SlideShare a Scribd company logo
1 of 77
Department of
Mechanical
Engineering.
Prof. Malay Badodariya
+91 9429 158833
FundamentalOfMachineDesign (01ME0504)
Centroid and Moment of
inertia
(Part 2 - MI)
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Topic will be cover:
1. Moment of Inertia:
h) Formula of Moment of Inertia
i) Steps of problem solving
j) Example (1 to 8 With Solution)
k) Example (Home Work)
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
a)
Introduction
๏ƒ˜ It is defined as the algebraic sum of product of area and the
square of distance from the particular axis.
๏ƒ˜ It is denoted by ๐ผ ๐‘‹๐‘‹ or ๐ผ ๐‘Œ๐‘Œ
๏ƒ˜ It is given by I =Aโ„Ž2
๏ƒ˜ Unit - ๐‘š๐‘š4
๏ƒ˜ It is second moment of area which is measure of rรฉsistance
to bending & forms basic to strength of material.
๏ƒ˜ Mass MI is the rรฉsistance to rotation & forms basic to
dynamics to rigid bodies.
๏ƒ˜ Consider a lamina of area A shown in fig.
๏ƒ˜ Let, this lamina is split up in to an infinite number of small
elements each of area da.
๏ƒ˜ Let, x1, x2, x3 ... are the distances of small elements from
OY axis.
๏ƒ˜ y1 , y2, y3 ... are the distances of small elements from OX
axis.
๏ƒ˜ Taking second moment of all the small elements about OX
axis,
๏ƒ˜ Taking second moment of all the small elements about OY
axis,
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
b)
ParallelAxis
Theorem
๏ƒ˜ M.I of plane section about any axis is equal to MI of plane
section about the parallel axis parallel axis passing through
its CG plus the product of area and square of distance
between two axes.
๏ƒ˜ ๐‘ฐ ๐‘จ๐‘ฉ = ๐‘ฐ ๐’ˆ + a๐’‰ ๐Ÿ
Where,
๐ผ๐ด๐ต = M.I. of area about AB
๐ผ๐‘” = M.I. of area about C.G.
a = Area of the section
h = distance between c.g.
of section and axis AB.
Proof:
Condition 1: Two axis must be parallel.
Condition 2: One axis should pass through CG.
Condition 3: h is perpendicular distance between two axis.
๏ƒ˜ Y = distance of strip from CG of section.
๏ƒ˜ M.I. of strip about CG of section,
๏ƒ˜ I = da.๐‘ฆ2
๏ƒ˜ M.I. of whole section about an axis passing through CG,
๏ƒ˜ ๐ผ๐‘” = ๐‘‘๐‘Ž. ๐‘ฆ2
๏ƒ˜ M.I. of whole section about an axis AB,
๏ƒ˜ ๐ผ๐ด๐ต = ๐‘‘๐‘Ž. โ„Ž + ๐‘ฆ 2
= ๐‘‘๐‘Ž. (โ„Ž2 + ๐‘ฆ2 + 2โ„Ž๐‘ฆ)
= ๐‘‘๐‘Ž. โ„Ž2 + ๐‘‘๐‘Ž. ๐‘ฆ2+ ๐‘‘๐‘Ž. 2โ„Ž๐‘ฆ
= aโ„Ž2+ ๐ผ๐‘” + 0
๏ƒ˜ ๐ผ๐ด๐ต = ๐ผ๐‘” + aโ„Ž2
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
c)
Perpendicular
AxisTheorem
๏ƒ˜ The moment of inertia of polar axis is equal to algebraic
sum of MI of two axis about which axis is perpendicular.
๏ƒ˜ ๐‘ฐ ๐’›๐’› = ๐‘ฐ ๐’™๐’™ + ๐‘ฐ ๐’š๐’š
Proof:
Condition 1: Only for 2D Body (Laminar Plate)
Condition 2: X,Y & Z axis mutually perpendicular
Condition 3: X &Y axis should be in the plane of the body
Condition 4: Z should be perpendicular to the plane of body
2D Body
๏ƒ˜ Consider a small area da on lamina plate.
๏ƒ˜ X andY are co-ordinate of P along OX and OY axis.
๏ƒ˜ OP = r, (distance between P and z axis)
๏ƒ˜ Now use Pythagoras theorem,
๏ƒ˜ ๐‘Ÿ2 = ๐‘‹2 + ๐‘Œ2
๏ƒ˜ M.I. of P about X โ€“ X axis,
๏ƒ˜ ๐ผ ๐‘‹๐‘‹ = ๐‘‘๐‘Ž. ๐‘ฆ2
๏ƒ˜ M.I. of P about Y โ€“Y axis,
๏ƒ˜ ๐ผ ๐‘Œ๐‘Œ = ๐‘‘๐‘Ž. ๐‘ฅ2
2D Body
๏ƒ˜ M.I. of P about Z โ€“ Z axis,
๏ƒ˜ ๐ผzz = ๐‘‘๐‘Ž. r2
๏ƒ˜ M.I. of P about Z โ€“ Z axis,
๏ƒ˜ ๐ผzz = ๐‘‘๐‘Ž. r2 = da (๐‘‹2 + ๐‘Œ2) = ๐‘‘๐‘Ž. ๐‘ฅ2 + ๐‘‘๐‘Ž. ๐‘ฆ2
๏ƒ˜ ๐ผzz = ๐ผ ๐‘‹๐‘‹ + ๐ผ ๐‘Œ๐‘Œ
2D Body
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Example on Second Moment of Inertia
Example 1: Determine the second moment of area of a rectangle about an axis through the centroid.
Solution:
Given Data,
๏ƒ˜ Consider a rectangle of width โ€˜bโ€™ and depth โ€˜dโ€™.
๏ƒ˜ Also consider a small strip of thickness โ€˜dyโ€™ at distance โ€˜yโ€™ from centroidal axis
๏ƒ˜ We know that second moment of area of a strip about xx axis = da.๐‘ฆ2
Where, da = area of small strip
๏ƒ˜ For M.I. of whole area, integrate between limits
โˆ’๐‘‘
2
๐‘Ž๐‘›๐‘‘
๐‘‘
2
โˆด ๐ผ ๐‘‹๐‘‹ =
โˆ’๐‘‘
2
๐‘‘
2
๐‘‘๐‘Ž. ๐‘ฆ2
โˆด ๐ผ ๐‘‹๐‘‹ =
โˆ’๐‘‘
2
๐‘‘
2
(๐‘. ๐‘‘ ๐‘ฆ). ๐‘ฆ2
Example on Second Moment of Inertia
Example 1: Determine the second moment of area of a rectangle about an axis through the centroid.
Solution:
Given Data,
โˆด ๐ผ ๐‘‹๐‘‹ =
โˆ’๐‘‘
2
๐‘‘
2
๐‘‘๐‘Ž. ๐‘ฆ2
โˆด ๐ผ ๐‘‹๐‘‹ =
โˆ’๐‘‘
2
๐‘‘
2
(๐‘. ๐‘‘ ๐‘ฆ). ๐‘ฆ2
โˆด ๐ผ ๐‘‹๐‘‹ = ๐‘
โˆ’๐‘‘
2
๐‘‘
2
(๐‘‘ ๐‘ฆ). ๐‘ฆ2
โˆด ๐ผ ๐‘‹๐‘‹ = ๐‘
๐‘ฆ3
3 โˆ’๐‘‘
2
๐‘‘
2
โˆด ๐ผ ๐‘‹๐‘‹ = b
๐‘‘3
24
โˆ’
โˆ’๐‘‘3
24
=
๐‘.๐‘‘3
12
๐ผ ๐‘Œ๐‘Œ =
๐‘‘.๐‘3
12
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
d)
Polar Moment
of Inertia
๏ƒ˜ Moment of inertia about an axis perpendicular to the plane
of an area is known as polar moment of inertia.
๏ƒ˜ It may be denoted as J or ๐ผ๐‘ง๐‘ง.
๏ƒ˜ Thus, the moment of inertia about an axis perpendicular to
the plane of the area at O in Fig. is called polar moment of
inertia at point O, and is given by,
๐ผ๐‘ง๐‘ง = ๐‘Ÿ2
da
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Example on Second Moment of Inertia
Example 2: Calculate moment of inertia of a triangular section with base b and height h, about base and about axis
passing through centroid.
Solution:
Given Data, ๏ƒ˜ Consider a triangular section as shown in figure,
๏ƒ˜ let, base = b height = h
๏ƒ˜ Consider a small strip PQ of thickness dx at distance x from A.
โˆด
๐‘ƒ๐‘„
๐ต๐ถ
=
๐‘ฅ
โ„Ž
โˆด ๐‘ƒ๐‘„ = ๐ต๐ถ.
๐‘ฅ
โ„Ž
๏ƒ˜ But, BC = base = b,
โˆด ๐‘ƒ๐‘„ =
๐‘. ๐‘ฅ
โ„Ž
๏ƒ˜ Now area of strip PQ =
๐‘.๐‘ฅ
โ„Ž
. dx
Example on Second Moment of Inertia
Example 2: Calculate moment of inertia of a triangular section with base b and height h, about base and about axis
passing through centroid.
Solution:
Given Data, โˆด ๐‘€. ๐ผ. ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘Ž๐‘๐‘œ๐‘ข๐‘ก ๐‘๐‘Ž๐‘ ๐‘’ ๐ต๐ถ, = ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘‹ ๐ท๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ 2 =
๐‘.๐‘ฅ
โ„Ž
. dx โ„Ž โˆ’ ๐‘ฅ 2
๏ƒ˜ M.I. of whole triangle section may be found out by integrating above equation
between limits 0 to h.
โˆด ๐ผ ๐ต๐ถ = 0
โ„Ž ๐‘.๐‘ฅ
โ„Ž
โ„Ž โˆ’ ๐‘ฅ 2
. dx =
๐‘
โ„Ž 0
โ„Ž
๐‘ฅ โ„Ž2
+ ๐‘ฅ2
โˆ’ 2. โ„Ž. ๐‘ฅ . ๐‘‘๐‘ฅ
โˆด ๐ผ ๐ต๐ถ =
๐‘
โ„Ž 0
โ„Ž
๐‘ฅโ„Ž2
+ ๐‘ฅ3
โˆ’ 2. โ„Ž. ๐‘ฅ2
๐‘‘๐‘ฅ =
๐‘
โ„Ž
โ„Ž2
.
๐‘ฅ2
2
+
๐‘ฅ4
4
โˆ’
2.โ„Ž.๐‘ฅ3
3 0
โ„Ž
โˆด ๐ผ ๐ต๐ถ =
๐‘
โ„Ž
โ„Ž4
2
+
โ„Ž4
4
โˆ’
2.โ„Ž4
3
=
๐‘
โ„Ž
6.โ„Ž4+3.โ„Ž4โˆ’8โ„Ž4
12
=
๐‘
โ„Ž
โ„Ž4
12
=
๐‘.โ„Ž3
12
________M.I. about
Base BC.
Example on Second Moment of Inertia
Example 2: Calculate moment of inertia of a triangular section with base b and height h, about base and about axis
passing through centroid.
Solution:
Given Data, ๏ƒ˜ M.I. about c.g. of section can be found out by parallel axis theorem.
๏ƒ˜ ๐ผ ๐ต๐ถ = ๐ผ ๐‘ฅ๐‘ฅ๐บ + ๐ด๐‘‘2
๏ƒ˜ ๐ผ ๐‘ฅ๐‘ฅ๐‘” = ๐ผ ๐ต๐ถ โˆ’ ๐ด๐‘‘2
=
๐‘โ„Ž3
12
โˆ’
1
2
๐‘โ„Ž
โ„Ž
3
2
=
๐‘.โ„Ž3
12
โˆ’
๐‘.โ„Ž3
18
=
3๐‘.โ„Ž3โˆ’2๐‘.โ„Ž3
36
๏ƒ˜ ๐ผ ๐‘ฅ๐‘ฅ๐‘” =
๐‘.โ„Ž3
36
___________________ M.I. about c.g. and parallel to base.
Topic will be cover:
1. Moment of Inertia:
a) Introduction
b) Parallel Axis Theorem
c) Perpendicular Axis Theorem
d) Moment Of Inertia of Rectangle
e) Polar Moment of Inertia
f) Moment of Inertia of Triangle
g) Moment Of Inertia of Circle
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Example on Second Moment of Inertia
Example 3: Find second moment of inertia of a circular lamina, about its centroidal axis.
Solution:
Given Data,
๏ƒ˜Using method of polar M.I.
๏ƒ˜Consider a circular lamina of centre โ€˜Oโ€™ and radius โ€˜rโ€™.
๏ƒ˜Consider an elementary ring of radius โ€˜xโ€™ and thickness โ€˜dxโ€™.
๏ƒ˜Area of elementary ring : da = 2.ฯ€.x.dx
๏ƒ˜M.I. of ring about z-z axis = Area X ๐ท๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ 2
= 2.ฯ€.x.dx X ๐‘ฅ 2
= 2.ฯ€. ๐‘‹3
dx
๏ƒ˜Now M.I. of whole section about centroidal axis can be
found out by integrating the above equation from limits โ€˜Oโ€™
to โ€˜rโ€™.
Example on Second Moment of Inertia
Example 3: Find second moment of inertia of a circular lamina, about its centroidal axis.
Solution:
Given Data,
โˆด ๐ผ๐‘ง๐‘ง =
0
๐‘Ÿ
2. ๐œ‹. ๐‘‹3
. ๐‘‘๐‘ฅ
๐ผ๐‘ง๐‘ง= 2.๐œ‹.
๐‘‹4
4 0
๐‘Ÿ
= 2.ฯ€.
๐‘Ÿ4
4
=
๐œ‹.๐‘Ÿ4
2
โˆด ๐ผ๐‘ง๐‘ง =
๐œ‹
๐‘‘
2
4
2
โˆด ๐ผ ๐‘๐‘ =
๐œ‹
32
๐‘‘4
Example on Second Moment of Inertia
Example 3: Find second moment of inertia of a circular lamina, about its centroidal axis.
Solution:
Given Data,
๏ƒ˜ As per perpendicular axis theorem, ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘Œ๐‘Œ
๏ƒ˜ Now, ๐ผ ๐‘๐‘ = ๐ผ ๐‘‹๐‘‹ + ๐ผ ๐‘Œ๐‘Œ = 2 ๐ผ ๐‘‹๐‘‹
โˆด
๐œ‹
32
๐‘‘4 = 2 ๐ผ ๐‘‹๐‘‹
โˆด ๐ผ ๐‘‹๐‘‹ =
๐œ‹
64
๐‘‘4
โˆด ๐‘†๐‘–๐‘š๐‘–๐‘™๐‘Ž๐‘Ÿ๐‘™๐‘ฆ, ๐ผ ๐‘ฆ๐‘ฆ =
๐œ‹
64
๐‘‘4
Topic will be cover:
1. Moment of Inertia:
h) Formula of Moment of Inertia
i) Steps of problem solving
j) Example (1 to 8 With Solution)
k) Example (Home Work)
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Formula of Moment of Inertia
Sr. No. Geometrical Shape Area ๐‘ฐ ๐’™๐’™ ๐‘ฐ ๐’š๐’š
1
b X d ๐ผ ๐‘ฅ๐‘ฅ =
๐‘๐‘‘3
12
๐ผ ๐‘ฆ๐‘ฆ =
๐‘‘๐‘3
12
2
๐œ‹
4
๐‘‘2 ๐ผ ๐‘ฅ๐‘ฅ =
๐œ‹
64
๐‘‘4
๐ผ ๐‘ฆ๐‘ฆ =
๐œ‹
64
๐‘‘4
Formula of Moment of Inertia
Sr. No. Geometrical Shape Area ๐‘ฐ ๐’™๐’™ ๐‘ฐ ๐’š๐’š
3
1
2
๐‘.h
๐ผ ๐‘ฅ๐‘ฅ =
๐‘. โ„Ž3
36
๐ผ ๐‘ฆ๐‘ฆ =
โ„Ž. ๐‘3
48
4
1
2
๐‘. h ๐ผ ๐‘ฅ๐‘ฅ =
๐‘. โ„Ž3
36
๐ผ ๐‘ฆ๐‘ฆ =
โ„Ž. ๐‘3
36
Topic will be cover:
1. Moment of Inertia:
h) Formula of Moment of Inertia
i) Steps of problem solving
j) Example (1 to 8 With Solution)
k) Example (Home Work)
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
h)
Steps of
solving
problem of
M.I.
