1  It is always the first section of the file.  Describes the type of the object file .  Its target architecture, and the version of ELF it is using.  The location of the Program Header table, Section Header table, and String table along with associated number and size of entries for each table are also given.  Contains the location of the first executable instruction.
  36. 36. 36 ELF Header2 #define EI_NIDENT 16 typedef struct { unsigned char e_ident[EI_NIDENT];// file ID, interpretation Elf32_Half e_type; // object file type Elf32_Half e_machine; // target architecture Elf32_Word e_version; // ELF version Elf32_Addr e_entry; // starting virtual address Elf32_Off e_phoff; // file offset to program header Elf32_Off e_shoff; // file offset to section header Elf32_Word e_flags; // processor-specific flags Elf32_Half e_ehsize; // the ELF header’s size Elf32_Half e_phentsize; // program header entry size Elf32_Half e_phnum; // program header entry number Elf32_Half e_shentsize; // section header entry size Elf32_Half e_shnum; // section header entry number Elf32_Half e_shtrndx; // section header index for string } Elf32_Ehdr;
  37. 37. 37 Section Header  The section header table is an array of structures.  A section header table index is a subscript into this array.  Each entry correlates to a section in the file.  The entry provides the name, type, memory image starting address, file offset, the section’s size in bytes, alignment.
  38. 38. 38 The Section Header Table typedef struct { Elf32_Word sh_name; // name of section, an index Elf32_Word sh_type; // type of section Elf32_Word sh_flags; // section-specific attributes Elf32_Addr sh_addr; // memory location of section Elf32_Off sh_offset; // file offset to section Elf32_Word sh_size; // size of section Elf32_Word sh_link; // section type, dependent Elf32_Word sh_info; // extra information, dependent Elf32_Word sh_addralign; // address alignment Elf32_Word sh_entsize; // size of an entry in section } Elf32_Shdr;
  39. 39. 39 ELF Sections  A number of types of sections described by entries in the section header table.  Sections can hold executable code, data, dynamic linking information, debugging data, symbol tables, relocation information, comments, string tables, and notes.
  40. 40. 40 Special Sections1  Various sections in ELF are pre-defined.  A list of special sections  .bss un-initialized data  .comment version control information  .data and .data1 initialized data present  .debug… information for symbolic debugging  .dynamic dynamic linking information  .dynstr strings needed for dynamic linking  .hash symbol hash table  .line line number information for debugging
  41. 41. 41 Special Sections2  A list of special sections (cont.)  .note file notes  .relname and .relaname relocation data  .rodata and .rodata1 read-only data  .shstrtab section names  .strtab the strings that represent the names associated with symbol table entries  .symtab symbol table  .text executable instructions
  42. 42. 42 String Table  The object file uses these strings to represent symbol and section names.  The first and last byte is defined to hold a null character.  An empty string table section is permitted.  Ex: index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 0 0 n a m e . 0 V a r 10 i a b l e 0 a b l e 20 0 0 x x 0
  43. 43. 43 Symbol Table  Holds information needed to locate and relocate a program’s symbolic definitions and references.  A symbol table entry typedef struct { Elf32_Word st_name; // symbol name, an index Elf32_Addr st_value; // symbol value Elf32_Word st_size; // symbol size unsigned char st_info; // symbol’s type and binding attributes unsigned char st_other; // symbol visibility Elf32_Half st_shndx; // relevant section header table index } Elf32_Sym;
  44. 44. 44 Program Header  Program headers are meaningful only for executable and shared object files.  The program header table is an array of structures, each describing a segment or other information.  An object file segment contains one or more sections.  A file specifies its own program header size with the ELF header’s e_phentsize & e_phnum.
  45. 45. 45 The Program Header Table typedef struct { Elf32_Word p_type; // type of the segment Elf32_Off p_offset; // file offset to segment Elf32_Addr p_vaddr; // virtual address of first byte Elf32_Addr p_paddr; // segments’ physical address Elf32_Word p_filesz; // size of file image of segment Elf32_Word p_memsz; // size of memory image of segment Elf32_Word p_flags; // segment-specific flags Elf32_Word p_align; // alignment requirements } Elf32_Phdr;
  46. 46. 46 Executable Programs  A program to be loaded by the system must have at least one loadable segment.  Segments are a way of grouping related sections.  A process image is created by loading and interpreting segments.  Segment contents  A segment comprises one or more sections.  Text segments contain read-only instructions and data.  Data segments contain writable data and instructions
  47. 47. 47 ELF Segments  Text segment example  Data segment example .hash .dynsym .dynstr .text .rodata .rel .plt .data .dynamic .got .bss
  48. 48. 48 Exercise #4  Write a service routine that receives the name of an ELF executable file as a parameter and display the offset of program header on the screen.  Void service102(char *filename);  Write a trigger that pass a file name to the above service routine through SWI #102.  void trigger102(char *filename);  Write a main program to perform a demonstration.
