SlideShare a Scribd company logo
1 of 15
Download to read offline
Accurate Learning of Graph Representations
with Graph Multiset Pooling
Jinheon Baek1*, Minki Kang1*, Sung Ju Hwang1,2
(*: equal contribution)
1Graduate School of AI, KAIST, South Korea
2AITRICS, South Korea
Graph Representation Learning
Graph representation learning aims to represent nodes on a graph, which captures
the internal structures on graphs, using a message-passing scheme.
Input Graph Output Graph
Message Passing
Graph Representation Learning
For example, to update a node B on the graph, we aggregate the representations of
its neighborhoods, such as node G, A, and C, which is known as message-passing.
Input Graph Output Graph
Message Passing
Example:
Update B using its neighborhoods.
Graph Pooling for Entire Graph Representations
As a simplest approach, we can average or sum all node features, however such simple
schemes treat all nodes equally without considering important features for tasks.
While message-passing functions produce a set of node representations, we need
an additional graph pooling function to obtain an entire graph representation.
Obtained Graph
Representation
Sum
Pooling
Graph Multiset Encoding
Using graph multiset, we can not only consider redundant nodes on graphs (Multiset),
but also incorporate structural constraints of graphs with auxiliary graph information.
To obtain accurate representations of given graphs, we first focus on that the graph
representation learning can be regarded as a graph multiset encoding problem.
A. Set
B. Multiset
C. Graph Multiset
Graph Multiset Pooling
Given a graph with node features, we define a Graph Multiset Pooling (GMPool)
to compress many nodes into few typical nodes, using a graph multiset scheme.
Input Graph
Message
Passing
Triangle Graph, 3-Path Graph
Node Space that
reflects graph structures
Seed Vectors 𝑺
GMPool
E
A
B
C D
F
G
E
A
B
C D
F
G
C
E
D
F
A
B
G
Graph
Attention
Graph Multiset Transformer
To further consider the interactions among 𝑛 or condensed 𝑘 different nodes,
we propose a Self-Attention function (SelfAtt), inspired by Transformer [1].
[1] Vaswani et al. Attention Is All You Need. NIPS 2017.
Notably, the full structure of our model, namely Graph Multiset Transformer (GMT),
consists of GMPool for compressing nodes, and SelfAtt for considering interactions.
Connection with Weisfeiler-Lehman (WL) Test
Weisfeiler-Lehman (WL) test is known for its ability to distinguish two different
graphs, and our overall architecture can be at most as powerful as the WL test:
Please see the Theorem 1, Lemma 2, and Proposition 3 in section 3.3 of main paper.
• Theorem 1 (Non-isomorphic Graphs to Different Embeddings).
• Lemma 2 (Uniqueness on Graph Multiset Pooling).
• Proposition 3 (Injectiveness on Pooling Function).
Connection with Node Clustering
While the proposed Graph Multiset Pooling needs a linear space 𝑶(𝒏) for 𝑛 nodes,
it can be further approximated to the node clustering approach with 𝑘 clusters:
Please see the Theorem 4, and Proposition 5 in section 3.4 of main paper.
• Theorem 4 (Space Complexity of Graph Multiset Pooling).
• Proposition 5 (Approximation to Node Clustering).
Experiments
We validate the proposed Graph Multiset Pooling on graph classification,
reconstruction, and generation tasks of synthetic and real-world graphs.
• Graph Classification
: The goal is to predict a label of a given graph.
• Graph Reconstruction
: The goal is to reconstruct the node features of graphs from their pooled representations.
• Graph Generation
: The goal is to generate a valid graph with desired properties.
Graph Classification
Graph Multiset Transformer (GMT) outperforms all baselines by a large margin, on
various graph classification datasets in biochemical and social domains.
Biochemical Social
D&D MUTAG HIV Tox21 IMDB-B COLLAB
GCN 72.05 69.50 76.81 75.04 73.26 80.59
DiffPool 77.56 79.22 75.64 74.88 73.14 78.68
SAGPool 74.72 73.67 71.44 69.81 72.55 78.03
MinCutPool 78.22 79.17 75.37 75.11 72.65 80.87
StructPool 78.45 79.50 75.85 75.43 72.06 77.27
EdgePool 75.85 74.17 72.66 73.77 72.46 -
GMT (Ours) 78.72 83.44 77.56 77.30 73.48 80.74
Table: Graph classification results on test sets.
Graph Classification
We also show that the proposed GMT is practical in terms of both memory and
time efficiencies, compared to other baselines showing decent performances.
Figure: Memory efficiency (left) and time efficiency (right) of GMT.
Graph Reconstruction
While graph classification does not directly measure the expressiveness of GNNs,
graph reconstruction quantifies the graph information retained by pooled features.
As shown in the above figure, Graph Multiset Pooling (GMPool) obtains significant
performance gains on the reconstruction tasks of synthetic and molecule graphs.
Figure: Reconstruction results on the synthetic (left) and ZINC molecule (right) datasets.
Graph Generation
Furthermore, we confirm that using the proposed GMT, instead of simple pooling,
results in stable graph generations on QM9 datasets with MolGAN structures.
Figure: Validity curve about molecule generations.
Conclusion
• We treat a graph pooling problem as a graph multiset encoding problem, under
which we consider relationships among nodes with several attention units.
• We show that existing GNNs with the proposed pooling can be as powerful as
the WL test, and also be extended to the node clustering approaches.
• We validate GMT for graph classification, reconstruction, and generation tasks
on synthetic and real-world graphs, on which it largely outperforms baselines.