Number Discription
Step 1: Split figure from unknown geometry to known geometry and draw X
andY Axis.
Like โ€“ Square, Rectangle,Triangle, Circle etc.
Step 2: Find Centroid of Individual geometry (X andY Component)
Like - ๐‘‹1, ๐‘Œ1, ๐‘‹2, ๐‘Œ2 (Use Centroid Formula)
Step 3: Find centroid of whole geometry.
Like - ๐‘‹ & ๐‘Œ
Step 4: Find Moment about x axis of Individual geometry
(i.e.: ๐ผ ๐‘‹๐‘‹1, ๐ผ ๐‘‹๐‘‹2, ๐ผ ๐‘‹๐‘‹3, ๐ผ ๐‘‹๐‘‹4)
(Use parallel axis theorem, ๐ผ ๐‘‹๐‘‹1 = ๐ผ๐‘” + ๐‘Žโ„Ž2 )
Where, ๐ผ๐‘” = ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘–๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘”๐‘’๐‘œ๐‘š๐‘’๐‘ก๐‘Ÿ๐‘ฆ ๐ผ ๐‘‹๐‘‹
a = Area of geometry
h = ๐‘Œ1 - ๐‘Œ
Step 5: Find Moment aboutY axis of Individual geometry
(i.e.: ๐ผ ๐‘Œ๐‘Œ1, ๐ผ ๐‘Œ๐‘Œ2, ๐ผ ๐‘Œ๐‘Œ3, ๐ผ ๐‘Œ๐‘Œ4)
(Use parallel axis theorem, ๐ผ ๐‘Œ๐‘Œ1 = ๐ผ๐‘” + ๐‘Žโ„Ž2
)
Where, ๐ผ๐‘” = ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘–๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘”๐‘’๐‘œ๐‘š๐‘’๐‘ก๐‘Ÿ๐‘ฆ ๐ผ ๐‘Œ๐‘Œ
a = Area of geometry
h = ๐‘‹1 - ๐‘‹
Number Discription
Step 6: Find Total M.I. of geometry (X andY Component)
Like - ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3 + ๐ผ ๐‘‹๐‘‹4 + ________
Like - ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3 + ๐ผ ๐‘Œ๐‘Œ4 + ________
Topic will be cover:
1. Moment of Inertia:
h) Formula of Moment of Inertia
i) Steps of problem solving
j) Example (1 to 8 With Solution)
k) Example (Home Work)
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Example on Moment of Inertia
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
Step 1:Split figure from unknown geometry to known
geometry and draw X andY Axis.
20 cm
2 cm
30 cm
2 cm
Example on Composite Area (2D)
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
Now Consider Element 1
Area of Element 1 = 2 x 20 = 40 ๐ถ๐‘€2
๐‘‹1=
๐ฟ
2
=
20
2
= 10 cm
Y1 = 30 +
๐‘Š
2
= 30 +
2
2
= 30 + 1 = 31 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
X1
Y1
Step 2 :Find Centroid of Individual geometry (X andY Component)
Like - ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ, ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ (Use Centroid Formula)
Example on Composite Area (2D)
20 cm
2 cm
30 cm
2 cm
Now Consider Element 2
Area of Element 2 = 2 x 30 = 60 ๐‘๐‘š2
๐‘‹2= 10 cm
Y2 =
๐‘Š
2
=
30
2
= 15 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
X2 Y2
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
Example on Composite Area (2D)
20 cm
2 cm
30 cm
2 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
Element Area (๐’„๐’Ž ๐Ÿ ) Xi Yi
1 40 X1=10 cm Y1=31 cm
2 60 X2=10 cm Y2=15 cm
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2
๐ด1+๐ด2
=
400+600
100
= 10 cm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2
๐ด1+๐ด2
=
1240+900
100
= 21.40 cm
G
Step 3: Find centroid of whole geometry.
Like - ๐‘ฟ & ๐’€
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
Example on Composite Area (2D)
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
๐‘ฟ
๐’€
G
Step 4: Find Moment about x axis of Individual geometry
Like - ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”1 =
๐‘๐‘‘3
12
=
(20)(2)3
12
= 13.33 ๐‘๐‘š4
Area, a = b X d = 20 X 2 = 40 ๐‘๐‘š2
h = ๐‘Œ1 - ๐‘Œ = 31 โ€“ 21.40 = 9.6 cm
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 13.33 + (40 X 9.62)
= 3699.73 ๐‘๐‘š4
X1
Y1h
Example on Composite Area (2D)
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
๐’€
G
Step 4: Find Moment about x axis of Individual geometry
Like - ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”2 =
๐‘๐‘‘3
12
=
(2)(30)3
12
= 4500 ๐‘๐‘š4
Area, a = b X d = 2 X 30 = 60 ๐‘๐‘š2
h = ๐‘Œ2 - ๐‘Œ = 15 โ€“ 21.40 = (-6.4) cm
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 4500 + (60 X 6.42)
= 6957.6 ๐‘๐‘š4
h
X2 Y2
Example on Composite Area (2D)
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
๐‘ฟ
๐’€
G
Step 5: Find Moment aboutY axis of Individual geometry
Like - ๐‘ฐ ๐’€๐’€๐Ÿ, ๐‘ฐ ๐’€๐’€๐Ÿ
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”1 =
๐‘‘๐‘3
12
=
(2)(20)3
12
= 1333.33 ๐‘๐‘š4
Area, a = b X d = 20 X 2 = 40 ๐‘๐‘š2
h = ๐‘‹1 - ๐‘‹ = 10 โ€“ 10 = 0 cm
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 1333.33 + (40 X0)
= 1333.33 ๐‘๐‘š4
X1
Y1
Example on Composite Area (2D)
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
๐’€
G
Step 5: Find Moment about x axis of Individual geometry
Like - ๐‘ฐ ๐’€๐’€๐Ÿ, ๐‘ฐ ๐’€๐’€๐Ÿ
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”2 =
๐‘‘๐‘3
12
=
(30)(2)3
12
= 20 ๐‘๐‘š4
Area, a = b X d = 2 X 30 = 60 ๐‘๐‘š2
h = ๐‘‹2 - ๐‘‹ = 0 โ€“ 0 = 0 cm
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 20 + (60 X0)
= 20 ๐‘๐‘š4
X2 Y2
๐‘ฟ
Example on Composite Area (2D)
Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure.
Solution:
Given Data,
20 cm
2 cm
30 cm
2 cm
๐’€
G
Step 6: Find Total M.I. of geometry (X andY Component)
Like - ๐‘ฐ ๐‘ฟ๐‘ฟ, ๐‘ฐ ๐’€๐’€
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2
๐ผ ๐‘‹๐‘‹ = 3699.7 + 6957.6
๐ผ ๐‘‹๐‘‹ = 10657.3 ๐‘๐‘š4
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2
๐ผ ๐‘Œ๐‘Œ = 1333.33 + 20
๐ผ ๐‘Œ๐‘Œ = 1353.33 ๐‘๐‘š4
X2
๐‘ฟ
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
2.5
cm
10 cm
2.5 cm
10 cm
2.5 cm
2.5
cm
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data, Step 1:Split figure from unknown geometry to known
geometry and draw X andY Axis.
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
2.5
cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
Now Consider Part 1
Area of Element 1 = 2.5 x 10 = 25 ๐‘๐‘š2
๐‘‹1=
๐ฟ
2
=
10
2
= 5 cm
Y1 = 2.5 + 10 +
๐‘Š
2
= 2.5 + 10 +
2.5
2
= 13.75 cm
X1
Y1
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data, Step 2 :Find Centroid of Individual geometry (X andY Component)
Like - ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ, ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ (Use Centroid Formula)
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
Now Consider Part 2
Area of Element 1 = 2.5 x 10 = 25 ๐‘๐‘š2
๐‘‹2=
๐ฟ
2
=
2.5
2
= 1.25 cm
Y2 = 2.5 +
๐‘Š
2
= 2.5 +
10
2
= 7.5 cm
X2
Y2
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
2.5
cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
Now Consider part 3
Area of Element 3 = 2.5 x 10 = 25 ๐‘๐‘š2
๐‘‹3=
๐ฟ
2
=
10
2
= 5 cm
Y3 =
๐‘Š
2
=
2.5
2
= 1.25 cm
X3
Y3
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
Part Area (๐’„๐’Ž ๐Ÿ ) Xi Yi
1 25 X1=5 cm Y1=13.75 cm
2 25 X2=1.25 cm Y2=7.5 cm
3 25 X3=5 cm Y3=1.25 cm
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2+๐ด3 ๐‘‹3
๐ด1+๐ด2+๐ด3
=
125+31.25+125
75
= 3.75 cm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2+๐ด3 ๐‘Œ3
๐ด1+๐ด2+๐ด3
=
343.75+187.5+31.25
75
= 7.5 cm
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
Step 3: Find centroid of whole geometry.
Like - ๐‘ฟ & ๐’€
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
Step 4: Find Moment about x axis of Individual geometry
Like - ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”1 =
๐‘๐‘‘3
12
=
(10)(2.5)3
12
= 13.02 ๐‘๐‘š4
Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2
h = ๐‘Œ1 - ๐‘Œ = 13.75 โ€“ 7.5 = 6.25 cm
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 13.02 + (25 X 6.252)
= 989.58 ๐‘๐‘š4
X1
Y1
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”2 =
๐‘๐‘‘3
12
=
(2.5)(10)3
12
= 208.33 ๐‘๐‘š4
Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2
h = ๐‘Œ2 - ๐‘Œ = 7.5 โ€“ 7.5 = 0 cm
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 208.33 + (25 X0)
= 208.33 ๐‘๐‘š4
X2
Y2
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”3 =
๐‘๐‘‘3
12
=
(10)(2.5)3
12
= 13.02 ๐‘๐‘š4
Area, a = b X d = 2.5 X 10 = 25 ๐‘๐‘š2
h = ๐‘Œ3 - ๐‘Œ = 1.25 โ€“ 7.5 = - 6.25 cm
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ = 13.02 + (25 X6.252)
= 989.58 ๐‘๐‘š4
X3
Y3
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
Step 5: Find Moment aboutY axis of Individual geometry
Like - ๐‘ฐ ๐’€๐’€๐Ÿ, ๐‘ฐ ๐’€๐’€๐Ÿ
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”1 =
๐‘‘๐‘3
12
=
(2.5)(10)3
12
= 208.33 ๐‘๐‘š4
Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2
h = ๐‘‹1 - ๐‘‹ = 5 โ€“ 3.75 = 1.25 cm
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 208.33 + (25 X 1.252)
= 247.39 ๐‘๐‘š4
X1
Y1
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”2 =
๐‘‘๐‘3
12
=
(10)(2.5)3
12
= 13.02 ๐‘๐‘š4
Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2
h = ๐‘‹2 - ๐‘‹ = 1.25 โ€“ 3.75 = -2.5 cm
๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 13.02 + (25 X 2.52)
= 169.27 ๐‘๐‘š4
X2
Y2
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
๐‘ฐ ๐’€๐’€๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ
๐ผ๐‘” = M.I. of area about C.G.
Letโ€™s Find ๐ผ๐‘”3 =
๐‘‘๐‘3
12
=
(2.5)(10)3
12
= 208.33 ๐‘๐‘š4
Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2
h = ๐‘‹3 - ๐‘‹ = 5 โ€“ 3.75 = 1.25 cm
๐‘ฐ ๐’€๐’€๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ = 208.33 + (25 X 1.252)
= 247.39 ๐‘๐‘š4
X3
Y3
Example on Composite Area (2D)
10 cm
2.5 cm
10 cm
2.5 cm
Note:
๐‘‹ = Distance between Centroid of element toY axis,
๐‘Œ = Distance between Centroid of element to X axis,
๐‘ฟ
๐’€
G
Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure.
Solution:
Given Data,
Step 6: Find Total M.I. of geometry (X andY Component)
Like - ๐‘ฐ ๐‘ฟ๐‘ฟ, ๐‘ฐ ๐’€๐’€
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3