  49. 49. 49 Outline  Exception Handling and Software Interrupts  ELF: Executable and Linking Format  ARM Monitor and Program Loading
  50. 50. 50 Overview of ARM Debug Monitor  The ARM Debug Monitor is called “Angel” (earlier versions called it the “Demon” – get it?)  Provides  lowlevel programming C library and debugging environment  When the X-board first boots, they load the demon from flash memory (emulator pretends that this happens)  This activity is called “bootstrapping”
  51. 51. 51 Memory Map of Demon 0x0000 CPU reset vector 0x0004 ...0x1c CPU undefined instruction ... CPU Fast Interrupt Vector 0x0020 ~1K Bytes for FIQ and FIQ mode stack 0x0400 256 bytes for IRQ mode stack 0x0500 256 bytes for Undefined mode stack 0x0600 256 bytes for Abort mode stack 0x0700 256 bytes for SVC mode stack 0x0800 Debug monitor private workspace 0x1000 Free for user-supplied Debug Monitor 0x2000 Floating Point Emulation Space 0x8000 Application Space top of memory SWI_Getenv returns top of memory = 0x08000000
  52. 52. 52 Monitor Program  Provide Capability to  Setup Hardware on startup  Load and run programs  Debug code  Minimal OS functionality  Many embedded systems are just  Monitor + application  Monitor still handles other types of interrupts (we'll cover this later)  l timer, I/O (e.g., keypad, switches, LED, LCD)
  53. 53. 53 Example System  Interrupt from external devices  keyboards, timers, disk drives  We refer to each piece of software as a process  Codes  Program counter  Registers  Stack  Other terms  Task  Thread
  54. 54. 54 Debug Monitor SWIs  Angel provides a number of SWIs that you can use SWI_WriteC (0) Write a byte to the debug channel SWI_Write0(2) Write the null-terminated string to debug channel SWI_ReadC(4) Read a byte from the debug channel SWI_Exit (0x11) Halt emulation this is how a program exits SWI_EnterOS (0x16) Put the processor in supervisor mode SWI_GetErrno (0x60) Returns (r0) the value of the C library err-no variable SWI_Clock (0x61) Return the number of centi-seconds SWI_Time (0x63) Return the number of seconds since Jan. 1, 1970 SWI_Remove (0x64) Deletes the file named by pointer in r0 SWI_Rename (0x65) Renames a file SWI_Open (0x66) Open file (or device) SWI_Close (0x68) Close a file (or device) SWI_Write (0x69) Read a file SWI_Read (0x6a) Write a file SWI_Seek (0x6b) Seek to a specific location in a file SWI_Flen (0x6c) Returns length of the file object SWI_InstallHandler(0x70) installs a handler for a hardware exception
  55. 55. 55 Program Loading  Monitor reads program from ??? and puts it into RAM  Does it just copy the executable into RAM??  Where does it put it??  Who sets up the user stack??  Who sets up the user heap??