More Related Content

What's hot

[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...Susang Kim
 
GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...
GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...
GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...Fabio Petroni, PhD
 
HDRF: Stream-Based Partitioning for Power-Law Graphs
HDRF: Stream-Based Partitioning for Power-Law GraphsHDRF: Stream-Based Partitioning for Power-Law Graphs
HDRF: Stream-Based Partitioning for Power-Law GraphsFabio Petroni, PhD
 
Object Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet IIIObject Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet IIIWanjin Yu
 
A Closed-form Solution to Photorealistic Image Stylization
A Closed-form Solution to Photorealistic Image StylizationA Closed-form Solution to Photorealistic Image Stylization
A Closed-form Solution to Photorealistic Image StylizationSherozbekJumaboev
 
LCBM: Statistics-Based Parallel Collaborative Filtering
LCBM: Statistics-Based Parallel Collaborative FilteringLCBM: Statistics-Based Parallel Collaborative Filtering
LCBM: Statistics-Based Parallel Collaborative FilteringFabio Petroni, PhD
 
Mining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completionMining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completionFabio Petroni, PhD
 
Kernel Descriptors for Visual Recognition
Kernel Descriptors for Visual RecognitionKernel Descriptors for Visual Recognition
Kernel Descriptors for Visual RecognitionPriyatham Bollimpalli
 
Double Patterning
Double PatterningDouble Patterning
Double PatterningDanny Luk
 
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...Artem Lutov
 
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperModification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperIJERA Editor
 
computervision project
computervision projectcomputervision project
computervision projectLianli Liu
 
Image processing with open cv,regular training programme in waayoo.com
Image processing with open cv,regular training programme in waayoo.comImage processing with open cv,regular training programme in waayoo.com
Image processing with open cv,regular training programme in waayoo.comPraveen Pandey
 
Image processing and alignment with RNiftyReg and mmand
Image processing and alignment with RNiftyReg and mmandImage processing and alignment with RNiftyReg and mmand
Image processing and alignment with RNiftyReg and mmandJonathan Clayden
 
Comparison of Various RCNN techniques for Classification of Object from Image
Comparison of Various RCNN techniques for Classification of Object from ImageComparison of Various RCNN techniques for Classification of Object from Image
Comparison of Various RCNN techniques for Classification of Object from ImageIRJET Journal
 

What's hot (19)

Double patterning for 32nm and beyond
Double patterning for 32nm and beyondDouble patterning for 32nm and beyond
Double patterning for 32nm and beyond
 
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...
[Paper] GIRAFFE: Representing Scenes as Compositional Generative Neural Featu...
 
GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...
GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...
GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Comple...
 
HDRF: Stream-Based Partitioning for Power-Law Graphs
HDRF: Stream-Based Partitioning for Power-Law GraphsHDRF: Stream-Based Partitioning for Power-Law Graphs
HDRF: Stream-Based Partitioning for Power-Law Graphs
 
Object Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet IIIObject Detection Beyond Mask R-CNN and RetinaNet III
Object Detection Beyond Mask R-CNN and RetinaNet III
 
A Closed-form Solution to Photorealistic Image Stylization
A Closed-form Solution to Photorealistic Image StylizationA Closed-form Solution to Photorealistic Image Stylization
A Closed-form Solution to Photorealistic Image Stylization
 
LCBM: Statistics-Based Parallel Collaborative Filtering
LCBM: Statistics-Based Parallel Collaborative FilteringLCBM: Statistics-Based Parallel Collaborative Filtering
LCBM: Statistics-Based Parallel Collaborative Filtering
 
Mining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completionMining at scale with latent factor models for matrix completion
Mining at scale with latent factor models for matrix completion
 
Kernel Descriptors for Visual Recognition
Kernel Descriptors for Visual RecognitionKernel Descriptors for Visual Recognition
Kernel Descriptors for Visual Recognition
 
z3417835 Bradley Alderton
z3417835 Bradley Aldertonz3417835 Bradley Alderton
z3417835 Bradley Alderton
 
Double Patterning
Double PatterningDouble Patterning
Double Patterning
 
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
DAOR - Bridging the Gap between Community and Node Representations: Graph Emb...
 
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapperModification on Energy Efficient Design of DVB-T2 Constellation De-mapper
Modification on Energy Efficient Design of DVB-T2 Constellation De-mapper
 
computervision project
computervision projectcomputervision project
computervision project
 
Image processing with open cv,regular training programme in waayoo.com
Image processing with open cv,regular training programme in waayoo.comImage processing with open cv,regular training programme in waayoo.com
Image processing with open cv,regular training programme in waayoo.com
 
Rn d presentation_gurulingannk
Rn d presentation_gurulingannkRn d presentation_gurulingannk
Rn d presentation_gurulingannk
 
Image processing and alignment with RNiftyReg and mmand
Image processing and alignment with RNiftyReg and mmandImage processing and alignment with RNiftyReg and mmand
Image processing and alignment with RNiftyReg and mmand
 
Comparison of Various RCNN techniques for Classification of Object from Image
Comparison of Various RCNN techniques for Classification of Object from ImageComparison of Various RCNN techniques for Classification of Object from Image
Comparison of Various RCNN techniques for Classification of Object from Image
 
Thesis Presentation
Thesis PresentationThesis Presentation
Thesis Presentation
 

Similar to Accurate Learning of Graph Representations with Graph Multiset Pooling

Graph Neural Network #2-1 (PinSage)
Graph Neural Network #2-1 (PinSage)Graph Neural Network #2-1 (PinSage)
Graph Neural Network #2-1 (PinSage)seungwoo kim
 
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTESScalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTESSubhajit Sahu
 
Group saliency propagation for large scale and quick image co segmentation
Group saliency propagation for large scale and quick image co segmentationGroup saliency propagation for large scale and quick image co segmentation
Group saliency propagation for large scale and quick image co segmentationKoteswar Rao Jerripothula
 
Local Binary Fitting Segmentation by Cooperative Quantum Particle Optimization
Local Binary Fitting Segmentation by Cooperative Quantum Particle OptimizationLocal Binary Fitting Segmentation by Cooperative Quantum Particle Optimization
Local Binary Fitting Segmentation by Cooperative Quantum Particle OptimizationTELKOMNIKA JOURNAL
 
A simple framework for contrastive learning of visual representations
A simple framework for contrastive learning of visual representationsA simple framework for contrastive learning of visual representations
A simple framework for contrastive learning of visual representationsDevansh16
 