๐ผ ๐‘‹๐‘‹ = 989.58 + 208.33 + 989.58
๐ผ ๐‘‹๐‘‹ = 2187.49 ๐‘๐‘š4
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3
๐ผ ๐‘Œ๐‘Œ = 247.39 + 169.27 +247.39
๐ผ ๐‘Œ๐‘Œ = 664.05 ๐‘๐‘š4
Example on Composite Area (2D)
Example 3: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
2 cm
2 cm
2 cm
8 cm
16 cm
Part Area (๐’„๐’Ž ๐Ÿ ) Xi Yi
1 16 X1=4 cm Y1=13 cm
2 20 X2=7 cm Y2=7 cm
3 32 X3=14 cm Y3=1 cm
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2+๐ด3 ๐‘‹3
๐ด1+๐ด2+๐ด3
=
64+140+448
68
= 9.58 cm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2+๐ด3 ๐‘Œ3
๐ด1+๐ด2+๐ด3
=
208+140+32
68
= 5.58 cm
๐‘ฟ ๐’€
G
12 cm
Y1=13 cm,Y2=7 cm,Y3=1 cm, ๐’€ = 5.58 cm
Example on Composite Area (2D)
Example 3: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
2 cm
2 cm
2 cm
8 cm
16 cm
๐‘ฟ ๐’€
12 cm
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3
๐ผ ๐‘‹๐‘‹ = 886.23+206.99+681.99
๐ผ ๐‘‹๐‘‹ = 1775.21 ๐‘๐‘š4
1
2
3
๐‘. ๐‘‘3
12
= 5.33
๐‘. ๐‘‘3
12
= 166.67
๐‘. ๐‘‘3
12
= 10.66
16
20
32
7.42
1.42
-4.58
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = 886.23
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = 206.99
๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ‘ = 681.90
Y1=13 cm,Y2=7 cm,Y3=1 cm, ๐’€ = 5.58 cm
Example on Composite Area (2D)
Example 3: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
2 cm
2 cm
2 cm
8 cm
16 cm
๐‘ฟ ๐’€
G
12 cm
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3
๐ผ ๐‘Œ๐‘Œ = 583.51+139.80+1307.83
๐ผ ๐‘Œ๐‘Œ = 2031.14 ๐‘๐‘š4
1
2
3
๐‘‘. ๐‘3
12
= 85.33
๐‘‘. ๐‘3
12
= 6.67
๐‘‘. ๐‘3
12
= 682.67
16
20
32
-5.58
-2.58
4.42
๐‘ฐ ๐’€๐’€๐Ÿ = 583.51
๐‘ฐ ๐’€๐’€๐Ÿ = 139.80
๐‘ฐ ๐’€๐’€๐Ÿ‘ = 1307.83
X1=4 cm, X2=7 cm, X3=14 cm, ๐‘ฟ = 9.58 cm
Example on Composite Area (2D)
Example 4: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
9cm
3 cm
6 cm
๐‘ฟ
๐’€
Element Area (๐’„๐’Ž ๐Ÿ ) Xi Yi
1 27 X1=1.5 cm Y1=4.5 cm
2 13.5 X2=4 cm Y2=3 cm
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2
๐ด1+๐ด2
= 2.33 cm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2
๐ด1+๐ด2
= 4 cm
Example on Composite Area (2D)
Example 4: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
9cm
3 cm
6 cm
๐‘ฟ
๐’€
1
2
๐‘. ๐‘‘3
12
= 182.25
๐‘.โ„Ž3
36
= 60.75
27
13.5
Y1=4.5 cm,Y2=3 cm, ๐’€ = 4 cm
0.5
- 1
189
74.25
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2
๐ผ ๐‘‹๐‘‹ = 189+74.25
๐ผ ๐‘‹๐‘‹ = 263.25 ๐‘๐‘š4
Example on Composite Area (2D)
Example 4: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
9cm
3 cm
6 cm
๐‘ฟ
๐’€
1
2
๐‘‘. ๐‘3
12
= 20.25
โ„Ž.๐‘3
36
= 6.75
27
13.5
-0.83
1.67
38.85
44.40
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2
๐ผ ๐‘Œ๐‘Œ = 38.85+44.40
๐ผ ๐‘Œ๐‘Œ = 83.25 ๐‘๐‘š4
X1=1.5 cm, X2=4 cm, ๐‘ฟ = 2.33 cm
Example on Composite Area (2D)
Example 5: A rectangular section is 400 mm wide and 800 mm deep. Two circular holes of 200 mm diameter each are
cut on Y-Y axis at distance 200 mm and 600 mm from the top edge. Calculate M.I. about xx and yy axis.
Solution:
Given Data,
800
400
200200200200
1
2
3
A1 = 320000
A2 = 31415.92
A3=31415.92
X1= 0
X2= 0
X3= 0
Y1= 0 mm
Y2= 200 mm
Y3= -200 mm
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1โˆ’ ๐ด2 ๐‘‹2โˆ’๐ด3 ๐‘‹3
๐ด1+๐ด2+๐ด3
= 0 mm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1โˆ’ ๐ด2 ๐‘Œ2โˆ’๐ด3 ๐‘Œ3
๐ด1โˆ’๐ด2โˆ’๐ด3
= 0 mm
Example on Composite Area (2D)
Example 5: A rectangular section is 400 mm wide and 800 mm deep. Two circular holes of 200 mm diameter each are
cut on Y-Y axis at distance 200 mm and 600 mm from the top edge. Calculate M.I. about xx and yy axis.
Solution:
Given Data,
800
400
200200200200
1
2
3
๐œ‹
64
๐‘‘4 = 7.85๐‘‹107
๐œ‹
64
๐‘‘4 = 7.85๐‘‹107
๐‘. ๐‘‘3
12
= 1.7๐‘‹1010 320000
31415.92
31415.92
0
200
200
1.7๐‘‹1010
1.3๐‘‹109
1.3๐‘‹109
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 โˆ’ ๐ผ ๐‘‹๐‘‹2 โˆ’ ๐ผ ๐‘‹๐‘‹3
๐ผ ๐‘‹๐‘‹ = (1.7๐‘‹1010) โˆ’ 1.3๐‘‹109 โˆ’ 1.3๐‘‹109
๐ผ ๐‘‹๐‘‹ = 1.44 ๐‘‹ 1010 ๐‘š๐‘š4
Y1=0 mm,Y2=200 mm,Y3=-200 mm, ๐’€ = 0 mm
Example on Composite Area (2D)
Example 5: A rectangular section is 400 mm wide and 800 mm deep. Two circular holes of 200 mm diameter each are
cut on Y-Y axis at distance 200 mm and 600 mm from the top edge. Calculate M.I. about xx and yy axis.
Solution:
Given Data,
800
400
200200200200
1
2
3
๐‘‘. ๐‘3
12
= 4.27๐‘‹109
๐œ‹
64
๐‘‘4
= 7.85๐‘‹107
๐œ‹
64
๐‘‘4 = 7.85๐‘‹107
320000
31415.92
31415.92
0
0
0
4.27๐‘‹109
7.85๐‘‹107
7.85๐‘‹107
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 โˆ’ ๐ผ ๐‘Œ๐‘Œ2 โˆ’ ๐ผ ๐‘Œ๐‘Œ3
IYY = (4.27X109) โ€“(7.85X107) โˆ’ (7.85X107)
๐ผ ๐‘Œ๐‘Œ = 4.1 ๐‘‹109 ๐‘š๐‘š4
X1=0 mm, X2=0 mm, X3=0 mm, ๐‘ฟ = 0 mm
Example 6: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
Example on Composite Area (2D)
1
2
3
A1 = 30X100=3000
A2 = 25X100=2500
X1= 100 Y1= 20+20+80+
30
2
= 135
Y2= 20+
100
2
= 70
Y4= 20+
20
3
= 26.664
5 A5 =
1
2
๐‘‹87.5๐‘‹20=875
A4 =
1
2
๐‘‹87.5๐‘‹20=875
A3 = 20X200=4000
X2= 100
X3= 100
X4=
2
3
๐‘‹87.5 = 58.33
X5=
87.5+25+
87.5
3
=141.67
Y3=
20
2
= 10
Y5= 20+
20
3
= 26.66
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2+๐ด3 ๐‘‹3+๐ด4 ๐‘‹4+๐ด5 ๐‘‹5
๐ด1+๐ด2+๐ด3+๐ด4+๐ด5
= 100 mm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2+๐ด3 ๐‘Œ3+๐ด4 ๐‘Œ4+๐ด5 ๐‘Œ5
๐ด1+๐ด2+๐ด3+๐ด4+๐ด5
= 59.26 mm
Example 6: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
Example on Composite Area (2D)
1
2
3
4
5
๐‘. ๐‘‘3
12
= 2.25๐‘‹105
๐‘. ๐‘‘3
12
= 2.08๐‘‹106
๐‘. ๐‘‘3
12
= 1.33๐‘‹105
๐‘. โ„Ž3
36
= 1.94๐‘‹104
๐‘. โ„Ž3
36
= 1.94๐‘‹104
3000
2500
4000
875
875
Y1=135,Y2=70,Y3=10,Y4=26.66,Y5=26.66, ๐’€ = 69.91 mm
65.09
0.09
-59.91
-43.25
-43.25
1.29๐‘‹107
2.08๐‘‹106
1.45๐‘‹107
1.66๐‘‹106
1.66๐‘‹106
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3 + ๐ผ ๐‘‹๐‘‹4 + ๐ผ ๐‘‹๐‘‹5
๐‘ฐ ๐‘ฟ๐‘ฟ = 3.28 X ๐Ÿ๐ŸŽ ๐Ÿ• ๐’Ž๐’Ž ๐Ÿ’
Example 6: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure.
Solution:
Given Data,
Example on Composite Area (2D)
1
2
3
4
5
๐‘‘. ๐‘3
12
= 2.5๐‘‹106
๐‘‘. ๐‘3
12
= 1.30๐‘‹105
๐‘‘. ๐‘3
12
= 1.33๐‘‹107
โ„Ž.๐‘3
36
= 3.72๐‘‹105
โ„Ž.๐‘3
36
= 3.72๐‘‹105
3000
2500
4000
875
875
X1=X2= X3=100, X4=58.33, X5=141.67, ๐‘ฟ = 100 mm
0
0
0
-41.67
41.67
2.5๐‘‹106
1.30๐‘‹105
1.33๐‘‹107
1.89๐‘‹106
1.89๐‘‹106
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3 + ๐ผ ๐‘Œ๐‘Œ4 + ๐ผ ๐‘Œ๐‘Œ5
๐‘ฐ ๐’€๐’€ = 1.97 X ๐Ÿ๐ŸŽ ๐Ÿ• ๐’Ž๐’Ž ๐Ÿ’
Example on Composite Area (2D)
Example 7: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data, Part Area (๐’Ž๐’Ž ๐Ÿ ) Xi (mm) Yi (mm)
1 1,20,000 X1=200 Y1= 150
2 30,000 X2=400+
200
3
= 466.67 Y2=
300
3
= 100
3 ๐œ‹.๐‘Ÿ2
2
=35342.91 X3= 100 + 150 =250 Y3=
4.๐‘Ÿ
3.๐œ‹
= 63.66
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2โˆ’๐ด3 ๐‘‹3
๐ด1+๐ด2โˆ’๐ด3
= 254.36 mm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2โˆ’๐ด3 ๐‘Œ3
๐ด1+๐ด2โˆ’๐ด3
= 163.53 mm
100 300 200
300
1
2
3
Example on Composite Area (2D)
Example 7: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data,
100 300 200
300
1
2
3
1
2
3
๐‘. ๐‘‘3
12
= 9๐‘‹108
0.11.๐‘Ÿ4
= 5.57๐‘‹107
๐‘. โ„Ž3
36
= 1.5๐‘‹108
1,20,000
30,000
35342.91
Y1=150,Y2=100,Y3=63.66, ๐’€ = 163.53 mm -13.53
-63.53
-99.87
9.21๐‘‹108
2.71๐‘‹108
4.08๐‘‹108
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 โˆ’ ๐ผ ๐‘‹๐‘‹3
๐‘ฐ ๐‘ฟ๐‘ฟ = 7.84 X ๐Ÿ๐ŸŽ ๐Ÿ–
๐’Ž๐’Ž ๐Ÿ’
Example on Composite Area (2D)
Example 7: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data,
100 300 200
300
1
2
3
1
2
3
๐‘‘. ๐‘3
12
= 1.6๐‘‹109
โ„Ž.๐‘3
36
= 6.67๐‘‹107
๐œ‹.๐‘Ÿ4
8
= 1.99๐‘‹108
1,20,000
30,000
35342.91
X1=200, X2=466.67, X3=250, ๐‘ฟ = 254.36 mm
-54.36
212.31
-4.36
1.95๐‘‹109
1.41๐‘‹109
1.99๐‘‹108
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 โˆ’ ๐ผ ๐‘Œ๐‘Œ3
๐‘ฐ ๐’€๐’€ = 3.16 X ๐Ÿ๐ŸŽ ๐Ÿ—
๐’Ž๐’Ž ๐Ÿ’
Example on Composite Area (2D)
Example 8: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data, Part Area
(๐’Ž๐’Ž ๐Ÿ
)
Xi (mm) Yi (mm)
1 12X9=108 X1=
12
2
= 6 Y1=
9
2
= 4.5
2 27 X2= 6+
2
3
(6) = 10 Y2=
1
3
(9) = 3
3 9 X3=
1
3
(6) = 2 Y3=6+
2
3
(3) = 8
6 6
66
6
3
1 2
3
๐‘‹ = Distance between Centroid of element toY axis,
๐‘‹ =
๐ด1 ๐‘‹1โˆ’ ๐ด2 ๐‘‹2โˆ’๐ด3 ๐‘‹3
๐ด1โˆ’๐ด2โˆ’๐ด3
= 5 mm
๐‘Œ = Distance between Centroid of element to X axis,
๐‘Œ =
๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2โˆ’๐ด3 ๐‘Œ3
๐ด1+๐ด2โˆ’๐ด3
= 4.63 mm
Example on Composite Area (2D)
Example 8: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data,
6 6
66
6
3
1 2
3
1
2
3
๐‘. ๐‘‘3
12
= 729
๐‘. โ„Ž3
36
= 121.5
๐‘. โ„Ž3
36
= 4.5
108
27
9
Y1=4.5,Y2=3,Y3=8, ๐’€ = 4.63 mm -0.13
-1.63
3.37
730.82
193.24
106.71
๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 โˆ’ ๐ผ ๐‘‹๐‘‹2 โˆ’ ๐ผ ๐‘‹๐‘‹3
๐‘ฐ ๐‘ฟ๐‘ฟ = ๐Ÿ’๐Ÿ‘๐ŸŽ. ๐Ÿ–๐Ÿ• ๐’Ž๐’Ž ๐Ÿ’
Example on Composite Area (2D)
Example 8: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data,
6 6
66
6
3
1 2
3
1
2
3
108
27
9
1
5
-3
1404
729
99
๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 โˆ’ ๐ผ ๐‘Œ๐‘Œ2 โˆ’ ๐ผ ๐‘Œ๐‘Œ3
๐‘ฐ ๐’€๐’€ = ๐Ÿ“๐Ÿ•๐Ÿ” ๐’Ž๐’Ž ๐Ÿ’
๐‘‘. ๐‘3
12
= 1296
โ„Ž.๐‘3
36
= 54
โ„Ž.๐‘3
36
= 18
X1=6, X2=10, X3=2, ๐‘ฟ = 5 mm
Topic will be cover:
1. Moment of Inertia:
h) Formula of Moment of Inertia
i) Steps of problem solving
j) Example (1 to 8 With Solution)
k) Example (Home Work)
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in
Unit no.: 5
Subject Name: FMD
01ME0305
Example on Composite Area (2D)
Example 9: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm)
Solution:
Given Data,
3
6
3
3 6
3
3
6
4
Department of Mechanical
Engineering.
Prof. Malay Badodariya
malay.badodariya@marwadie
ducation.edu.in