  56. 56. 56 ARM File Formats  ARM supports many formats for executables  Executable ARM Image Format (AIF)  Non-executable ARM Image Format (AIF)  ARM Object Format (AOF)  ARM Object Library Format  ARM Symbolic Debug Table Format  ARM ELF  Specialized version of ELF  Each provides code + data + other information  We will focus on ARM ELF
  57. 57. 57 ARM ELF  ARM ELF  ELF (Executable and Linking Format) header  Image's code  Image's initialized static data  Debug and relocation information (optional)  We will use static linking (no dynamic linking or shared libraries) ELF Header Program Header Table Segment 1 Segment 2 … … Section Header Table optional ARM ELF File
  58. 58. 58 Loading an Executable1  Read the executable file  ARMulator gets stuff from the native file system  Loader uses the SWI_Open and SWI_Read Monitor system calls  Parse the header to determine the size of the image  Starting location and image base  Create new address space for program large enough to hold text and data segments, along with a stack segment  Copy instructions and data from executable file into the new address space
  59. 59. 59 Loading an Executable2  Zero-init the un-initialized data  Copy arguments passed to the program onto the stack  Initializes machine registers  Most registers cleared, but stack pointer assigned address of 1st free stack location  Jumps to start-up routine that copies program’s arguments from stack to registers and sets the PC  If main routine returns, start-up routine terminates program with the SWI_Exit system call
  60. 60. 60 Optional ARM ELF Components  Compression  Self-decompression code included in image  Relocation  Self relocation code included in image  Debugging  Symbol table for debugger use  String tables for efficient allocation of strings  Can have more than one section per segment
  61. 61. 61 Starting a Program  We discussed how an application's initial PC is set  The loader gets the address of the starting instruction from the object file header  To start the program, the loader moves the specified address into the PC  Is main() the starting point?  In other words, does the PC initially get set to the address of main()?  Let's look at an example
  62. 62. 62 Listing from arm-elf-objdump1 Disassembly of section .init: 00008000 <_init>: 8000: e1a0c00d mov ip, sp 8004: e92ddff8 stmdb sp!, {r3, r4, r5, r6, r7, r8, r9, sl, fp, ip, lr, pc} 8008: e24cb004 sub fp, ip, #4 ; 0x4 800c: eb000023 bl 80a0 <frame_dummy> 8010: eb000c2d bl b0cc <__do_global_ctors_aux> 8014: e24bd028 sub sp, fp, #40 ; 0x28 8018: e89d6ff0 ldmia sp, {r4, r5, r6, r7, r8, r9, sl, fp, sp, lr} 801c: e1a0f00e mov pc, lr Disassembly of section .text: 00008020 <__do_global_dtors_aux>: 8020: e92d4030 stmdb sp!, {r4, r5, lr} 8024: e59f505c ldr r5, [pc, #92] ; 8088 <.text+0x68> 8028: e5d53000 ldrb r3, [r5] 802c: e3530000 cmp r3, #0 ; 0x0 8030: 18bd8030 ldmneia sp!, {r4, r5, pc} 8034: e59f4050 ldr r4, [pc, #80] ; 808c <.text+0x6c> 8038: e5943000 ldr r3, [r4] 803c: e5932000 ldr r2, [r3] 8040: e3520000 cmp r2, #0 ; 0x0 8044: 0a000007 beq 8068 <__do_global_dtors_aux+0x48> 8048: e2833004 add r3, r3, #4 ; 0x4 Initialization code
  63. 63. 63 Listing from arm-elf-objdump2 804c: e5843000 str r3, [r4] 8050: e1a0e00f mov lr, pc 8054: e12fff12 bx r2 8058: e5943000 ldr r3, [r4] 805c: e5932000 ldr r2, [r3] 8060: e3520000 cmp r2, #0 ; 0x0 8064: 1afffff7 bne 8048 <__do_global_dtors_aux+0x28> 8068: e59f3020 ldr r3, [pc, #32] ; 8090 <.text+0x70> 806c: e3530000 cmp r3, #0 ; 0x0 8070: 159f001c ldrne r0, [pc, #28] ; 8094 <.text+0x74> 8074: 11a0e00f movne lr, pc 8078: 112fff13 bxne r3 807c: e3a03001 mov r3, #1 ; 0x1 8080: e5c53000 strb r3, [r5] 8084: e8bd8030 ldmia sp!, {r4, r5, pc} 8088: 0000bb88 andeq fp, r0, r8, lsl #23 808c: 0000b248 andeq fp, r0, r8, asr #4 8090: 00000000 andeq r0, r0, r0 8094: 0000bb70 andeq fp, r0, r0, ror fp 00008098 <call___do_global_dtors_aux>: 8098: e52de004 str lr, [sp, #-4]! 809c: e49df004 ldr pc, [sp], #4 000080a0 <frame_dummy>:
  64. 64. 64 Listing from arm-elf-objdump3 80a0: e59f303c ldr r3, [pc, #60] ; 80e4 <.text+0xc4> 80a4: e3530000 cmp r3, #0 ; 0x0 80a8: e52de004 str lr, [sp, #-4]! 80ac: e59f0034 ldr r0, [pc, #52] ; 80e8 <.text+0xc8> 80b0: e59f1034 ldr r1, [pc, #52] ; 80ec <.text+0xcc> 80b4: 11a0e00f movne lr, pc 80b8: 112fff13 bxne r3 80bc: e59f002c ldr r0, [pc, #44] ; 80f0 <.text+0xd0> 80c0: e5903000 ldr r3, [r0] 80c4: e3530000 cmp r3, #0 ; 0x0 80c8: e59f3024 ldr r3, [pc, #36] ; 80f4 <.text+0xd4> 80cc: 049df004 ldreq pc, [sp], #4 80d0: e3530000 cmp r3, #0 ; 0x0 80d4: 049df004 ldreq pc, [sp], #4 80d8: e1a0e00f mov lr, pc 80dc: e12fff13 bx r3 80e0: e49df004 ldr pc, [sp], #4 80e4: 00000000 andeq r0, r0, r0 80e8: 0000bb70 andeq fp, r0, r0, ror fp 80ec: 0000bb8c andeq fp, r0, ip, lsl #23 80f0: 0000bb84 andeq fp, r0, r4, lsl #23 80f4: 00000000 andeq r0, r0, r0 000080f8 <call_frame_dummy>: 80f8: e52de004 str lr, [sp, #-4]!
