SlideShare ist ein Scribd-Unternehmen logo
1 von 12
TUGAS KELOMPOK MATEMATIKA
Buku Calculus Hal. 61-66
Di susun oleh :
Kelompok 8
Nama : 1. Hetty Agustina Tampubolon
2. Larasati
3. Ratna
Kelas : 1 Elektronika B
Semester : 2 (Genap)
Jurusan : Elektronika dan Informatika
POLITEKNIK MANUFAKTUR NEGERI BANGKA
BELITUNG
Kawasan Industri Air Kantung Sungailiat 33211
Bangka Induk Propinsi Kepulauan Bangka Belitung
Telp : (0717) 431335 ext. 2281, 2126
Fax : (0717) 93585 email : polman@polman-babel.ac.id
http://www.polman-babel.ac.id/
Latihan 9.1
1. ∫ (3𝑥210
−10
+ 4𝑥 − 5) 𝑑𝑥
=
3
3
𝑥3
+
4
2
𝑥2
− 5𝑥 ] 10
−10
=𝑥3
+ 2𝑥2
− 5𝑥 ] 10
−10
=( (103 )+ 2(10) 2
− 5(10))− ((−10) 3
+ 2(−10) 2
− 5(−10))
=(1000 + 200 − 50) − (−1000 + 200 + 50)
=1150 − (−750)
=1150 + 750
=1900
2. ∫ 8 𝑑𝑥
30
−50
=8𝑥] 30
−50
=8(30)− 8(−50)
=240 + 400
=640
3. ∫
𝑥5
𝑥2
7
2
𝑑𝑥
=∫ 𝑥5
. 𝑥2
𝑑𝑥
7
2
=∫ 𝑥3
𝑑𝑥
7
2
=
1
4
𝑥 4
]7
2
=
1
4
74
−
1
4
24
=
2401
4
−
16
4
=
2385
4
=596,25
4. ∫
1
𝑡
𝑑𝑡
36
6
= ∫
36
6
𝑡−1
𝑑𝑡 = ln | 𝑡| ]36
6
=ln|36| − ln|6|
=3,58 − 1.79
=1,79
5. ∫
𝜋
0,5𝜋
sec (
5
6
θ)tan (
5
6
𝜃) 𝑑𝜃
=
6
5
sec(
5
6
𝜃) ]
𝜋
0,5𝜋
=(
6
5
sec(
5
6
. 180°))− (
6
5
sec(
5
6
. 90°))
=(
6
5
sec(150°))− (
6
5
sec(75°))
=
6
5
(
1
cos 150°
−
1
cos 75°
)
=
6
5
(−1,15 − 3,86) =
6
5
(−5,01)
=−6,012
6. ∫ √3
1
𝑑𝑥
√4−𝑥2 = ∫ √3
1
1
√4−𝑥2 𝑑𝑥 = ∫ √3
1
(4 − 𝑥2)−
1
2 𝑑𝑥
=
1
−2𝑥
.
1
−
1
2
+ 1
. (4 − 𝑥2)−
1
2
+1
= −
1
2𝑥
. 2. (4 − 𝑥2)
1
2
= −
1
𝑥
√4 − 𝑥2
= (−
1
√3
. √4 − (√3)
2
) − (−
1
1
. √4 − (1)2)
= (−
1
√3
. √1) − (−1. √3)
= −
1
√3
+ √3 =