More Related Content

What's hot

Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.pptVenkatesh Ca
ย 
Vilas Nikam- Mechanics of structure-Stress in beam presentation
Vilas Nikam- Mechanics of structure-Stress in beam presentationVilas Nikam- Mechanics of structure-Stress in beam presentation
Vilas Nikam- Mechanics of structure-Stress in beam presentationNIKAMVN
ย 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertiaUsman Sajid
ย 
centroid & moment of inertia
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertiasachin chaurasia
ย 
Inertia formulas
Inertia formulasInertia formulas
Inertia formulasManalNebhani
ย 
Shear force and bending moment
Shear force and bending moment Shear force and bending moment
Shear force and bending moment temoor abbasa
ย 
Bending stresses in beams
Bending stresses in beamsBending stresses in beams
Bending stresses in beamsDr. Bhimsen Soragaon
ย 
Centroid
CentroidCentroid
Centroidserinsara
ย 
Centroid and centre of gravity
Centroid and centre of gravityCentroid and centre of gravity
Centroid and centre of gravityEkeeda
ย 
shear centre
shear centreshear centre
shear centreVenkatesh Ca
ย 
Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materialsSelf-employed
ย 
Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)Simran Vats
ย 
Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...Muthanna Abbu
ย 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_methodMahdi Damghani
ย 
Strength of materials
Strength of materialsStrength of materials
Strength of materialsAnudeep Chittluri
ย 
strength of materials
strength of materialsstrength of materials
strength of materialsGowtham Raja
ย 
Stresses and its components - Theory of Elasticity and Plasticity
Stresses and its components - Theory of Elasticity and PlasticityStresses and its components - Theory of Elasticity and Plasticity
Stresses and its components - Theory of Elasticity and PlasticityAshishVivekSukh
ย 
Elastic flexural torsional buckling
Elastic flexural torsional bucklingElastic flexural torsional buckling
Elastic flexural torsional bucklingBhavin Shah
ย 

What's hot (20)

Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.ppt
ย 
Vilas Nikam- Mechanics of structure-Stress in beam presentation
Vilas Nikam- Mechanics of structure-Stress in beam presentationVilas Nikam- Mechanics of structure-Stress in beam presentation
Vilas Nikam- Mechanics of structure-Stress in beam presentation
ย 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertia
ย 
centroid & moment of inertia
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertia
ย 
Inertia formulas
Inertia formulasInertia formulas
Inertia formulas
ย 
Shear force and bending moment
Shear force and bending moment Shear force and bending moment
Shear force and bending moment
ย 
Bending stresses in beams
Bending stresses in beamsBending stresses in beams
Bending stresses in beams
ย 
Centroid
CentroidCentroid
Centroid
ย 
Curved Beams
Curved Beams Curved Beams
Curved Beams
ย 
Energy method
Energy methodEnergy method
Energy method
ย 
Centroid and centre of gravity
Centroid and centre of gravityCentroid and centre of gravity
Centroid and centre of gravity
ย 
shear centre
shear centreshear centre
shear centre
ย 
Mechanics of materials
Mechanics of materialsMechanics of materials
Mechanics of materials
ย 
Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)Stucture design -I (Centre of Gravity ;Moment of Inertia)
Stucture design -I (Centre of Gravity ;Moment of Inertia)
ย 
Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...Lec.2 statically determinate structures & statically indeterminate struct...
Lec.2 statically determinate structures & statically indeterminate struct...
ย 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_method
ย 
Strength of materials
Strength of materialsStrength of materials
Strength of materials
ย 
strength of materials
strength of materialsstrength of materials
strength of materials
ย 
Stresses and its components - Theory of Elasticity and Plasticity
Stresses and its components - Theory of Elasticity and PlasticityStresses and its components - Theory of Elasticity and Plasticity
Stresses and its components - Theory of Elasticity and Plasticity
ย 
Elastic flexural torsional buckling
Elastic flexural torsional bucklingElastic flexural torsional buckling
Elastic flexural torsional buckling
ย 

Similar to Moment of Inertia by Prof. Malay Badodariya

Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2askiitians
ย 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxinfantsuk
ย 
Qualification Exam Classical Mechanics.pdf
Qualification Exam Classical Mechanics.pdfQualification Exam Classical Mechanics.pdf
Qualification Exam Classical Mechanics.pdfgustavo54orihuelahot
ย 
Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1askiitians
ย 
Problem and solution i ph o 27
Problem and solution i ph o 27Problem and solution i ph o 27
Problem and solution i ph o 27eli priyatna laidan
ย 
Neet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologyNeet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologypravallikadodda
ย 
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory BasedJEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory BasedMiso Study
ย 
Moment of inertia revision
Moment of inertia revisionMoment of inertia revision
Moment of inertia revisionUtkarshKushwaha16
ย 
Vidyamandir Jee Advanced 2013 Paper 2
Vidyamandir Jee Advanced 2013 Paper 2Vidyamandir Jee Advanced 2013 Paper 2
Vidyamandir Jee Advanced 2013 Paper 2askiitians
ย 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaVrushali Nalawade
ย 
NCERT Solutions for Gravitation Class 11 Physics Study material pdf download
NCERT Solutions for Gravitation Class 11 Physics Study material pdf downloadNCERT Solutions for Gravitation Class 11 Physics Study material pdf download
NCERT Solutions for Gravitation Class 11 Physics Study material pdf downloadVivekanand Anglo Vedic Academy
ย 
Bending stresses and shear stresses
Bending stresses and shear stressesBending stresses and shear stresses
Bending stresses and shear stressessumitt6_25730773
ย 
IARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdfIARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdfPrashantKuwar
ย 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structuresAhmed zubydan
ย 
AMU - Physics - 2005
AMU - Physics  - 2005AMU - Physics  - 2005
AMU - Physics - 2005Vasista Vinuthan
ย 
IIT JEE 2013 Solved Paper by Prabhat Gaurav
IIT JEE 2013 Solved Paper by Prabhat GauravIIT JEE 2013 Solved Paper by Prabhat Gaurav
IIT JEE 2013 Solved Paper by Prabhat GauravSahil Gaurav
ย 