  65. 65. 65 Listing from arm-elf-objdump4 80fc: e49df004 ldr pc, [sp], #4 00008100 <_mainCRTStartup>: 8100: e3a00016 mov r0, #22 ; 0x16 8104: e28f10e4 add r1, pc, #228 ; 0xe4 8108: ef123456 swi 0x00123456 810c: e59f00dc ldr r0, [pc, #220] ; 81f0 <.text+0x1d0> 8110: e590d008 ldr sp, [r0, #8] 8114: e590a00c ldr sl, [r0, #12] 8118: e28aac01 add sl, sl, #256 ; 0x100 811c: e3a01000 mov r1, #0 ; 0x0 8120: e1a0b001 mov fp, r1 8124: e1a07001 mov r7, r1 8128: e59f00c4 ldr r0, [pc, #196] ; 81f4 <.text+0x1d4> 812c: e59f20c4 ldr r2, [pc, #196] ; 81f8 <.text+0x1d8> 8130: e0422000 sub r2, r2, r0 8134: eb00004c bl 826c <memset> 8138: eb000152 bl 8688 <initialise_monitor_handles> 813c: e3a00015 mov r0, #21 ; 0x15 8140: e28f10b8 add r1, pc, #184 ; 0xb8 8144: ef123456 swi 0x00123456 8148: e59f10b0 ldr r1, [pc, #176] ; 8200 <.text+0x1e0> 814c: e3a00000 mov r0, #0 ; 0x0 8150: e92d0001 stmdb sp!, {r0} 8154: e4d13001 ldrb r3, [r1], #1  Entry point
  66. 66. 66 Listing from arm-elf-objdump5 8158: e3530000 cmp r3, #0 ; 0x0 815c: 0a000011 beq 81a8 <_mainCRTStartup+0xa8> 8160: e3530020 cmp r3, #32 ; 0x20 8164: 0afffffa beq 8154 <_mainCRTStartup+0x54> 8168: e3530022 cmp r3, #34 ; 0x22 816c: 13530027 cmpne r3, #39 ; 0x27 8170: 01a02003 moveq r2, r3 8174: 13a02020 movne r2, #32 ; 0x20 8178: 12411001 subne r1, r1, #1 ; 0x1 817c: e92d0002 stmdb sp!, {r1} 8180: e2800001 add r0, r0, #1 ; 0x1 8184: e4d13001 ldrb r3, [r1], #1 8188: e3530000 cmp r3, #0 ; 0x0 818c: 0a000005 beq 81a8 <_mainCRTStartup+0xa8> 8190: e1520003 cmp r2, r3 8194: 1afffffa bne 8184 <_mainCRTStartup+0x84> 8198: e3a02000 mov r2, #0 ; 0x0 819c: e2413001 sub r3, r1, #1 ; 0x1 81a0: e5c32000 strb r2, [r3] 81a4: eaffffea b 8154 <_mainCRTStartup+0x54> 81a8: e1a0100d mov r1, sp 81ac: e08d2100 add r2, sp, r0, lsl #2 81b0: e1a0300d mov r3, sp 81b4: e1520003 cmp r2, r3 81b8: 85124004 ldrhi r4, [r2, #-4]
  67. 67. 67 Listing from arm-elf-objdump6 81bc: 85935000 ldrhi r5, [r3] 81c0: 85225004 strhi r5, [r2, #-4]! 81c4: 84834004 strhi r4, [r3], #4 81c8: 8afffff9 bhi 81b4 <_mainCRTStartup+0xb4> 81cc: e1a04000 mov r4, r0 81d0: e1a05001 mov r5, r1 81d4: e59f0020 ldr r0, [pc, #32] ; 81fc <.text+0x1dc> 81d8: eb000011 bl 8224 <atexit> 81dc: ebffff87 bl 8000 <_init> 81e0: e1a00004 mov r0, r4 81e4: e1a01005 mov r1, r5 81e8: eb000006 bl 8208 <main> 81ec: eb000011 bl 8238 <exit> 81f0: 0000b24c andeq fp, r0, ip, asr #4 81f4: 0000bb88 andeq fp, r0, r8, lsl #23 81f8: 0000bc94 muleq r0, r4, ip 81fc: 0000b108 andeq fp, r0, r8, lsl #2 8200: 0000b25c andeq fp, r0, ip, asr r2 8204: 000000ff streqd r0, [r0], -pc 00008208 <main>: 8208: e1a0c00d mov ip, sp 820c: e92dd800 stmdb sp!, {fp, ip, lr, pc} 8210: e24cb004 sub fp, ip, #4 ; 0x4 8214: e59f0004 ldr r0, [pc, #4] ; 8220 <.text+0x200>  Call user’s main  Call exit before quit  Call init code  The user’s main