−1 + 3
√3
=
2
√3
.
√3
√3
=
2
3
√3
7. ∫ (3𝑥4
− 5𝑥 3
− 21𝑥 2
+ 36𝑥 − 10) 𝑑𝑥
2
1
=
3
5
𝑥5
−
5
4
𝑥4
−
21
3
𝑥3
+
36
2
𝑥2
− 10𝑥] 2
1
=(
3
5
25
−
5
4
24
− 7.23
+ 18. 22
− 10.2 ) − (
3
5
15
−
5
4
14
− 7. 13
+ 18. 12
− 10.1)
=(
3
5
. 32 −
5
4
. 16 − 7.8 + 18.4 − 20) − (
3
5
−
5
4
− 7 + 18 − 10)
=(19,2 − 20 − 56 + 72 − 20) − (0.6 − 1,25 − 7 + 18 − 10)
=−4,8 − 0,35
=−5,15
8. ∫
5
3
( 𝑥3
ln 𝑥) 𝑑𝑥 =
Misal :
𝑢 = ln 𝑥 => 𝑑𝑢 =
1
𝑥
𝑑𝑥
𝑑𝑣 = 𝑥3
𝑑𝑥 => 𝑣 = ∫ 𝑥3
𝑑𝑥
𝑣 =
1
4
𝑥4
∫ 𝑢. 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 = ln 𝑥 .
1
4
𝑥4
− ∫
1
4
𝑥4
.
1
𝑥
𝑑𝑥
=
1
4
𝑥4
ln 𝑥 −
1
4
∫ 𝑥3
𝑑𝑥
=
1
4
𝑥4
ln 𝑥 −
1
4
(
1
4
𝑥4
) + C
=
1
4
𝑥4
ln 𝑥 −
1
16
𝑥4
+ C
Jadi,
∫
5
3
( 𝑥3
ln 𝑥) 𝑑𝑥 =
1
4
𝑥4
ln 𝑥 −
1
16
𝑥4
] 5
3
= (
1
4
. 54
ln 5 −
1
16
. 54
) − (
1
4
. 34
ln 3 −
1
16
. 34
)
= (
201
4
−
625
16
) − (
89
4
−
81
16
)
=
112
4
−
544
16
= 28 − 34 = −6
9. ∫ √3
1
𝑐𝑜𝑡−1( 𝑥) 𝑑𝑥 = ∫ √3
1
𝑡𝑎𝑛( 𝑥) 𝑑𝑥 = −ln | cos 𝑥| ] √3
1
= − ln |cos√3| − (− ln |cos1 |)
= − ln1 − (− ln 1) = 0 + 0
=0
10. ∫
1
1+𝑒 𝑥
5
2
𝑑𝑥
= ∫ (1 + 𝑒 𝑥)−1
5
2
𝑑𝑥
𝑀𝑖𝑠𝑎𝑙,
𝑢 = 1 + 𝑒 𝑥
𝑑𝑢
𝑑𝑥
= 𝑒 𝑥
𝑑𝑥 =
𝑑𝑢
𝑒 𝑥
Jadi,
∫ (1 + 𝑒 𝑥)−1
5
2
𝑑𝑥 = ∫ 𝑢−1
5
2
.
𝑑𝑢
𝑒 𝑥
=
1
𝑒 𝑥
∫ 𝑢−1
5
2
𝑑𝑢
=
1
𝑒 𝑥
. ln 𝑢 =
1
𝑒 𝑥
. ln(1 + 𝑒 𝑥) =
ln(1 + 𝑒 𝑥)
𝑒 𝑥
= [
ln(1 + 𝑒5)
𝑒5
] − [
ln(1 + 𝑒2)
𝑒2
]
= 0,0337 − 0,2878 = −0,2541
Latihan 9.2
Diberikan ∫ 𝑓( 𝑥) 𝑑𝑥 = 12 𝑑𝑎𝑛 ∫ 𝑓( 𝑥) 𝑑𝑥 = 15
2
0
0
−2
1. ∫ 𝑓( 𝑥) 𝑑𝑥 = 0
2
2
𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 1, ∫ 𝑓( 𝑥) 𝑑𝑥 = 0
2
2
2. ∫ 𝑓( 𝑥) 𝑑𝑥
−2
0
𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 2,∫ 𝑓( 𝑥) 𝑑𝑥 = − ∫ 𝑓( 𝑥) 𝑑𝑥 = −12