Distributed Graph Transformations Supported By Multi-Agent Systems
Distributed Graph Transformations Supported By Multi-Agent SystemsDistributed Graph Transformations Supported By Multi-Agent Systems
Distributed Graph Transformations Supported By Multi-Agent Systemsadamsedziwy
 
A Subgraph Pattern Search over Graph Databases
A Subgraph Pattern Search over Graph DatabasesA Subgraph Pattern Search over Graph Databases
A Subgraph Pattern Search over Graph DatabasesIJMER
 
Parallel Machine Learning
Parallel Machine LearningParallel Machine Learning
Parallel Machine LearningJanani C
 
VJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNVJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNDat Nguyen
 
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTESA Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTESSubhajit Sahu
 
GRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEW
GRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEWGRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEW
GRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEWDrm Kapoor
 
Fast Incremental Community Detection on Dynamic Graphs : NOTES
Fast Incremental Community Detection on Dynamic Graphs : NOTESFast Incremental Community Detection on Dynamic Graphs : NOTES
Fast Incremental Community Detection on Dynamic Graphs : NOTESSubhajit Sahu
 
PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...
                                  PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...                                  PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...
PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...ijfcstjournal
 
A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...
A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...
A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...ijdpsjournal
 
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...Medial Axis Transformation based Skeletonzation of Image Patterns using Image...
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...IOSR Journals
 
E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162
E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162
E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162Jose Daniel Ramirez Soto
 
A review of automatic differentiationand its efficient implementation
A review of automatic differentiationand its efficient implementationA review of automatic differentiationand its efficient implementation
A review of automatic differentiationand its efficient implementationssuserfa7e73
 
ICVG : Practical Constructive Volume Geometry for Indirect Visualization
ICVG : Practical Constructive Volume Geometry for Indirect Visualization  ICVG : Practical Constructive Volume Geometry for Indirect Visualization
ICVG : Practical Constructive Volume Geometry for Indirect Visualization ijcga
 
ICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION
ICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATIONICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION
ICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATIONijcga
 

Similar to Accurate Learning of Graph Representations with Graph Multiset Pooling (20)

NS-CUK Seminar: S.T.Nguyen Review on "Accurate learning of graph representati...
NS-CUK Seminar: S.T.Nguyen Review on "Accurate learning of graph representati...NS-CUK Seminar: S.T.Nguyen Review on "Accurate learning of graph representati...
NS-CUK Seminar: S.T.Nguyen Review on "Accurate learning of graph representati...
 
Graph Neural Network #2-1 (PinSage)
Graph Neural Network #2-1 (PinSage)Graph Neural Network #2-1 (PinSage)
Graph Neural Network #2-1 (PinSage)
 
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTESScalable Static and Dynamic Community Detection Using Grappolo : NOTES
Scalable Static and Dynamic Community Detection Using Grappolo : NOTES
 
Group saliency propagation for large scale and quick image co segmentation
Group saliency propagation for large scale and quick image co segmentationGroup saliency propagation for large scale and quick image co segmentation
Group saliency propagation for large scale and quick image co segmentation
 
Local Binary Fitting Segmentation by Cooperative Quantum Particle Optimization
Local Binary Fitting Segmentation by Cooperative Quantum Particle OptimizationLocal Binary Fitting Segmentation by Cooperative Quantum Particle Optimization
Local Binary Fitting Segmentation by Cooperative Quantum Particle Optimization
 
A simple framework for contrastive learning of visual representations
A simple framework for contrastive learning of visual representationsA simple framework for contrastive learning of visual representations
A simple framework for contrastive learning of visual representations
 
Distributed Graph Transformations Supported By Multi-Agent Systems
Distributed Graph Transformations Supported By Multi-Agent SystemsDistributed Graph Transformations Supported By Multi-Agent Systems
Distributed Graph Transformations Supported By Multi-Agent Systems
 
A Subgraph Pattern Search over Graph Databases
A Subgraph Pattern Search over Graph DatabasesA Subgraph Pattern Search over Graph Databases
A Subgraph Pattern Search over Graph Databases
 
Parallel Machine Learning
Parallel Machine LearningParallel Machine Learning
Parallel Machine Learning
 
VJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCNVJAI Paper Reading#3-KDD2019-ClusterGCN
VJAI Paper Reading#3-KDD2019-ClusterGCN
 
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTESA Dynamic Algorithm for Local Community Detection in Graphs : NOTES
A Dynamic Algorithm for Local Community Detection in Graphs : NOTES
 
GRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEW
GRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEWGRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEW
GRAPH PARTITIONING FOR IMAGE SEGMENTATION USING ISOPERIMETRIC APPROACH: A REVIEW
 
Fast Incremental Community Detection on Dynamic Graphs : NOTES
Fast Incremental Community Detection on Dynamic Graphs : NOTESFast Incremental Community Detection on Dynamic Graphs : NOTES
Fast Incremental Community Detection on Dynamic Graphs : NOTES
 
PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...
                                  PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...                                  PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...
PROBABILISTIC DIFFUSION IN RANDOM NETWORK G...
 
A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...
A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...
A PROGRESSIVE MESH METHOD FOR PHYSICAL SIMULATIONS USING LATTICE BOLTZMANN ME...
 
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...Medial Axis Transformation based Skeletonzation of Image Patterns using Image...
Medial Axis Transformation based Skeletonzation of Image Patterns using Image...
 
E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162
E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162
E4040.2016 fall.cjmd.report.ce2330.jb3852.jdr2162
 
A review of automatic differentiationand its efficient implementation
A review of automatic differentiationand its efficient implementationA review of automatic differentiationand its efficient implementation
A review of automatic differentiationand its efficient implementation
 
ICVG : Practical Constructive Volume Geometry for Indirect Visualization
ICVG : Practical Constructive Volume Geometry for Indirect Visualization  ICVG : Practical Constructive Volume Geometry for Indirect Visualization
ICVG : Practical Constructive Volume Geometry for Indirect Visualization
 
ICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION
ICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATIONICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION
ICVG: PRACTICAL CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION
 

More from MLAI2

Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...
Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...
Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...MLAI2
 
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient DistillationOnline Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient DistillationMLAI2
 
Online Coreset Selection for Rehearsal-based Continual Learning
Online Coreset Selection for Rehearsal-based Continual LearningOnline Coreset Selection for Rehearsal-based Continual Learning
Online Coreset Selection for Rehearsal-based Continual LearningMLAI2
 
Representational Continuity for Unsupervised Continual Learning
Representational Continuity for Unsupervised Continual LearningRepresentational Continuity for Unsupervised Continual Learning
Representational Continuity for Unsupervised Continual LearningMLAI2
 
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual LearningSequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual LearningMLAI2
 
Skill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement LearningSkill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement LearningMLAI2
 
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...MLAI2
 
Mini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder For Scalable Set EncodingMini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder For Scalable Set EncodingMLAI2
 
Task Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningTask Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningMLAI2
 
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...MLAI2
 
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-LearningMeta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-LearningMLAI2
 
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...MLAI2
 
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...MLAI2
 
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMLAI2
 
Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive LearningAdversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive LearningMLAI2
 
Neural Mask Generator : Learning to Generate Adaptive Word Maskings for Langu...
Neural Mask Generator : Learning to Generate Adaptive WordMaskings for Langu...Neural Mask Generator : Learning to Generate Adaptive WordMaskings for Langu...
Neural Mask Generator : Learning to Generate Adaptive Word Maskings for Langu...MLAI2
 
Cost-effective Interactive Attention Learning with Neural Attention Process
Cost-effective Interactive Attention Learning with Neural Attention ProcessCost-effective Interactive Attention Learning with Neural Attention Process
Cost-effective Interactive Attention Learning with Neural Attention ProcessMLAI2
 
Adversarial Neural Pruning with Latent Vulnerability Suppression
Adversarial Neural Pruning with Latent Vulnerability SuppressionAdversarial Neural Pruning with Latent Vulnerability Suppression
Adversarial Neural Pruning with Latent Vulnerability SuppressionMLAI2
 
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...MLAI2
 
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...MLAI2
 

More from MLAI2 (20)

Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...
Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...
Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic Unce...
 