  68. 68. 68 Listing from arm-elf-objdump7 8218: eb000056 bl 8378 <puts> 821c: e89da800 ldmia sp, {fp, sp, pc} 8220: 0000b124 andeq fp, r0, r4, lsr #2 00008224 <atexit>: 8224: e1a01000 mov r1, r0 8228: e3a00000 mov r0, #0 ; 0x0 822c: e1a02000 mov r2, r0 8230: e1a03000 mov r3, r0 8234: ea000264 b 8bcc <__register_exitproc> 00008238 <exit>: 8238: e92d4010 stmdb sp!, {r4, lr} 823c: e3a01000 mov r1, #0 ; 0x0 8240: e1a04000 mov r4, r0 8244: eb000297 bl 8ca8 <__call_exitprocs> 8248: e59f3018 ldr r3, [pc, #24] ; 8268 <.text+0x248> 824c: e5930000 ldr r0, [r3] 8250: e590203c ldr r2, [r0, #60] 8254: e3520000 cmp r2, #0 ; 0x0 8258: 11a0e00f movne lr, pc 825c: 112fff12 bxne r2 8260: e1a00004 mov r0, r4 8264: eb000233 bl 8b38 <_exit> 8268: 0000b134 andeq fp, r0, r4, lsr r1  Code on exit
  69. 69. 69 Starting a C Program  To get to main() takes hundreds of instructions!  In a modern OS, it can take several thousands of instructions!  Why? Because the C compiler generates code for a number of setup routines before the call to main().  These setup routines handle the stack, data segments, heap and other miscellaneous functions.
  70. 70. 70 Starting an Assembly Program  What about assembly code?  If the assembly code interfaces to C code and the ENTRY point is the C function main(), then the C compiler will generate the setup code  But, if the entire program is written in assembly OR there is no C function called main(), then the setup code is not generated.  What does this mean for you?  What's the SP register pointing to when you start your program?
  71. 71. 71 Assembly Example .text .align 2 .global _start _start: ldr r1, num1 ldr r0, num2 add r5, r1, r0 str r5, sum mov pc, lr num2: .word 0x7 num1: .word 0x5 sum: .space 0x4
  72. 72. 72 Listing of Assembly Example test.elf: file format elf32-littlearm Disassembly of section .text: 00008000 <_start>: 8000: e59f1010 ldr r1, [pc, #16] ; 8018 <num1> 8004: e59f0008 ldr r0, [pc, #8] ; 8014 <num2> 8008: e0815000 add r5, r1, r0 800c: e58f5008 str r5, [pc, #8] ; 801c <sum> 8010: e1a0f00e mov pc, lr 00008014 <num2>: 8014: 00000007 andeq r0, r0, r7 00008018 <num1>: 8018: 00000005 andeq r0, r0, r5 0000801c <sum>: 801c: 00000000 andeq r0, r0, r0

×