Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Bicycle rental system simulation analysis

322 Aufrufe

Veröffentlicht am

Assignment for module: cs5233.
Presented on Apr/2017

Veröffentlicht in: Daten & Analysen
  • Loggen Sie sich ein, um Kommentare anzuzeigen.

Bicycle rental system simulation analysis

  1. 1. CS5233 - SIMULATION AND MODELLING TECHNIQUES Assignment 2 Group 18: Hariharan Chandrasekar A0163105U Mannu Malhotra A0163158A Punna Reddy Gangasani A0163115R
  2. 2. Problem Description ● Singapore theme park has 4 attractions A, B, C and D ● Each has a bicycle station with Bicycles and Docks ● Tourist arbitrarily comes and visits all attractions ● They rent bicycles to travel to other stations ● To build a model representing bicycle rental system ● Simulate the model to analyse the customer satisfaction Assumption: Tourists follow one of the following order A→ B→C→D B→C→D→A C→D→A→B D→A→B→C
  3. 3. Events and States Type of Simulation: Non- Terminating Events: Arriving at Attraction(A/B/C/D), Get Cycle, Give Dock,Transfer To Next Attraction States: ❏ Number of Bicycles in a Bicycle Station, ❏ Number Of Free Docks in a Bicycle Station ❏ Number Of Tourists waiting to return a Bicycle ❏ Number Of Tourists waiting to get a Bicycle ❏ Number Of Tourists in the Theme Park
  4. 4. Input Data Analysis Identified statistical distribution using Chi-Square test Level of significance = 0.05 Speeds(m/s) : Triangular(Min Value=10,Mode=19.8,Max Value=30) Time Spent (min): Normal (For A: μ=29.9,σ2=5.11) Arrivals (min): Exponential( For A:μ=8.65)
  5. 5. Model Atrributes: Variables:
  6. 6. Model
  7. 7. Verification and Validation Verification: Plugged different inputs to ensure we built the model right Validation: ● Since there is no real system in place, we validated using Face Validity ● Ensured all assumptions are met ● Consistent results across Replications
  8. 8. Output Analysis: Finding warm-up time ▪ 24 Hours Running system: Non terminating simulation ▪ Replication method over subinterval and regenerative method. ▪ Challenge: Point estimator Bias. ▪ Output Analyzer for 5 replications : warm up phase and data collection phase ▪ Conclusion: warm up time = 15 hours.
  9. 9. Output Analysis: Finding number of replications required ▪ Point estimator : Mean total time spent ▪ R0 (Number of initial replication) : 5 ▪ Calculated: R > (Z 𝞪/2 * S)2/ε2 R 3 4 5 6 (t 𝞪/2, R-1 * S)2/ε2 7.91 5.139 4.219 3.769 t 2.920 2.353 2.132 2.015
  10. 10. Results Obtained Confidence = 90% and error range = .04 ▪ Warm up period: 15 hours ▪ Avg. Total time spent: ▪ Replications ran : 5 ▪ Replications required: 5 ▪ Point estimator: 2.80721 ▪ Confidence interval: [2.77037 , 2.84405] ▪ Avg. waiting time: ▪ Replications ran: 5 ▪ Total replications required: 14 ▪ Point estimator: 3.02148 ▪ Confidence interval: [2.577, 4.1278] ▪ Number of required docks and bicycles: 78 bicycles and 80 docks
  11. 11. Learnings ▪ How to model a real life system in Arena and understanding the various modules/tools available in Arena ▪ Understanding the parameters of the different probability distributions, their PDF/PMF functions and see how to fit them with a given set of observations. ▪ How to find the number of replications required. ▪ Calculating the warm up time for non terminating simulation using output analysis. ▪ How difficult it is to work in a team.
  12. 12. Thank you

×