0
−2
−2
0
3. ∫ 𝑓( 𝑥) 𝑑𝑥
1
1
𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 1,∫ 𝑓( 𝑥) 𝑑𝑥 = 0
1
1
4. ∫ 𝑓( 𝑥) 𝑑𝑥
2
−2
𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 3,∫ 𝑓( 𝑥) 𝑑𝑥 = ∫ 𝑓( 𝑥) 𝑑𝑥 + ∫ 𝑓( 𝑥) 𝑑𝑥 = 12 + 15 = 27
2
0
0
−2
2
−2
5. ∫ 5𝑓( 𝑥) 𝑑𝑥
0
−2
𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 4,∫ 5𝑓( 𝑥) 𝑑𝑥 = 5 ∫ 𝑓( 𝑥) 𝑑𝑥 = 5(12) = 60
0
−2
0
−2
6. ∫ 10𝑓( 𝑥) 𝑑𝑥
−2
2
𝐷𝑖𝑘𝑒𝑡𝑎ℎ𝑢𝑖 𝑑𝑎𝑟𝑖 𝑠𝑜𝑎𝑙 𝑛𝑜 4 𝑏𝑎ℎ𝑤𝑎 ∫ 𝑓 = 27, 𝑚𝑎𝑘𝑎 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 2 & 4,
2
−2
∫ 𝑓( 𝑥) 𝑑𝑥 = −10∫ 𝑓( 𝑥) 𝑑𝑥 = −10(27) = −270
2
−2
−2
2
Diberikan ∫ 𝑓( 𝑥) 𝑑𝑥 = −8 𝑑𝑎𝑛 ∫ 𝑔( 𝑥) 𝑑𝑥 = 22
5
1
5
1
7. ∫ [ 𝑓( 𝑥) + 𝑔( 𝑥)] 𝑑𝑥
5
1
Mengggunakan sifat 5,
∫ [ 𝑓( 𝑥) + 𝑔( 𝑥)] 𝑑𝑥 = ∫ 𝑓( 𝑥) 𝑑𝑥 + ∫ 𝑔( 𝑥) 𝑑𝑥 = −8 + 22 = 14
5
1
5
1
5
1
8. ∫ [ 𝑓( 𝑥) − 𝑔( 𝑥)]
5
1
𝑑𝑥
Menggunakan sifat 5,
∫ [𝑓( 𝑥) − 𝑔( 𝑥) 𝑑𝑥 =
5
1
∫ 𝑓( 𝑥) 𝑑𝑥 −
5
1
∫ 𝑔( 𝑥) 𝑑𝑥 = −8 − 22 = −30
5
1
9. ∫
5
1
1
2
𝑓( 𝑥) 𝑑𝑥
Menggunakan sifat 4,
∫
5
1
1
2
𝑓( 𝑥) 𝑑𝑥 =
1
2
∫ 𝑓( 𝑥) 𝑑𝑥 =
5
1
1
2
(−8) = −4
10. ∫ 2𝑔(𝑥)
5
1
𝑑𝑥 + ∫ 3𝑓(𝑥)
5
1
𝑑𝑥
Menggunakan sifat 4,
∫ 2𝑔( 𝑥) 𝑑𝑥 +
5
1
∫ 3𝑓( 𝑥) 𝑑𝑥 = 2
5
1
∫ 𝑔( 𝑥) 𝑑𝑥 + 3
5
1
∫ 𝑓( 𝑥)
5
1
= 2(22)+ 3(−8)
= 44 − 24 = 20
Latihan 9.3
1.
𝑑
𝑑𝑥
[∫ ( 𝑡2
+ 3)−5𝑥
0
𝑑𝑡]
= ( 𝑥2
+ 3)−5
=
1
( 𝑥2 + 3)5
2.
𝑑
𝑑𝑥
[∫ √3𝑡 + 5
𝑥
1
𝑑𝑡]
= √3𝑥 + 5
3.
𝑑
𝑑𝑥
[∫ 𝑡 sin 𝑡
𝑥4
𝜋
]
= 𝑥4
sin( 𝑥4).
𝑑
𝑑𝑥
( 𝑥4)
= 𝑥4
sin( 𝑥4). 4𝑥3
= 4𝑥7
sin( 𝑥4)
4.
𝑑
𝑑𝑥
[∫ √𝑡235𝑥2
−5
𝑑𝑡]
= √(5𝑥2)23
.
𝑑
𝑑𝑥
(5𝑥2)
= √25𝑥43
.10𝑥
= 10𝑥 √25𝑥43
5.
𝑑
𝑑𝑥
[∫ ( 𝑡2
− 2𝑡 + 1)
𝑥+2
−10
𝑑𝑡
= ( 𝑥 + 2)2
− 2( 𝑥 + 2) + 1
