Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Brain Tumor Segmentation @ Seoul AI 20180526

104 Aufrufe

Veröffentlicht am

Slides from my presentation on using deep learning for brain tumor segmentation.

Veröffentlicht in: Ingenieurwesen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Brain Tumor Segmentation @ Seoul AI 20180526

  1. 1. BRAIN TUMOR SEGMENTATION
  2. 2. Lars Sjösund Senior AI Research Engineer Peltarion Vice Chairman - Stockholm AI Jens Sjölund PhD, Medical Imaging Linköping University / Elekta
  3. 3. 1. PROBLEM BACKGROUND 2. U-NET 3. TIRAMISU 4. HANDS ON DEMO
  4. 4. 14 million new cancer cases per year 2/5 diagnosed at some point in life Sources: http://www.who.int/mediacentre/factsheets/fs297/en/ https://seer.cancer.gov/statfacts/html/all.html
  5. 5. BRAIN TUMOR SEGMENTATION
  6. 6. PROBLEM SETUP 276 patients - 3D MRI scans 4 input channels - 4 tumor classes INPUT TARGET Flair T1 T1c T2 Tumor map Source: http://braintumorsegmentation.org/
  7. 7. Can be fed raw data, adapt, learn to interpret and conclude ARTIFICIAL NEURAL NETWORKS
  8. 8. AUTOENCODER INPUT OUTPUTENCODER DECODER
  9. 9. AUTOENCODER INPUT OUTPUTENCODER DECODER
  10. 10. U-NET INPUT OUTPUT
  11. 11. INPUT OUTPUT 3x3 Conv Dropout ReLU Pooling
  12. 12. INPUT OUTPUT 3x3 Conv Dropout ReLU Upsampling
  13. 13. Initial Results 97,6% pixel level accuracy!
  14. 14. TARGET PREDICTEDINPUT Initial Results
  15. 15. 2.4% 97.6% Class Balance No tumor Tumor
  16. 16. L = − pij log !pij j ∑ i ∑ ˆL = − 1 fj pij log !pij j ∑ i ∑ 2.4% 97.6% Class Balance No tumor Tumor
  17. 17. Weighted Loss Results TARGET PREDICTEDINPUT
  18. 18. Mistakes TARGET PREDICTEDINPUT
  19. 19. Results - Similarity scores Doctors U-Net with weighted loss Whole 85% (±8%) 82% (±16%) Core 75% (±24%) 71% (±21%) Enhancing 74% (±13%) 60% (±30%)
  20. 20. DenseNet / Tiramisu Source: https://arxiv.org/abs/1608.06993
  21. 21. DenseNet / Tiramisu Sources: https://arxiv.org/abs/1608.06993 https://arxiv.org/abs/1611.09326
  22. 22. Results - Similarity scores Doctors U-Net with weighted loss Tiramisu with weighted loss Tiramisu w/o weighted loss Whole 85% (±8%) 82% (±16%) 81%(±17%) 84%(±14%) Core 75% (±24%) 71% (±21%) 69%(±22%) 66%(±24%) Enhancing 74% (±13%) 60% (±30%) 60%(±31%) 61%(±31%)
  23. 23. #CONFIGS TRIED
 ~ 100 < 1000 
 LINES OF CODE
 
 ~20 FOR MODEL TIME PER CONFIG 
 < 13 HOURS TENSORFLOW, KERAS, TENSORBOARD
  24. 24. GPU 4 TITAN X 12 GB 256 GB RAM 40 CORES OF INTEL XEON E5-2630 COST
 100K SEK Models trained on in-house desktop
  25. 25. Demo time!
  26. 26. Thank you!
  27. 27. Lars Sjösund lars@peltarion.com @sjosund Questions? M A K I N G A I A V A I L A B L E F O R E V E R Y O N E

×