Similar to Moment of Inertia by Prof. Malay Badodariya (18)

Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2Aakash JEE Advance Solution Paper2
Aakash JEE Advance Solution Paper2
ย 
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docxMA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
MA 243 Calculus III Fall 2015 Dr. E. JacobsAssignmentsTh.docx
ย 
Qualification Exam Classical Mechanics.pdf
Qualification Exam Classical Mechanics.pdfQualification Exam Classical Mechanics.pdf
Qualification Exam Classical Mechanics.pdf
ย 
Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1Aakash JEE Advance Solution Paper1
Aakash JEE Advance Solution Paper1
ย 
Problem and solution i ph o 27
Problem and solution i ph o 27Problem and solution i ph o 27
Problem and solution i ph o 27
ย 
Neet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologyNeet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biology
ย 
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory BasedJEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
ย 
Moment of inertia revision
Moment of inertia revisionMoment of inertia revision
Moment of inertia revision
ย 
Vidyamandir Jee Advanced 2013 Paper 2
Vidyamandir Jee Advanced 2013 Paper 2Vidyamandir Jee Advanced 2013 Paper 2
Vidyamandir Jee Advanced 2013 Paper 2
ย 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
ย 
NCERT Solutions for Gravitation Class 11 Physics Study material pdf download
NCERT Solutions for Gravitation Class 11 Physics Study material pdf downloadNCERT Solutions for Gravitation Class 11 Physics Study material pdf download
NCERT Solutions for Gravitation Class 11 Physics Study material pdf download
ย 
Bending stresses and shear stresses
Bending stresses and shear stressesBending stresses and shear stresses
Bending stresses and shear stresses
ย 
Ch26 ssm
Ch26 ssmCh26 ssm
Ch26 ssm
ย 
IARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdfIARE_SOM_II_PPT.pdf
IARE_SOM_II_PPT.pdf
ย 
Deformation of structures
Deformation of structuresDeformation of structures
Deformation of structures
ย 
AMU - Physics - 2005
AMU - Physics  - 2005AMU - Physics  - 2005
AMU - Physics - 2005
ย 
Problem 2 a ph o 2
Problem 2 a ph o 2Problem 2 a ph o 2
Problem 2 a ph o 2
ย 
IIT JEE 2013 Solved Paper by Prabhat Gaurav
IIT JEE 2013 Solved Paper by Prabhat GauravIIT JEE 2013 Solved Paper by Prabhat Gaurav
IIT JEE 2013 Solved Paper by Prabhat Gaurav
ย 

Recently uploaded

chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
ย 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7Call Girls in Nagpur High Profile Call Girls
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
ย 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
ย 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
ย 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
ย 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
ย 

Recently uploaded (20)

chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
ย 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
ย 
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Ramesh Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
ย 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
ย 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
ย 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
ย 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
ย 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
ย 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
ย 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 