= 𝑥2
+ 4𝑥 + 4 − 2𝑥 − 4 + 1
= 𝑥2
+ 2𝑥 + 1
6. 𝐹( 𝑥) = ∫ sin(3𝑡)𝑥
0
𝑑𝑡
𝐹′( 𝑥) =
𝑑
𝑑𝑥
[∫ sin(3𝑡)
𝑥
0
𝑑𝑡]
𝐹′( 𝑥) = sin 3𝑥
7. 𝐹( 𝑥) = ∫
1
𝑡+1
4𝑥
5
𝑑𝑡
𝐹′( 𝑥) =
𝑑
𝑑𝑥
[∫
1
𝑡 + 1
4𝑥
5
𝑑𝑡]
𝐹′( 𝑥) =
1
4𝑥 + 1
8. 𝐹( 𝑥) = ∫ 6𝑡2sin 𝑥
0
𝑑𝑡
𝐹′( 𝑥) =
𝑑
𝑑𝑥
[∫ 6𝑡2
sin 𝑥
0
𝑑𝑡]
𝐹′( 𝑥) = 6(sin 𝑥)2
𝐹′( 𝑥) = 6. 𝑠𝑖𝑛2
𝑥
9. 𝐹( 𝑥) = ∫ 2𝑡4√ 𝑥
−3
𝑑𝑡
𝐹′( 𝑥) =
𝑑
𝑑𝑥
[∫ 2𝑡4
√ 𝑥
−3
𝑑𝑡]
𝐹′( 𝑥) = 2(√ 𝑥)
4
𝐹′( 𝑥) = 2𝑥2
10. 𝐹( 𝑥) = ∫ 3𝑡 − 7
2𝑥+1
−8
𝑑𝑡
𝐹′( 𝑥) =
𝑑
𝑑𝑥
[∫ (3𝑡 − 7)
2𝑥+1
−8
𝑑𝑡]
𝐹′( 𝑥) = 3(2𝑥 + 1) − 7
𝐹′( 𝑥) = 6𝑥 + 3 − 7
𝐹′( 𝑥) = 6𝑥 − 4
Latihan 9.4
1. 𝑓( 𝑥) = 2𝑥 + 6 , dan interval [-1,1]
∫
𝑏
𝑎
𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎)
∫
1
−1
(2𝑥 + 6) 𝑑𝑥 = (2𝑐 + 6)(1 − (−1))
(
2
2
𝑥2
+ +6𝑥) | 1
−1
= (2c+6) (1+1)
(𝑥2
− 6𝑥 ) |
1
−1
= (2𝑐 + 6).2
((12
+ 6.1) − ((−1)2
+ 6 (−1))) = 4𝑐 + 12
7 − (−5) = 4𝑐 + 12
12 = 4𝑐 + 12
12 − 12 = 4𝑐
0 = 4𝑐
𝑐 =
0
4
= 0
2. 𝑓( 𝑥) = 2 − 5√ 𝑥 , dan interval [0,4]
∫
𝑏
𝑎
𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎)
∫
4
0
(2 − 5√ 𝑥)𝑑𝑥 = (2 − 5 √ 𝑐)(4 − 0)
∫
4
0
(2 − 5𝑥
1
2 )𝑑𝑥 = (2 − 5 √ 𝑐)(4)
2𝑥 −
5
3
2⁄
𝑥
3
2|4
0
= 8 − 20√ 𝑐
(2.4 −
10
3
4
3
2 ) − (0) = 8 − 20√ 𝑐
8 −
80
3
= 8 − 20√ 𝑐
20√ 𝑐 = 8 − 8 +
80
3
=
80
3
60√ 𝑐 = 80
√ 𝑐 =
80
60
=
4
3
(√ 𝑐)2
= (
4
3
)
2
𝑐 =
16
9
= 1,778
3. 𝑓( 𝑥) =
4
𝑥3 , dan interval [1,4]
∫
𝑏
𝑎
𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎)
∫
4
1
(
4
𝑥3) 𝑑𝑥 =
4
𝑐3
(4 − 1)
∫
4
1
(4𝑥−3) 𝑑𝑥 =
4
𝑐3
(3)
(
4
−2
𝑥−2
) | 4
1
=
12
𝑐3
(−2 𝑥−2) |
4
1
=
12
𝑐3
(−2 .4−2) − (−2 1−2) =
12
𝑐3
−2
16
− (−2) =
12
𝑐3
−0,125 + 2 =
12
