These slides present the preliminary results through the utilisation of machine learning techniques for the analysis of Educational Robotics activities. An experimentation with 197 secondary school students from Italy was con-ducted, through updating Lego Mindstorms EV3 programming blocks in order to record log files containing the coding sequences designed by the students (within team work), during the resolution of a preliminary Robotics’ exercise. We utilised four machine learning techniques (logistic regression, support vec-tor machine, K-nearest neighbors and random forests) to predict the students’ performance, comparing a supervised approach (using twelve indicators ex-tracted from the log files as input for the algorithms) and a mixed approach (ap-plying a k-means algorithm to calculate the machine learning features). The re-sults have highlighted that SVM with the mixed approach outperformed the other techniques, and that three learning styles were predominantly emerged from the data mining analysis.