Moment of Inertia by Prof. Malay Badodariya

  • 1. Department of Mechanical Engineering. Prof. Malay Badodariya +91 9429 158833 FundamentalOfMachineDesign (01ME0504) Centroid and Moment of inertia (Part 2 - MI)
  • 2. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 3. Topic will be cover: 1. Moment of Inertia: h) Formula of Moment of Inertia i) Steps of problem solving j) Example (1 to 8 With Solution) k) Example (Home Work) Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 4. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 5. a) Introduction ๏ƒ˜ It is defined as the algebraic sum of product of area and the square of distance from the particular axis. ๏ƒ˜ It is denoted by ๐ผ ๐‘‹๐‘‹ or ๐ผ ๐‘Œ๐‘Œ ๏ƒ˜ It is given by I =Aโ„Ž2 ๏ƒ˜ Unit - ๐‘š๐‘š4 ๏ƒ˜ It is second moment of area which is measure of rรฉsistance to bending & forms basic to strength of material. ๏ƒ˜ Mass MI is the rรฉsistance to rotation & forms basic to dynamics to rigid bodies.
  • 6. ๏ƒ˜ Consider a lamina of area A shown in fig. ๏ƒ˜ Let, this lamina is split up in to an infinite number of small elements each of area da. ๏ƒ˜ Let, x1, x2, x3 ... are the distances of small elements from OY axis. ๏ƒ˜ y1 , y2, y3 ... are the distances of small elements from OX axis. ๏ƒ˜ Taking second moment of all the small elements about OX axis,
  • 7. ๏ƒ˜ Taking second moment of all the small elements about OY axis,
  • 8. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 9. b) ParallelAxis Theorem ๏ƒ˜ M.I of plane section about any axis is equal to MI of plane section about the parallel axis parallel axis passing through its CG plus the product of area and square of distance between two axes. ๏ƒ˜ ๐‘ฐ ๐‘จ๐‘ฉ = ๐‘ฐ ๐’ˆ + a๐’‰ ๐Ÿ Where, ๐ผ๐ด๐ต = M.I. of area about AB ๐ผ๐‘” = M.I. of area about C.G. a = Area of the section h = distance between c.g. of section and axis AB.
  • 10. Proof: Condition 1: Two axis must be parallel. Condition 2: One axis should pass through CG. Condition 3: h is perpendicular distance between two axis. ๏ƒ˜ Y = distance of strip from CG of section.
  • 11. ๏ƒ˜ M.I. of strip about CG of section, ๏ƒ˜ I = da.๐‘ฆ2 ๏ƒ˜ M.I. of whole section about an axis passing through CG, ๏ƒ˜ ๐ผ๐‘” = ๐‘‘๐‘Ž. ๐‘ฆ2 ๏ƒ˜ M.I. of whole section about an axis AB, ๏ƒ˜ ๐ผ๐ด๐ต = ๐‘‘๐‘Ž. โ„Ž + ๐‘ฆ 2 = ๐‘‘๐‘Ž. (โ„Ž2 + ๐‘ฆ2 + 2โ„Ž๐‘ฆ) = ๐‘‘๐‘Ž. โ„Ž2 + ๐‘‘๐‘Ž. ๐‘ฆ2+ ๐‘‘๐‘Ž. 2โ„Ž๐‘ฆ = aโ„Ž2+ ๐ผ๐‘” + 0 ๏ƒ˜ ๐ผ๐ด๐ต = ๐ผ๐‘” + aโ„Ž2
  • 12. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 13. c) Perpendicular AxisTheorem ๏ƒ˜ The moment of inertia of polar axis is equal to algebraic sum of MI of two axis about which axis is perpendicular. ๏ƒ˜ ๐‘ฐ ๐’›๐’› = ๐‘ฐ ๐’™๐’™ + ๐‘ฐ ๐’š๐’š Proof: Condition 1: Only for 2D Body (Laminar Plate) Condition 2: X,Y & Z axis mutually perpendicular Condition 3: X &Y axis should be in the plane of the body Condition 4: Z should be perpendicular to the plane of body 2D Body
  • 14. ๏ƒ˜ Consider a small area da on lamina plate. ๏ƒ˜ X andY are co-ordinate of P along OX and OY axis. ๏ƒ˜ OP = r, (distance between P and z axis) ๏ƒ˜ Now use Pythagoras theorem, ๏ƒ˜ ๐‘Ÿ2 = ๐‘‹2 + ๐‘Œ2 ๏ƒ˜ M.I. of P about X โ€“ X axis, ๏ƒ˜ ๐ผ ๐‘‹๐‘‹ = ๐‘‘๐‘Ž. ๐‘ฆ2 ๏ƒ˜ M.I. of P about Y โ€“Y axis, ๏ƒ˜ ๐ผ ๐‘Œ๐‘Œ = ๐‘‘๐‘Ž. ๐‘ฅ2 2D Body ๏ƒ˜ M.I. of P about Z โ€“ Z axis, ๏ƒ˜ ๐ผzz = ๐‘‘๐‘Ž. r2
  • 15. ๏ƒ˜ M.I. of P about Z โ€“ Z axis, ๏ƒ˜ ๐ผzz = ๐‘‘๐‘Ž. r2 = da (๐‘‹2 + ๐‘Œ2) = ๐‘‘๐‘Ž. ๐‘ฅ2 + ๐‘‘๐‘Ž. ๐‘ฆ2 ๏ƒ˜ ๐ผzz = ๐ผ ๐‘‹๐‘‹ + ๐ผ ๐‘Œ๐‘Œ 2D Body
  • 16. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 17. Example on Second Moment of Inertia Example 1: Determine the second moment of area of a rectangle about an axis through the centroid. Solution: Given Data, ๏ƒ˜ Consider a rectangle of width โ€˜bโ€™ and depth โ€˜dโ€™. ๏ƒ˜ Also consider a small strip of thickness โ€˜dyโ€™ at distance โ€˜yโ€™ from centroidal axis ๏ƒ˜ We know that second moment of area of a strip about xx axis = da.๐‘ฆ2 Where, da = area of small strip ๏ƒ˜ For M.I. of whole area, integrate between limits โˆ’๐‘‘ 2 ๐‘Ž๐‘›๐‘‘ ๐‘‘ 2 โˆด ๐ผ ๐‘‹๐‘‹ = โˆ’๐‘‘ 2 ๐‘‘ 2 ๐‘‘๐‘Ž. ๐‘ฆ2 โˆด ๐ผ ๐‘‹๐‘‹ = โˆ’๐‘‘ 2 ๐‘‘ 2 (๐‘. ๐‘‘ ๐‘ฆ). ๐‘ฆ2
  • 18. Example on Second Moment of Inertia Example 1: Determine the second moment of area of a rectangle about an axis through the centroid. Solution: Given Data, โˆด ๐ผ ๐‘‹๐‘‹ = โˆ’๐‘‘ 2 ๐‘‘ 2 ๐‘‘๐‘Ž. ๐‘ฆ2 โˆด ๐ผ ๐‘‹๐‘‹ = โˆ’๐‘‘ 2 ๐‘‘ 2 (๐‘. ๐‘‘ ๐‘ฆ). ๐‘ฆ2 โˆด ๐ผ ๐‘‹๐‘‹ = ๐‘ โˆ’๐‘‘ 2 ๐‘‘ 2 (๐‘‘ ๐‘ฆ). ๐‘ฆ2 โˆด ๐ผ ๐‘‹๐‘‹ = ๐‘ ๐‘ฆ3 3 โˆ’๐‘‘ 2 ๐‘‘ 2 โˆด ๐ผ ๐‘‹๐‘‹ = b ๐‘‘3 24 โˆ’ โˆ’๐‘‘3 24 = ๐‘.๐‘‘3 12 ๐ผ ๐‘Œ๐‘Œ = ๐‘‘.๐‘3 12
  • 19. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 20. d) Polar Moment of Inertia ๏ƒ˜ Moment of inertia about an axis perpendicular to the plane of an area is known as polar moment of inertia. ๏ƒ˜ It may be denoted as J or ๐ผ๐‘ง๐‘ง. ๏ƒ˜ Thus, the moment of inertia about an axis perpendicular to the plane of the area at O in Fig. is called polar moment of inertia at point O, and is given by, ๐ผ๐‘ง๐‘ง = ๐‘Ÿ2 da
  • 21. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 22. Example on Second Moment of Inertia Example 2: Calculate moment of inertia of a triangular section with base b and height h, about base and about axis passing through centroid. Solution: Given Data, ๏ƒ˜ Consider a triangular section as shown in figure, ๏ƒ˜ let, base = b height = h ๏ƒ˜ Consider a small strip PQ of thickness dx at distance x from A. โˆด ๐‘ƒ๐‘„ ๐ต๐ถ = ๐‘ฅ โ„Ž โˆด ๐‘ƒ๐‘„ = ๐ต๐ถ. ๐‘ฅ โ„Ž ๏ƒ˜ But, BC = base = b, โˆด ๐‘ƒ๐‘„ = ๐‘. ๐‘ฅ โ„Ž ๏ƒ˜ Now area of strip PQ = ๐‘.๐‘ฅ โ„Ž . dx
  • 23. Example on Second Moment of Inertia Example 2: Calculate moment of inertia of a triangular section with base b and height h, about base and about axis passing through centroid. Solution: Given Data, โˆด ๐‘€. ๐ผ. ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘Ž๐‘๐‘œ๐‘ข๐‘ก ๐‘๐‘Ž๐‘ ๐‘’ ๐ต๐ถ, = ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘‹ ๐ท๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ 2 = ๐‘.๐‘ฅ โ„Ž . dx โ„Ž โˆ’ ๐‘ฅ 2 ๏ƒ˜ M.I. of whole triangle section may be found out by integrating above equation between limits 0 to h. โˆด ๐ผ ๐ต๐ถ = 0 โ„Ž ๐‘.๐‘ฅ โ„Ž โ„Ž โˆ’ ๐‘ฅ 2 . dx = ๐‘ โ„Ž 0 โ„Ž ๐‘ฅ โ„Ž2 + ๐‘ฅ2 โˆ’ 2. โ„Ž. ๐‘ฅ . ๐‘‘๐‘ฅ โˆด ๐ผ ๐ต๐ถ = ๐‘ โ„Ž 0 โ„Ž ๐‘ฅโ„Ž2 + ๐‘ฅ3 โˆ’ 2. โ„Ž. ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐‘ โ„Ž โ„Ž2 . ๐‘ฅ2 2 + ๐‘ฅ4 4 โˆ’ 2.โ„Ž.๐‘ฅ3 3 0 โ„Ž โˆด ๐ผ ๐ต๐ถ = ๐‘ โ„Ž โ„Ž4 2 + โ„Ž4 4 โˆ’ 2.โ„Ž4 3 = ๐‘ โ„Ž 6.โ„Ž4+3.โ„Ž4โˆ’8โ„Ž4 12 = ๐‘ โ„Ž โ„Ž4 12 = ๐‘.โ„Ž3 12 ________M.I. about Base BC.
  • 24. Example on Second Moment of Inertia Example 2: Calculate moment of inertia of a triangular section with base b and height h, about base and about axis passing through centroid. Solution: Given Data, ๏ƒ˜ M.I. about c.g. of section can be found out by parallel axis theorem. ๏ƒ˜ ๐ผ ๐ต๐ถ = ๐ผ ๐‘ฅ๐‘ฅ๐บ + ๐ด๐‘‘2 ๏ƒ˜ ๐ผ ๐‘ฅ๐‘ฅ๐‘” = ๐ผ ๐ต๐ถ โˆ’ ๐ด๐‘‘2 = ๐‘โ„Ž3 12 โˆ’ 1 2 ๐‘โ„Ž โ„Ž 3 2 = ๐‘.โ„Ž3 12 โˆ’ ๐‘.โ„Ž3 18 = 3๐‘.โ„Ž3โˆ’2๐‘.โ„Ž3 36 ๏ƒ˜ ๐ผ ๐‘ฅ๐‘ฅ๐‘” = ๐‘.โ„Ž3 36 ___________________ M.I. about c.g. and parallel to base.
  • 25. Topic will be cover: 1. Moment of Inertia: a) Introduction b) Parallel Axis Theorem c) Perpendicular Axis Theorem d) Moment Of Inertia of Rectangle e) Polar Moment of Inertia f) Moment of Inertia of Triangle g) Moment Of Inertia of Circle Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 26. Example on Second Moment of Inertia Example 3: Find second moment of inertia of a circular lamina, about its centroidal axis. Solution: Given Data, ๏ƒ˜Using method of polar M.I. ๏ƒ˜Consider a circular lamina of centre โ€˜Oโ€™ and radius โ€˜rโ€™. ๏ƒ˜Consider an elementary ring of radius โ€˜xโ€™ and thickness โ€˜dxโ€™. ๏ƒ˜Area of elementary ring : da = 2.ฯ€.x.dx ๏ƒ˜M.I. of ring about z-z axis = Area X ๐ท๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ 2 = 2.ฯ€.x.dx X ๐‘ฅ 2 = 2.ฯ€. ๐‘‹3 dx ๏ƒ˜Now M.I. of whole section about centroidal axis can be found out by integrating the above equation from limits โ€˜Oโ€™ to โ€˜rโ€™.
  • 27. Example on Second Moment of Inertia Example 3: Find second moment of inertia of a circular lamina, about its centroidal axis. Solution: Given Data, โˆด ๐ผ๐‘ง๐‘ง = 0 ๐‘Ÿ 2. ๐œ‹. ๐‘‹3 . ๐‘‘๐‘ฅ ๐ผ๐‘ง๐‘ง= 2.๐œ‹. ๐‘‹4 4 0 ๐‘Ÿ = 2.ฯ€. ๐‘Ÿ4 4 = ๐œ‹.๐‘Ÿ4 2 โˆด ๐ผ๐‘ง๐‘ง = ๐œ‹ ๐‘‘ 2 4 2 โˆด ๐ผ ๐‘๐‘ = ๐œ‹ 32 ๐‘‘4
  • 28. Example on Second Moment of Inertia Example 3: Find second moment of inertia of a circular lamina, about its centroidal axis. Solution: Given Data, ๏ƒ˜ As per perpendicular axis theorem, ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘Œ๐‘Œ ๏ƒ˜ Now, ๐ผ ๐‘๐‘ = ๐ผ ๐‘‹๐‘‹ + ๐ผ ๐‘Œ๐‘Œ = 2 ๐ผ ๐‘‹๐‘‹ โˆด ๐œ‹ 32 ๐‘‘4 = 2 ๐ผ ๐‘‹๐‘‹ โˆด ๐ผ ๐‘‹๐‘‹ = ๐œ‹ 64 ๐‘‘4 โˆด ๐‘†๐‘–๐‘š๐‘–๐‘™๐‘Ž๐‘Ÿ๐‘™๐‘ฆ, ๐ผ ๐‘ฆ๐‘ฆ = ๐œ‹ 64 ๐‘‘4
  • 29. Topic will be cover: 1. Moment of Inertia: h) Formula of Moment of Inertia i) Steps of problem solving j) Example (1 to 8 With Solution) k) Example (Home Work) Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 30. Formula of Moment of Inertia Sr. No. Geometrical Shape Area ๐‘ฐ ๐’™๐’™ ๐‘ฐ ๐’š๐’š 1 b X d ๐ผ ๐‘ฅ๐‘ฅ = ๐‘๐‘‘3 12 ๐ผ ๐‘ฆ๐‘ฆ = ๐‘‘๐‘3 12 2 ๐œ‹ 4 ๐‘‘2 ๐ผ ๐‘ฅ๐‘ฅ = ๐œ‹ 64 ๐‘‘4 ๐ผ ๐‘ฆ๐‘ฆ = ๐œ‹ 64 ๐‘‘4
  • 31. Formula of Moment of Inertia Sr. No. Geometrical Shape Area ๐‘ฐ ๐’™๐’™ ๐‘ฐ ๐’š๐’š 3 1 2 ๐‘.h ๐ผ ๐‘ฅ๐‘ฅ = ๐‘. โ„Ž3 36 ๐ผ ๐‘ฆ๐‘ฆ = โ„Ž. ๐‘3 48 4 1 2 ๐‘. h ๐ผ ๐‘ฅ๐‘ฅ = ๐‘. โ„Ž3 36 ๐ผ ๐‘ฆ๐‘ฆ = โ„Ž. ๐‘3 36