Online Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient DistillationOnline Hyperparameter Meta-Learning with Hypergradient Distillation
Online Hyperparameter Meta-Learning with Hypergradient Distillation
 
Online Coreset Selection for Rehearsal-based Continual Learning
Online Coreset Selection for Rehearsal-based Continual LearningOnline Coreset Selection for Rehearsal-based Continual Learning
Online Coreset Selection for Rehearsal-based Continual Learning
 
Representational Continuity for Unsupervised Continual Learning
Representational Continuity for Unsupervised Continual LearningRepresentational Continuity for Unsupervised Continual Learning
Representational Continuity for Unsupervised Continual Learning
 
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual LearningSequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
Sequential Reptile_Inter-Task Gradient Alignment for Multilingual Learning
 
Skill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement LearningSkill-Based Meta-Reinforcement Learning
Skill-Based Meta-Reinforcement Learning
 
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Genera...
 
Mini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder For Scalable Set EncodingMini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder For Scalable Set Encoding
 
Task Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive LearningTask Adaptive Neural Network Search with Meta-Contrastive Learning
Task Adaptive Neural Network Search with Meta-Contrastive Learning
 
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
 
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-LearningMeta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
Meta-GMVAE: Mixture of Gaussian VAE for Unsupervised Meta-Learning
 
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
Contrastive Learning with Adversarial Perturbations for Conditional Text Gene...
 
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Le...
 
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
 
Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive LearningAdversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive Learning
 
Neural Mask Generator : Learning to Generate Adaptive Word Maskings for Langu...
Neural Mask Generator : Learning to Generate Adaptive WordMaskings for Langu...Neural Mask Generator : Learning to Generate Adaptive WordMaskings for Langu...
Neural Mask Generator : Learning to Generate Adaptive Word Maskings for Langu...
 
Cost-effective Interactive Attention Learning with Neural Attention Process
Cost-effective Interactive Attention Learning with Neural Attention ProcessCost-effective Interactive Attention Learning with Neural Attention Process
Cost-effective Interactive Attention Learning with Neural Attention Process
 
Adversarial Neural Pruning with Latent Vulnerability Suppression
Adversarial Neural Pruning with Latent Vulnerability SuppressionAdversarial Neural Pruning with Latent Vulnerability Suppression
Adversarial Neural Pruning with Latent Vulnerability Suppression
 
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
Generating Diverse and Consistent QA pairs from Contexts with Information-Max...
 
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distrib...
 

Recently uploaded

Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 

Recently uploaded (20)

Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 

Accurate Learning of Graph Representations with Graph Multiset Pooling

  • 1. Accurate Learning of Graph Representations with Graph Multiset Pooling Jinheon Baek1*, Minki Kang1*, Sung Ju Hwang1,2 (*: equal contribution) 1Graduate School of AI, KAIST, South Korea 2AITRICS, South Korea
  • 2. Graph Representation Learning Graph representation learning aims to represent nodes on a graph, which captures the internal structures on graphs, using a message-passing scheme. Input Graph Output Graph Message Passing
  • 3. Graph Representation Learning For example, to update a node B on the graph, we aggregate the representations of its neighborhoods, such as node G, A, and C, which is known as message-passing. Input Graph Output Graph Message Passing Example: Update B using its neighborhoods.
  • 4. Graph Pooling for Entire Graph Representations As a simplest approach, we can average or sum all node features, however such simple schemes treat all nodes equally without considering important features for tasks. While message-passing functions produce a set of node representations, we need an additional graph pooling function to obtain an entire graph representation. Obtained Graph Representation Sum Pooling
  • 5. Graph Multiset Encoding Using graph multiset, we can not only consider redundant nodes on graphs (Multiset), but also incorporate structural constraints of graphs with auxiliary graph information. To obtain accurate representations of given graphs, we first focus on that the graph representation learning can be regarded as a graph multiset encoding problem. A. Set B. Multiset C. Graph Multiset
  • 6. Graph Multiset Pooling Given a graph with node features, we define a Graph Multiset Pooling (GMPool) to compress many nodes into few typical nodes, using a graph multiset scheme. Input Graph Message Passing Triangle Graph, 3-Path Graph Node Space that reflects graph structures Seed Vectors 𝑺 GMPool E A B C D F G E A B C D F G C E D F A B G Graph Attention
  • 7. Graph Multiset Transformer To further consider the interactions among 𝑛 or condensed 𝑘 different nodes, we propose a Self-Attention function (SelfAtt), inspired by Transformer [1]. [1] Vaswani et al. Attention Is All You Need. NIPS 2017. Notably, the full structure of our model, namely Graph Multiset Transformer (GMT), consists of GMPool for compressing nodes, and SelfAtt for considering interactions.
  • 8. Connection with Weisfeiler-Lehman (WL) Test Weisfeiler-Lehman (WL) test is known for its ability to distinguish two different graphs, and our overall architecture can be at most as powerful as the WL test: Please see the Theorem 1, Lemma 2, and Proposition 3 in section 3.3 of main paper. • Theorem 1 (Non-isomorphic Graphs to Different Embeddings). • Lemma 2 (Uniqueness on Graph Multiset Pooling). • Proposition 3 (Injectiveness on Pooling Function).
  • 9. Connection with Node Clustering While the proposed Graph Multiset Pooling needs a linear space 𝑶(𝒏) for 𝑛 nodes, it can be further approximated to the node clustering approach with 𝑘 clusters: Please see the Theorem 4, and Proposition 5 in section 3.4 of main paper. • Theorem 4 (Space Complexity of Graph Multiset Pooling). • Proposition 5 (Approximation to Node Clustering).
  • 10. Experiments We validate the proposed Graph Multiset Pooling on graph classification, reconstruction, and generation tasks of synthetic and real-world graphs. • Graph Classification : The goal is to predict a label of a given graph. • Graph Reconstruction : The goal is to reconstruct the node features of graphs from their pooled representations. • Graph Generation : The goal is to generate a valid graph with desired properties.
  • 11. Graph Classification Graph Multiset Transformer (GMT) outperforms all baselines by a large margin, on various graph classification datasets in biochemical and social domains. Biochemical Social D&D MUTAG HIV Tox21 IMDB-B COLLAB GCN 72.05 69.50 76.81 75.04 73.26 80.59 DiffPool 77.56 79.22 75.64 74.88 73.14 78.68 SAGPool 74.72 73.67 71.44 69.81 72.55 78.03 MinCutPool 78.22 79.17 75.37 75.11 72.65 80.87 StructPool 78.45 79.50 75.85 75.43 72.06 77.27 EdgePool 75.85 74.17 72.66 73.77 72.46 - GMT (Ours) 78.72 83.44 77.56 77.30 73.48 80.74 Table: Graph classification results on test sets.
  • 12. Graph Classification We also show that the proposed GMT is practical in terms of both memory and time efficiencies, compared to other baselines showing decent performances. Figure: Memory efficiency (left) and time efficiency (right) of GMT.
  • 13. Graph Reconstruction While graph classification does not directly measure the expressiveness of GNNs, graph reconstruction quantifies the graph information retained by pooled features. As shown in the above figure, Graph Multiset Pooling (GMPool) obtains significant performance gains on the reconstruction tasks of synthetic and molecule graphs. Figure: Reconstruction results on the synthetic (left) and ZINC molecule (right) datasets.
  • 14. Graph Generation Furthermore, we confirm that using the proposed GMT, instead of simple pooling, results in stable graph generations on QM9 datasets with MolGAN structures. Figure: Validity curve about molecule generations.
  • 15. Conclusion • We treat a graph pooling problem as a graph multiset encoding problem, under which we consider relationships among nodes with several attention units. • We show that existing GNNs with the proposed pooling can be as powerful as the WL test, and also be extended to the node clustering approaches. • We validate GMT for graph classification, reconstruction, and generation tasks on synthetic and real-world graphs, on which it largely outperforms baselines.