𝑐3
1,875 =
12
𝑐3
1,875 𝑐3
= 12
𝑐3
=
12
1,875
𝑐3
= 6,4
𝑐 = √6,43
= 1,86
4. 𝑓( 𝑥) = sin 𝑥 , dan interval [0, 𝜋]
∫
𝑏
𝑎
𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎)
∫
𝜋
0
(sin 𝑥) 𝑑𝑥 = sin 𝑐 ( 𝜋 − 0)
(− cos 𝑥) | 𝜋
0
= 𝜋 sin 𝑐
(− cos 𝜋) − (− cos0) = 𝜋 sin 𝑐
(− cos 180°)− (−cos0) = 180°sin 𝑐
1 + 1 = 180sin 𝑐
2 = 180. sin 𝑐
𝑠𝑖𝑛 𝑐 =
2
180
= 0,01
𝑐 = 𝑎𝑟𝑐 sin 0,01
= 0,57
5. 𝑓( 𝑥) =
1
𝑥
, dan interval [1,3]
∫
𝑏
𝑎
𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏− 𝑎)
∫
3
1
(
1
𝑥
) 𝑑𝑥 =
1
𝑐
(3 − 1)
∫
3
1
(
1
𝑥
) 𝑑𝑥 =
1
𝑐
(2)
ln| 𝑥| ] 3
1
=
2
𝑐
ln|3| − ln |1| =
2
𝑐
1,1 − 0 =
2
𝑐
1,1 𝑐 = 2
𝑐 =
2
1,1
= 1,82
6. 𝑓( 𝑥) = 𝑥2
, dan interval [-2,2]
1
𝑏−𝑎
∫
𝑏
𝑎
𝑓( 𝑥) 𝑑𝑥
=
1
2−(−2)
∫
2
−2
(𝑥2
) 𝑑𝑥
=
1
4
(
1
3
𝑥3
) | 2
−2
=
1
4
((
1
3
23
) − (
1
3
(−2)3
))
=
1
4
(
8
3
− (−
8
3
))
=
1
4
.
16
3
=
4
3
7. 𝑓( 𝑥) =
1
𝑥
, dan interval [1,3]
1
𝑏 − 𝑎
∫ 𝑓( 𝑥)
𝑏
𝑎
𝑑𝑥
=
1
3−1
∫
1
𝑥
3
1
𝑑𝑥 =
1
2
[ln 𝑥] | 3
1
=
1
2
[ln3 − ln 1] =
1
2
(1,0986) = 0,5493
8. 𝑓( 𝑥) = cos 𝑥 , dan interval [
−𝜋
2
,
𝜋
2
]
1
𝑏 − 𝑎
∫ 𝑓( 𝑥)
𝑏
𝑎
𝑑𝑥
=
1
𝜋
2
−(
−𝜋
2
)
∫ cos 𝑥
𝜋
2
−𝜋
2
𝑑𝑥 =
1
𝜋
[sin 𝑥] |
𝜋
2
−𝜋
2
=
1
𝜋
[sin(90°) − sin(−90°)] =
1
𝜋
(1 − (−1)) =
2
𝜋
9. 𝑓( 𝑥) =
9
2
√ 𝑥 , dan interval [1,4]
1
𝑏 − 𝑎
∫ 𝑓( 𝑥)
𝑏
𝑎
𝑑𝑥
=
1
4 − 1
∫
9
2
4
1
√ 𝑥𝑑𝑥 =
1
3
∫
9
2
𝑥
1
2
4
1
𝑑𝑥
=
1
3
[
9
2⁄
3
2⁄
𝑥
3
2]|
4
1
=
1
3
[3. 𝑥√ 𝑥]|
4
1
=
1
3
[3.4. √4 − 3.1. √1]
=
1
3
(24 − 3) =
1
3
(21) = 7
10. 𝑓( 𝑥) = 𝑒 𝑥
, dan interval [0,1]
1
𝑏 − 𝑎
∫ 𝑓( 𝑥)
𝑏
𝑎
𝑑𝑥
=
1
1 − 0
∫ 𝑒 𝑥
1
0
𝑑𝑥 = 1( 𝑒 𝑥)|
1
0
= 𝑒1
− 𝑒0
= 2,718 − 1 = 1,718
Selesai