  • 32. Topic will be cover: 1. Moment of Inertia: h) Formula of Moment of Inertia i) Steps of problem solving j) Example (1 to 8 With Solution) k) Example (Home Work) Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 33. h) Steps of solving problem of M.I. Number Discription Step 1: Split figure from unknown geometry to known geometry and draw X andY Axis. Like โ€“ Square, Rectangle,Triangle, Circle etc. Step 2: Find Centroid of Individual geometry (X andY Component) Like - ๐‘‹1, ๐‘Œ1, ๐‘‹2, ๐‘Œ2 (Use Centroid Formula) Step 3: Find centroid of whole geometry. Like - ๐‘‹ & ๐‘Œ Step 4: Find Moment about x axis of Individual geometry (i.e.: ๐ผ ๐‘‹๐‘‹1, ๐ผ ๐‘‹๐‘‹2, ๐ผ ๐‘‹๐‘‹3, ๐ผ ๐‘‹๐‘‹4) (Use parallel axis theorem, ๐ผ ๐‘‹๐‘‹1 = ๐ผ๐‘” + ๐‘Žโ„Ž2 ) Where, ๐ผ๐‘” = ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘–๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘”๐‘’๐‘œ๐‘š๐‘’๐‘ก๐‘Ÿ๐‘ฆ ๐ผ ๐‘‹๐‘‹ a = Area of geometry h = ๐‘Œ1 - ๐‘Œ Step 5: Find Moment aboutY axis of Individual geometry (i.e.: ๐ผ ๐‘Œ๐‘Œ1, ๐ผ ๐‘Œ๐‘Œ2, ๐ผ ๐‘Œ๐‘Œ3, ๐ผ ๐‘Œ๐‘Œ4) (Use parallel axis theorem, ๐ผ ๐‘Œ๐‘Œ1 = ๐ผ๐‘” + ๐‘Žโ„Ž2 ) Where, ๐ผ๐‘” = ๐‘€๐‘œ๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘–๐‘›๐‘’๐‘Ÿ๐‘ก๐‘–๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘”๐‘’๐‘œ๐‘š๐‘’๐‘ก๐‘Ÿ๐‘ฆ ๐ผ ๐‘Œ๐‘Œ a = Area of geometry h = ๐‘‹1 - ๐‘‹
  • 34. Number Discription Step 6: Find Total M.I. of geometry (X andY Component) Like - ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3 + ๐ผ ๐‘‹๐‘‹4 + ________ Like - ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3 + ๐ผ ๐‘Œ๐‘Œ4 + ________
  • 35. Topic will be cover: 1. Moment of Inertia: h) Formula of Moment of Inertia i) Steps of problem solving j) Example (1 to 8 With Solution) k) Example (Home Work) Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 36. Example on Moment of Inertia Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm Step 1:Split figure from unknown geometry to known geometry and draw X andY Axis. 20 cm 2 cm 30 cm 2 cm
  • 37. Example on Composite Area (2D) Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm Now Consider Element 1 Area of Element 1 = 2 x 20 = 40 ๐ถ๐‘€2 ๐‘‹1= ๐ฟ 2 = 20 2 = 10 cm Y1 = 30 + ๐‘Š 2 = 30 + 2 2 = 30 + 1 = 31 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, X1 Y1 Step 2 :Find Centroid of Individual geometry (X andY Component) Like - ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ, ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ (Use Centroid Formula)
  • 38. Example on Composite Area (2D) 20 cm 2 cm 30 cm 2 cm Now Consider Element 2 Area of Element 2 = 2 x 30 = 60 ๐‘๐‘š2 ๐‘‹2= 10 cm Y2 = ๐‘Š 2 = 30 2 = 15 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, X2 Y2 Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data,
  • 39. Example on Composite Area (2D) 20 cm 2 cm 30 cm 2 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ Element Area (๐’„๐’Ž ๐Ÿ ) Xi Yi 1 40 X1=10 cm Y1=31 cm 2 60 X2=10 cm Y2=15 cm ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2 ๐ด1+๐ด2 = 400+600 100 = 10 cm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2 ๐ด1+๐ด2 = 1240+900 100 = 21.40 cm G Step 3: Find centroid of whole geometry. Like - ๐‘ฟ & ๐’€ Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data,
  • 40. Example on Composite Area (2D) Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm ๐‘ฟ ๐’€ G Step 4: Find Moment about x axis of Individual geometry Like - ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”1 = ๐‘๐‘‘3 12 = (20)(2)3 12 = 13.33 ๐‘๐‘š4 Area, a = b X d = 20 X 2 = 40 ๐‘๐‘š2 h = ๐‘Œ1 - ๐‘Œ = 31 โ€“ 21.40 = 9.6 cm ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 13.33 + (40 X 9.62) = 3699.73 ๐‘๐‘š4 X1 Y1h
  • 41. Example on Composite Area (2D) Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm ๐’€ G Step 4: Find Moment about x axis of Individual geometry Like - ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”2 = ๐‘๐‘‘3 12 = (2)(30)3 12 = 4500 ๐‘๐‘š4 Area, a = b X d = 2 X 30 = 60 ๐‘๐‘š2 h = ๐‘Œ2 - ๐‘Œ = 15 โ€“ 21.40 = (-6.4) cm ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 4500 + (60 X 6.42) = 6957.6 ๐‘๐‘š4 h X2 Y2
  • 42. Example on Composite Area (2D) Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm ๐‘ฟ ๐’€ G Step 5: Find Moment aboutY axis of Individual geometry Like - ๐‘ฐ ๐’€๐’€๐Ÿ, ๐‘ฐ ๐’€๐’€๐Ÿ ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”1 = ๐‘‘๐‘3 12 = (2)(20)3 12 = 1333.33 ๐‘๐‘š4 Area, a = b X d = 20 X 2 = 40 ๐‘๐‘š2 h = ๐‘‹1 - ๐‘‹ = 10 โ€“ 10 = 0 cm ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 1333.33 + (40 X0) = 1333.33 ๐‘๐‘š4 X1 Y1
  • 43. Example on Composite Area (2D) Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm ๐’€ G Step 5: Find Moment about x axis of Individual geometry Like - ๐‘ฐ ๐’€๐’€๐Ÿ, ๐‘ฐ ๐’€๐’€๐Ÿ ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”2 = ๐‘‘๐‘3 12 = (30)(2)3 12 = 20 ๐‘๐‘š4 Area, a = b X d = 2 X 30 = 60 ๐‘๐‘š2 h = ๐‘‹2 - ๐‘‹ = 0 โ€“ 0 = 0 cm ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 20 + (60 X0) = 20 ๐‘๐‘š4 X2 Y2 ๐‘ฟ
  • 44. Example on Composite Area (2D) Example 1: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a โ€˜Tโ€™ section as per figure. Solution: Given Data, 20 cm 2 cm 30 cm 2 cm ๐’€ G Step 6: Find Total M.I. of geometry (X andY Component) Like - ๐‘ฐ ๐‘ฟ๐‘ฟ, ๐‘ฐ ๐’€๐’€ ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 ๐ผ ๐‘‹๐‘‹ = 3699.7 + 6957.6 ๐ผ ๐‘‹๐‘‹ = 10657.3 ๐‘๐‘š4 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 ๐ผ ๐‘Œ๐‘Œ = 1333.33 + 20 ๐ผ ๐‘Œ๐‘Œ = 1353.33 ๐‘๐‘š4 X2 ๐‘ฟ
  • 45. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm 2.5 cm 10 cm 2.5 cm 10 cm 2.5 cm 2.5 cm Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, Step 1:Split figure from unknown geometry to known geometry and draw X andY Axis.
  • 46. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, Now Consider Part 1 Area of Element 1 = 2.5 x 10 = 25 ๐‘๐‘š2 ๐‘‹1= ๐ฟ 2 = 10 2 = 5 cm Y1 = 2.5 + 10 + ๐‘Š 2 = 2.5 + 10 + 2.5 2 = 13.75 cm X1 Y1 Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, Step 2 :Find Centroid of Individual geometry (X andY Component) Like - ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ, ๐‘ฟ ๐Ÿ, ๐’€ ๐Ÿ (Use Centroid Formula)
  • 47. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, Now Consider Part 2 Area of Element 1 = 2.5 x 10 = 25 ๐‘๐‘š2 ๐‘‹2= ๐ฟ 2 = 2.5 2 = 1.25 cm Y2 = 2.5 + ๐‘Š 2 = 2.5 + 10 2 = 7.5 cm X2 Y2 Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data,
  • 48. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, Now Consider part 3 Area of Element 3 = 2.5 x 10 = 25 ๐‘๐‘š2 ๐‘‹3= ๐ฟ 2 = 10 2 = 5 cm Y3 = ๐‘Š 2 = 2.5 2 = 1.25 cm X3 Y3 Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data,
  • 49. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, Part Area (๐’„๐’Ž ๐Ÿ ) Xi Yi 1 25 X1=5 cm Y1=13.75 cm 2 25 X2=1.25 cm Y2=7.5 cm 3 25 X3=5 cm Y3=1.25 cm ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2+๐ด3 ๐‘‹3 ๐ด1+๐ด2+๐ด3 = 125+31.25+125 75 = 3.75 cm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2+๐ด3 ๐‘Œ3 ๐ด1+๐ด2+๐ด3 = 343.75+187.5+31.25 75 = 7.5 cm ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, Step 3: Find centroid of whole geometry. Like - ๐‘ฟ & ๐’€
  • 50. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, Step 4: Find Moment about x axis of Individual geometry Like - ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”1 = ๐‘๐‘‘3 12 = (10)(2.5)3 12 = 13.02 ๐‘๐‘š4 Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2 h = ๐‘Œ1 - ๐‘Œ = 13.75 โ€“ 7.5 = 6.25 cm ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 13.02 + (25 X 6.252) = 989.58 ๐‘๐‘š4 X1 Y1
  • 51. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”2 = ๐‘๐‘‘3 12 = (2.5)(10)3 12 = 208.33 ๐‘๐‘š4 Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2 h = ๐‘Œ2 - ๐‘Œ = 7.5 โ€“ 7.5 = 0 cm ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 208.33 + (25 X0) = 208.33 ๐‘๐‘š4 X2 Y2
  • 52. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”3 = ๐‘๐‘‘3 12 = (10)(2.5)3 12 = 13.02 ๐‘๐‘š4 Area, a = b X d = 2.5 X 10 = 25 ๐‘๐‘š2 h = ๐‘Œ3 - ๐‘Œ = 1.25 โ€“ 7.5 = - 6.25 cm ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ = 13.02 + (25 X6.252) = 989.58 ๐‘๐‘š4 X3 Y3
  • 53. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, Step 5: Find Moment aboutY axis of Individual geometry Like - ๐‘ฐ ๐’€๐’€๐Ÿ, ๐‘ฐ ๐’€๐’€๐Ÿ ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”1 = ๐‘‘๐‘3 12 = (2.5)(10)3 12 = 208.33 ๐‘๐‘š4 Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2 h = ๐‘‹1 - ๐‘‹ = 5 โ€“ 3.75 = 1.25 cm ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 208.33 + (25 X 1.252) = 247.39 ๐‘๐‘š4 X1 Y1
  • 54. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”2 = ๐‘‘๐‘3 12 = (10)(2.5)3 12 = 13.02 ๐‘๐‘š4 Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2 h = ๐‘‹2 - ๐‘‹ = 1.25 โ€“ 3.75 = -2.5 cm ๐‘ฐ ๐’€๐’€๐Ÿ = ๐‘ฐ ๐’ˆ๐Ÿ + ๐’‚๐’‰ ๐Ÿ = 13.02 + (25 X 2.52) = 169.27 ๐‘๐‘š4 X2 Y2
  • 55. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, ๐‘ฐ ๐’€๐’€๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ ๐ผ๐‘” = M.I. of area about C.G. Letโ€™s Find ๐ผ๐‘”3 = ๐‘‘๐‘3 12 = (2.5)(10)3 12 = 208.33 ๐‘๐‘š4 Area, a = b X d = 10 X 2.5 = 25 ๐‘๐‘š2 h = ๐‘‹3 - ๐‘‹ = 5 โ€“ 3.75 = 1.25 cm ๐‘ฐ ๐’€๐’€๐Ÿ‘ = ๐‘ฐ ๐’ˆ๐Ÿ‘ + ๐’‚๐’‰ ๐Ÿ = 208.33 + (25 X 1.252) = 247.39 ๐‘๐‘š4 X3 Y3
  • 56. Example on Composite Area (2D) 10 cm 2.5 cm 10 cm 2.5 cm Note: ๐‘‹ = Distance between Centroid of element toY axis, ๐‘Œ = Distance between Centroid of element to X axis, ๐‘ฟ ๐’€ G Example 2: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for as per figure. Solution: Given Data, Step 6: Find Total M.I. of geometry (X andY Component) Like - ๐‘ฐ ๐‘ฟ๐‘ฟ, ๐‘ฐ ๐’€๐’€ ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3 ๐ผ ๐‘‹๐‘‹ = 989.58 + 208.33 + 989.58 ๐ผ ๐‘‹๐‘‹ = 2187.49 ๐‘๐‘š4 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3 ๐ผ ๐‘Œ๐‘Œ = 247.39 + 169.27 +247.39 ๐ผ ๐‘Œ๐‘Œ = 664.05 ๐‘๐‘š4
