Anzeige
Anzeige

Más contenido relacionado

Anzeige

plano numerico (4).pptx

  1. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERO DEL PODER POPULAR PARA LA EDUCACIÓN UNIVERSIDAD POLITÉCNICA TERRITORIAL ANDRÉS ELOY BLANCOS ESTUDIANTE: MARIANGEL TORRELLAS SECCIÓN: 0202 UNIDAD CURRICULAR: MATEMÁTICAS. FEBRERO, 2023
  2. Las coordenadas cartesianas o coordenadas rectangulares son un tipo de coordenadas ortogonales usadas en espacios euclídeos, para la representación gráfica de una relación matemática, movimiento o posición en física, caracterizadas por tener como referencia ejes ortogonales entre sí que concurren en el punto de origen. En las coordenadas cartesianas se determinan las coordenadas al origen como la longitud de cada una de las proyecciones ortogonales de un punto dado sobre cada uno de los ejes. La denominación de 'cartesiano.
  3. Se conoce como plano cartesiano al elemento ideal que dispone de coordenadas cartesianas. Éstas son rectas paralelas a los ejes que se toman como referencia. Se trazan sobre el mencionado plano y posibilitan establecer la posición de un punto. La denominación de plano cartesiano, por supuesto, es un tributo a Descartes, quien sostenía su desarrollo filosófico en un punto de partida que resultaba evidente y que permitía construir conocimiento. El plano cartesiano exhibe un par de ejes que son perpendiculares entre sí y se interrumpen en un mismo punto de origen. El origen de coordenadas, en este sentido, es el punto referente de un sistema: en dicho punto, el valor de todas las coordenadas tiene nulidad (0, 0). Las coordenadas cartesianas x e y, por otra parte, reciben el nombre de abscisa y ordenada, de manera respectiva, en el plano.
  4. DISTANCIAS ENTRE DOS PUNTOS Cuando los puntos se encuentran ubicados sobre el eje x o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas. Ejemplo: La distancia entre los puntos (-4,0) y (5,0) es 4 + 5 = 9 unidades. Cuando los puntos se encuentran ubicados sobre el eje y o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas. Ahora si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda determinada por la relación:
  5. Para demostrar esta relación se deben ubicar los puntos A(x1,y1) y B(x2,y2) en el sistema de coordenadas, luego formar un triángulo rectángulo de hipotenusa AB y emplear el teorema de pitágoras.
  6. El punto medio, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. El punto medio de un segmento representa al punto que se ubica exactamente en la mitad de los dos puntos extremos del segmento. El punto medio puede ser encontrado al dividir a la suma de las coordenadas x por 2 y dividir a la suma de las coordenadas y por 2. PUNTO MEDIO
  7. Fórmula para el punto medio de un segmento La fórmula para el punto medio de un segmento es derivada usando las coordenadas de los puntos extremos del segmento. El punto medio es igual a la mitad de la suma de las coordenadas en x de los puntos y a la mitad de las coordenadas en y de los puntos. Entonces, si es que tenemos los puntos A y B con las coordenadas : A= (x1, y1) y B=(x2, y2), la fórmula del punto medio es: M= x1+x2 + y1+y2 2 2
  8. ECUACIONES DE CIRCUNFERENCIAS Se denomina circunferencia al lugar geométrico de los puntos del plano que equidistan de otro punto fijo denominado centro. Si queremos saber si un punto forma parte de una circunferencia dada (o de un círculo), sólo tenemos que comprobar si sus coordenadas cumplen la ecuación.
  9. Ecuacion general de las circunferencia
  10. PÁRÁBOLAS Una parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo (llamado foco) y de una recta fija (denominada directriz). Por lo tanto, cualquier punto de una parábola esta a la misma distancia de su foco y de su directriz. Las características de una parábola dependen de los siguientes elementos: Foco (F): es un punto fijo del interior de la parábola. La distancia de cualquier punto de la parábola al foco es igual a la distancia de ese mismo punto a la directriz de la parábola.
  11. Directriz (D): es una recta fija externa a la parábola. Un punto de la parábola tiene la misma distancia a la directriz que al foco de la parábola. Parámetro (p): es la distancia desde el foco hasta la directriz. Radio vector (R): es el segmento que une un punto de la parábola con el foco. Su valor coincide con la distancia del punto hasta la directriz. Eje (E): es la recta perpendicular a la directriz que pasa por el foco y es el eje de simetría de la parábola, en la gráfica de abajo corresponde al eje de las ordenadas (eje Y). También se dice eje focal.
  12. Vértice (V): es el punto de intersección entre la parábola y su eje. Distancia focal: es la distancia entre el foco y el vértice, o entre la directriz y el vértice. Su valor siempre es igual a p. 2
  13. Ecuación de Parábolas La ecuación de una parábola es un tipo de función cuadrática porque siempre debe de tener como mínimo 1 término elevado al cuadrado. Además, la ecuación de una parábola depende de si esta está orientada horizontalmente o verticalmente.
  14. Hipérbola Una hipérbola se define como el lugar geométrico de los puntos del plano en el que la diferencia de distancias a dos puntos fijos denominados focos, F y F', es siempre constante.
  15. Elipse La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos, llamados focos, es constante. La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí: El semieje mayor (el segmento C-a de la figura), y El semieje menor (el segmento C-b de la figura). Miden la mitad del eje mayor y menor respectivamente.
  16. Representación gráfica de ecuaciones cónicas Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas elipse, parábola, hipérbola y circunferencia. Tipos Perspectiva de las secciones cónicas Las cuatro secciones cónicas en el plano En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber: β < α : Hipérbola (naranja) β = α : Parábola (azul) β > α : Elipse (verde)
  17. β = 90°: Circunferencia (un caso particular de elipse) (rojo) β = 180° : Triangular Si el plano pasa por el vértice del cono, se puede comprobar que: Cuando β > α la intersección es un único punto (el vértice). Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono). Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice. Cuando β = 90°, el ángulo formado por las rectas irá aumentando a medida β disminuye, cuando el plano contenga al eje del cono (β = 0).
  18. Bibliografía • CASTAGNINO, Juan M. «MATEMÁTICAS PARA LA VIDA». (noviembre, 2007). Recuperado de: https:// matematicas-plano- numericos-trazados-circuferencia-elipses- hiperbolas-representacion graficas-ecuaciones.
Anzeige