Weitere ähnliche Inhalte

Was ist angesagt? (12)

Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
 
Transformada de Laplace
Transformada de LaplaceTransformada de Laplace
Transformada de Laplace
 
Tugas 2 MTK2
Tugas 2 MTK2Tugas 2 MTK2
Tugas 2 MTK2
 
Tugas 3 MTK2
Tugas 3 MTK2 Tugas 3 MTK2
Tugas 3 MTK2
 
Tugas 3 mtk2
Tugas 3 mtk2Tugas 3 mtk2
Tugas 3 mtk2
 
Tugas mtk 2
Tugas mtk 2Tugas mtk 2
Tugas mtk 2
 
Tabla de derivadas e Integrales
Tabla de derivadas e IntegralesTabla de derivadas e Integrales
Tabla de derivadas e Integrales
 
Kisi2 tes 2
Kisi2 tes 2Kisi2 tes 2
Kisi2 tes 2
 
Matematika 2
Matematika 2Matematika 2
Matematika 2
 
Tugas 3 MTK2
Tugas 3 MTK2 Tugas 3 MTK2
Tugas 3 MTK2
 
Rangkuman Materi Kalkulus
Rangkuman Materi KalkulusRangkuman Materi Kalkulus
Rangkuman Materi Kalkulus
 
Tugas 3 MTK2
Tugas 3 MTK2Tugas 3 MTK2
Tugas 3 MTK2
 

Kürzlich hochgeladen

Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfKhaled Elbattawy
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Eesti Loodusturism
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 

Kürzlich hochgeladen (6)

Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
 
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
 
Energy drink .
Energy drink                           .Energy drink                           .
Energy drink .
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
 