  • 57. Example on Composite Area (2D) Example 3: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, 2 cm 2 cm 2 cm 8 cm 16 cm Part Area (๐’„๐’Ž ๐Ÿ ) Xi Yi 1 16 X1=4 cm Y1=13 cm 2 20 X2=7 cm Y2=7 cm 3 32 X3=14 cm Y3=1 cm ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2+๐ด3 ๐‘‹3 ๐ด1+๐ด2+๐ด3 = 64+140+448 68 = 9.58 cm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2+๐ด3 ๐‘Œ3 ๐ด1+๐ด2+๐ด3 = 208+140+32 68 = 5.58 cm ๐‘ฟ ๐’€ G 12 cm Y1=13 cm,Y2=7 cm,Y3=1 cm, ๐’€ = 5.58 cm
  • 58. Example on Composite Area (2D) Example 3: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, 2 cm 2 cm 2 cm 8 cm 16 cm ๐‘ฟ ๐’€ 12 cm ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3 ๐ผ ๐‘‹๐‘‹ = 886.23+206.99+681.99 ๐ผ ๐‘‹๐‘‹ = 1775.21 ๐‘๐‘š4 1 2 3 ๐‘. ๐‘‘3 12 = 5.33 ๐‘. ๐‘‘3 12 = 166.67 ๐‘. ๐‘‘3 12 = 10.66 16 20 32 7.42 1.42 -4.58 ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = 886.23 ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ = 206.99 ๐‘ฐ ๐‘ฟ๐‘ฟ๐Ÿ‘ = 681.90 Y1=13 cm,Y2=7 cm,Y3=1 cm, ๐’€ = 5.58 cm
  • 59. Example on Composite Area (2D) Example 3: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, 2 cm 2 cm 2 cm 8 cm 16 cm ๐‘ฟ ๐’€ G 12 cm ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3 ๐ผ ๐‘Œ๐‘Œ = 583.51+139.80+1307.83 ๐ผ ๐‘Œ๐‘Œ = 2031.14 ๐‘๐‘š4 1 2 3 ๐‘‘. ๐‘3 12 = 85.33 ๐‘‘. ๐‘3 12 = 6.67 ๐‘‘. ๐‘3 12 = 682.67 16 20 32 -5.58 -2.58 4.42 ๐‘ฐ ๐’€๐’€๐Ÿ = 583.51 ๐‘ฐ ๐’€๐’€๐Ÿ = 139.80 ๐‘ฐ ๐’€๐’€๐Ÿ‘ = 1307.83 X1=4 cm, X2=7 cm, X3=14 cm, ๐‘ฟ = 9.58 cm
  • 60. Example on Composite Area (2D) Example 4: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, 9cm 3 cm 6 cm ๐‘ฟ ๐’€ Element Area (๐’„๐’Ž ๐Ÿ ) Xi Yi 1 27 X1=1.5 cm Y1=4.5 cm 2 13.5 X2=4 cm Y2=3 cm ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2 ๐ด1+๐ด2 = 2.33 cm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2 ๐ด1+๐ด2 = 4 cm
  • 61. Example on Composite Area (2D) Example 4: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, 9cm 3 cm 6 cm ๐‘ฟ ๐’€ 1 2 ๐‘. ๐‘‘3 12 = 182.25 ๐‘.โ„Ž3 36 = 60.75 27 13.5 Y1=4.5 cm,Y2=3 cm, ๐’€ = 4 cm 0.5 - 1 189 74.25 ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 ๐ผ ๐‘‹๐‘‹ = 189+74.25 ๐ผ ๐‘‹๐‘‹ = 263.25 ๐‘๐‘š4
  • 62. Example on Composite Area (2D) Example 4: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, 9cm 3 cm 6 cm ๐‘ฟ ๐’€ 1 2 ๐‘‘. ๐‘3 12 = 20.25 โ„Ž.๐‘3 36 = 6.75 27 13.5 -0.83 1.67 38.85 44.40 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 ๐ผ ๐‘Œ๐‘Œ = 38.85+44.40 ๐ผ ๐‘Œ๐‘Œ = 83.25 ๐‘๐‘š4 X1=1.5 cm, X2=4 cm, ๐‘ฟ = 2.33 cm
  • 63. Example on Composite Area (2D) Example 5: A rectangular section is 400 mm wide and 800 mm deep. Two circular holes of 200 mm diameter each are cut on Y-Y axis at distance 200 mm and 600 mm from the top edge. Calculate M.I. about xx and yy axis. Solution: Given Data, 800 400 200200200200 1 2 3 A1 = 320000 A2 = 31415.92 A3=31415.92 X1= 0 X2= 0 X3= 0 Y1= 0 mm Y2= 200 mm Y3= -200 mm ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1โˆ’ ๐ด2 ๐‘‹2โˆ’๐ด3 ๐‘‹3 ๐ด1+๐ด2+๐ด3 = 0 mm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1โˆ’ ๐ด2 ๐‘Œ2โˆ’๐ด3 ๐‘Œ3 ๐ด1โˆ’๐ด2โˆ’๐ด3 = 0 mm
  • 64. Example on Composite Area (2D) Example 5: A rectangular section is 400 mm wide and 800 mm deep. Two circular holes of 200 mm diameter each are cut on Y-Y axis at distance 200 mm and 600 mm from the top edge. Calculate M.I. about xx and yy axis. Solution: Given Data, 800 400 200200200200 1 2 3 ๐œ‹ 64 ๐‘‘4 = 7.85๐‘‹107 ๐œ‹ 64 ๐‘‘4 = 7.85๐‘‹107 ๐‘. ๐‘‘3 12 = 1.7๐‘‹1010 320000 31415.92 31415.92 0 200 200 1.7๐‘‹1010 1.3๐‘‹109 1.3๐‘‹109 ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 โˆ’ ๐ผ ๐‘‹๐‘‹2 โˆ’ ๐ผ ๐‘‹๐‘‹3 ๐ผ ๐‘‹๐‘‹ = (1.7๐‘‹1010) โˆ’ 1.3๐‘‹109 โˆ’ 1.3๐‘‹109 ๐ผ ๐‘‹๐‘‹ = 1.44 ๐‘‹ 1010 ๐‘š๐‘š4 Y1=0 mm,Y2=200 mm,Y3=-200 mm, ๐’€ = 0 mm
  • 65. Example on Composite Area (2D) Example 5: A rectangular section is 400 mm wide and 800 mm deep. Two circular holes of 200 mm diameter each are cut on Y-Y axis at distance 200 mm and 600 mm from the top edge. Calculate M.I. about xx and yy axis. Solution: Given Data, 800 400 200200200200 1 2 3 ๐‘‘. ๐‘3 12 = 4.27๐‘‹109 ๐œ‹ 64 ๐‘‘4 = 7.85๐‘‹107 ๐œ‹ 64 ๐‘‘4 = 7.85๐‘‹107 320000 31415.92 31415.92 0 0 0 4.27๐‘‹109 7.85๐‘‹107 7.85๐‘‹107 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 โˆ’ ๐ผ ๐‘Œ๐‘Œ2 โˆ’ ๐ผ ๐‘Œ๐‘Œ3 IYY = (4.27X109) โ€“(7.85X107) โˆ’ (7.85X107) ๐ผ ๐‘Œ๐‘Œ = 4.1 ๐‘‹109 ๐‘š๐‘š4 X1=0 mm, X2=0 mm, X3=0 mm, ๐‘ฟ = 0 mm
  • 66. Example 6: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, Example on Composite Area (2D) 1 2 3 A1 = 30X100=3000 A2 = 25X100=2500 X1= 100 Y1= 20+20+80+ 30 2 = 135 Y2= 20+ 100 2 = 70 Y4= 20+ 20 3 = 26.664 5 A5 = 1 2 ๐‘‹87.5๐‘‹20=875 A4 = 1 2 ๐‘‹87.5๐‘‹20=875 A3 = 20X200=4000 X2= 100 X3= 100 X4= 2 3 ๐‘‹87.5 = 58.33 X5= 87.5+25+ 87.5 3 =141.67 Y3= 20 2 = 10 Y5= 20+ 20 3 = 26.66 ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2+๐ด3 ๐‘‹3+๐ด4 ๐‘‹4+๐ด5 ๐‘‹5 ๐ด1+๐ด2+๐ด3+๐ด4+๐ด5 = 100 mm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2+๐ด3 ๐‘Œ3+๐ด4 ๐‘Œ4+๐ด5 ๐‘Œ5 ๐ด1+๐ด2+๐ด3+๐ด4+๐ด5 = 59.26 mm
  • 67. Example 6: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, Example on Composite Area (2D) 1 2 3 4 5 ๐‘. ๐‘‘3 12 = 2.25๐‘‹105 ๐‘. ๐‘‘3 12 = 2.08๐‘‹106 ๐‘. ๐‘‘3 12 = 1.33๐‘‹105 ๐‘. โ„Ž3 36 = 1.94๐‘‹104 ๐‘. โ„Ž3 36 = 1.94๐‘‹104 3000 2500 4000 875 875 Y1=135,Y2=70,Y3=10,Y4=26.66,Y5=26.66, ๐’€ = 69.91 mm 65.09 0.09 -59.91 -43.25 -43.25 1.29๐‘‹107 2.08๐‘‹106 1.45๐‘‹107 1.66๐‘‹106 1.66๐‘‹106 ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 + ๐ผ ๐‘‹๐‘‹3 + ๐ผ ๐‘‹๐‘‹4 + ๐ผ ๐‘‹๐‘‹5 ๐‘ฐ ๐‘ฟ๐‘ฟ = 3.28 X ๐Ÿ๐ŸŽ ๐Ÿ• ๐’Ž๐’Ž ๐Ÿ’
  • 68. Example 6: Calculate ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ for a given figure. Solution: Given Data, Example on Composite Area (2D) 1 2 3 4 5 ๐‘‘. ๐‘3 12 = 2.5๐‘‹106 ๐‘‘. ๐‘3 12 = 1.30๐‘‹105 ๐‘‘. ๐‘3 12 = 1.33๐‘‹107 โ„Ž.๐‘3 36 = 3.72๐‘‹105 โ„Ž.๐‘3 36 = 3.72๐‘‹105 3000 2500 4000 875 875 X1=X2= X3=100, X4=58.33, X5=141.67, ๐‘ฟ = 100 mm 0 0 0 -41.67 41.67 2.5๐‘‹106 1.30๐‘‹105 1.33๐‘‹107 1.89๐‘‹106 1.89๐‘‹106 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 + ๐ผ ๐‘Œ๐‘Œ3 + ๐ผ ๐‘Œ๐‘Œ4 + ๐ผ ๐‘Œ๐‘Œ5 ๐‘ฐ ๐’€๐’€ = 1.97 X ๐Ÿ๐ŸŽ ๐Ÿ• ๐’Ž๐’Ž ๐Ÿ’
  • 69. Example on Composite Area (2D) Example 7: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, Part Area (๐’Ž๐’Ž ๐Ÿ ) Xi (mm) Yi (mm) 1 1,20,000 X1=200 Y1= 150 2 30,000 X2=400+ 200 3 = 466.67 Y2= 300 3 = 100 3 ๐œ‹.๐‘Ÿ2 2 =35342.91 X3= 100 + 150 =250 Y3= 4.๐‘Ÿ 3.๐œ‹ = 63.66 ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1+ ๐ด2 ๐‘‹2โˆ’๐ด3 ๐‘‹3 ๐ด1+๐ด2โˆ’๐ด3 = 254.36 mm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2โˆ’๐ด3 ๐‘Œ3 ๐ด1+๐ด2โˆ’๐ด3 = 163.53 mm 100 300 200 300 1 2 3
  • 70. Example on Composite Area (2D) Example 7: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, 100 300 200 300 1 2 3 1 2 3 ๐‘. ๐‘‘3 12 = 9๐‘‹108 0.11.๐‘Ÿ4 = 5.57๐‘‹107 ๐‘. โ„Ž3 36 = 1.5๐‘‹108 1,20,000 30,000 35342.91 Y1=150,Y2=100,Y3=63.66, ๐’€ = 163.53 mm -13.53 -63.53 -99.87 9.21๐‘‹108 2.71๐‘‹108 4.08๐‘‹108 ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 + ๐ผ ๐‘‹๐‘‹2 โˆ’ ๐ผ ๐‘‹๐‘‹3 ๐‘ฐ ๐‘ฟ๐‘ฟ = 7.84 X ๐Ÿ๐ŸŽ ๐Ÿ– ๐’Ž๐’Ž ๐Ÿ’
  • 71. Example on Composite Area (2D) Example 7: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, 100 300 200 300 1 2 3 1 2 3 ๐‘‘. ๐‘3 12 = 1.6๐‘‹109 โ„Ž.๐‘3 36 = 6.67๐‘‹107 ๐œ‹.๐‘Ÿ4 8 = 1.99๐‘‹108 1,20,000 30,000 35342.91 X1=200, X2=466.67, X3=250, ๐‘ฟ = 254.36 mm -54.36 212.31 -4.36 1.95๐‘‹109 1.41๐‘‹109 1.99๐‘‹108 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 + ๐ผ ๐‘Œ๐‘Œ2 โˆ’ ๐ผ ๐‘Œ๐‘Œ3 ๐‘ฐ ๐’€๐’€ = 3.16 X ๐Ÿ๐ŸŽ ๐Ÿ— ๐’Ž๐’Ž ๐Ÿ’
  • 72. Example on Composite Area (2D) Example 8: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, Part Area (๐’Ž๐’Ž ๐Ÿ ) Xi (mm) Yi (mm) 1 12X9=108 X1= 12 2 = 6 Y1= 9 2 = 4.5 2 27 X2= 6+ 2 3 (6) = 10 Y2= 1 3 (9) = 3 3 9 X3= 1 3 (6) = 2 Y3=6+ 2 3 (3) = 8 6 6 66 6 3 1 2 3 ๐‘‹ = Distance between Centroid of element toY axis, ๐‘‹ = ๐ด1 ๐‘‹1โˆ’ ๐ด2 ๐‘‹2โˆ’๐ด3 ๐‘‹3 ๐ด1โˆ’๐ด2โˆ’๐ด3 = 5 mm ๐‘Œ = Distance between Centroid of element to X axis, ๐‘Œ = ๐ด1 ๐‘Œ1+ ๐ด2 ๐‘Œ2โˆ’๐ด3 ๐‘Œ3 ๐ด1+๐ด2โˆ’๐ด3 = 4.63 mm
  • 73. Example on Composite Area (2D) Example 8: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, 6 6 66 6 3 1 2 3 1 2 3 ๐‘. ๐‘‘3 12 = 729 ๐‘. โ„Ž3 36 = 121.5 ๐‘. โ„Ž3 36 = 4.5 108 27 9 Y1=4.5,Y2=3,Y3=8, ๐’€ = 4.63 mm -0.13 -1.63 3.37 730.82 193.24 106.71 ๐ผ ๐‘‹๐‘‹ = ๐ผ ๐‘‹๐‘‹1 โˆ’ ๐ผ ๐‘‹๐‘‹2 โˆ’ ๐ผ ๐‘‹๐‘‹3 ๐‘ฐ ๐‘ฟ๐‘ฟ = ๐Ÿ’๐Ÿ‘๐ŸŽ. ๐Ÿ–๐Ÿ• ๐’Ž๐’Ž ๐Ÿ’
  • 74. Example on Composite Area (2D) Example 8: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, 6 6 66 6 3 1 2 3 1 2 3 108 27 9 1 5 -3 1404 729 99 ๐ผ ๐‘Œ๐‘Œ = ๐ผ ๐‘Œ๐‘Œ1 โˆ’ ๐ผ ๐‘Œ๐‘Œ2 โˆ’ ๐ผ ๐‘Œ๐‘Œ3 ๐‘ฐ ๐’€๐’€ = ๐Ÿ“๐Ÿ•๐Ÿ” ๐’Ž๐’Ž ๐Ÿ’ ๐‘‘. ๐‘3 12 = 1296 โ„Ž.๐‘3 36 = 54 โ„Ž.๐‘3 36 = 18 X1=6, X2=10, X3=2, ๐‘ฟ = 5 mm
  • 75. Topic will be cover: 1. Moment of Inertia: h) Formula of Moment of Inertia i) Steps of problem solving j) Example (1 to 8 With Solution) k) Example (Home Work) Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in Unit no.: 5 Subject Name: FMD 01ME0305
  • 76. Example on Composite Area (2D) Example 9: Determine location of centroid, ๐‘ฐ ๐‘ฟ๐‘ฟ ๐’‚๐’๐’… ๐‘ฐ ๐’€๐’€ of a lamina shown in figure. (All Dimension in mm) Solution: Given Data, 3 6 3 3 6 3 3 6 4
  • 77. Department of Mechanical Engineering. Prof. Malay Badodariya malay.badodariya@marwadie ducation.edu.in