Tugas matematika kelompok 8 kelas 1 eb

  • 1. TUGAS KELOMPOK MATEMATIKA Buku Calculus Hal. 61-66 Di susun oleh : Kelompok 8 Nama : 1. Hetty Agustina Tampubolon 2. Larasati 3. Ratna Kelas : 1 Elektronika B Semester : 2 (Genap) Jurusan : Elektronika dan Informatika POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG Kawasan Industri Air Kantung Sungailiat 33211 Bangka Induk Propinsi Kepulauan Bangka Belitung Telp : (0717) 431335 ext. 2281, 2126 Fax : (0717) 93585 email : polman@polman-babel.ac.id http://www.polman-babel.ac.id/
  • 2. Latihan 9.1 1. ∫ (3𝑥210 −10 + 4𝑥 − 5) 𝑑𝑥 = 3 3 𝑥3 + 4 2 𝑥2 − 5𝑥 ] 10 −10 =𝑥3 + 2𝑥2 − 5𝑥 ] 10 −10 =( (103 )+ 2(10) 2 − 5(10))− ((−10) 3 + 2(−10) 2 − 5(−10)) =(1000 + 200 − 50) − (−1000 + 200 + 50) =1150 − (−750) =1150 + 750 =1900 2. ∫ 8 𝑑𝑥 30 −50 =8𝑥] 30 −50 =8(30)− 8(−50) =240 + 400 =640 3. ∫ 𝑥5 𝑥2 7 2 𝑑𝑥 =∫ 𝑥5 . 𝑥2 𝑑𝑥 7 2 =∫ 𝑥3 𝑑𝑥 7 2 = 1 4 𝑥 4 ]7 2 = 1 4 74 − 1 4 24 = 2401 4 − 16 4 = 2385 4 =596,25 4. ∫ 1 𝑡 𝑑𝑡 36 6 = ∫ 36 6 𝑡−1 𝑑𝑡 = ln | 𝑡| ]36 6 =ln|36| − ln|6| =3,58 − 1.79 =1,79 5. ∫ 𝜋 0,5𝜋 sec ( 5 6 θ)tan ( 5 6 𝜃) 𝑑𝜃 = 6 5 sec( 5 6 𝜃) ] 𝜋 0,5𝜋 =( 6 5 sec( 5 6 . 180°))− ( 6 5 sec( 5 6 . 90°)) =( 6 5 sec(150°))− ( 6 5 sec(75°))
  • 3. = 6 5 ( 1 cos 150° − 1 cos 75° ) = 6 5 (−1,15 − 3,86) = 6 5 (−5,01) =−6,012 6. ∫ √3 1 𝑑𝑥 √4−𝑥2 = ∫ √3 1 1 √4−𝑥2 𝑑𝑥 = ∫ √3 1 (4 − 𝑥2)− 1 2 𝑑𝑥 = 1 −2𝑥 . 1 − 1 2 + 1 . (4 − 𝑥2)− 1 2 +1 = − 1 2𝑥 . 2. (4 − 𝑥2) 1 2 = − 1 𝑥 √4 − 𝑥2 = (− 1 √3 . √4 − (√3) 2 ) − (− 1 1 . √4 − (1)2) = (− 1 √3 . √1) − (−1. √3) = − 1 √3 + √3 = −1 + 3 √3 = 2 √3 . √3 √3 = 2 3 √3 7. ∫ (3𝑥4 − 5𝑥 3 − 21𝑥 2 + 36𝑥 − 10) 𝑑𝑥 2 1 = 3 5 𝑥5 − 5 4 𝑥4 − 21 3 𝑥3 + 36 2 𝑥2 − 10𝑥] 2 1 =( 3 5 25 − 5 4 24 − 7.23 + 18. 22 − 10.2 ) − ( 3 5 15 − 5 4 14 − 7. 13 + 18. 12 − 10.1) =( 3 5 . 32 − 5 4 . 16 − 7.8 + 18.4 − 20) − ( 3 5 − 5 4 − 7 + 18 − 10) =(19,2 − 20 − 56 + 72 − 20) − (0.6 − 1,25 − 7 + 18 − 10) =−4,8 − 0,35 =−5,15 8. ∫ 5 3 ( 𝑥3 ln 𝑥) 𝑑𝑥 = Misal : 𝑢 = ln 𝑥 => 𝑑𝑢 = 1 𝑥 𝑑𝑥 𝑑𝑣 = 𝑥3 𝑑𝑥 => 𝑣 = ∫ 𝑥3 𝑑𝑥 𝑣 = 1 4 𝑥4
  • 4. ∫ 𝑢. 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 = ln 𝑥 . 1 4 𝑥4 − ∫ 1 4 𝑥4 . 1 𝑥 𝑑𝑥 = 1 4 𝑥4 ln 𝑥 − 1 4 ∫ 𝑥3 𝑑𝑥 = 1 4 𝑥4 ln 𝑥 − 1 4 ( 1 4 𝑥4 ) + C = 1 4 𝑥4 ln 𝑥 − 1 16 𝑥4 + C Jadi, ∫ 5 3 ( 𝑥3 ln 𝑥) 𝑑𝑥 = 1 4 𝑥4 ln 𝑥 − 1 16 𝑥4 ] 5 3 = ( 1 4 . 54 ln 5 − 1 16 . 54 ) − ( 1 4 . 34 ln 3 − 1 16 . 34 ) = ( 201 4 − 625 16 ) − ( 89 4 − 81 16 ) = 112 4 − 544 16 = 28 − 34 = −6 9. ∫ √3 1 𝑐𝑜𝑡−1( 𝑥) 𝑑𝑥 = ∫ √3 1 𝑡𝑎𝑛( 𝑥) 𝑑𝑥 = −ln | cos 𝑥| ] √3 1 = − ln |cos√3| − (− ln |cos1 |) = − ln1 − (− ln 1) = 0 + 0 =0 10. ∫ 1 1+𝑒 𝑥 5 2 𝑑𝑥 = ∫ (1 + 𝑒 𝑥)−1 5 2 𝑑𝑥 𝑀𝑖𝑠𝑎𝑙, 𝑢 = 1 + 𝑒 𝑥 𝑑𝑢 𝑑𝑥 = 𝑒 𝑥 𝑑𝑥 = 𝑑𝑢 𝑒 𝑥 Jadi, ∫ (1 + 𝑒 𝑥)−1 5 2 𝑑𝑥 = ∫ 𝑢−1 5 2 . 𝑑𝑢 𝑒 𝑥 = 1 𝑒 𝑥 ∫ 𝑢−1 5 2 𝑑𝑢 = 1 𝑒 𝑥 . ln 𝑢 = 1 𝑒 𝑥 . ln(1 + 𝑒 𝑥) = ln(1 + 𝑒 𝑥) 𝑒 𝑥 = [ ln(1 + 𝑒5) 𝑒5 ] − [ ln(1 + 𝑒2) 𝑒2 ] = 0,0337 − 0,2878 = −0,2541
  • 5. Latihan 9.2 Diberikan ∫ 𝑓( 𝑥) 𝑑𝑥 = 12 𝑑𝑎𝑛 ∫ 𝑓( 𝑥) 𝑑𝑥 = 15 2 0 0 −2 1. ∫ 𝑓( 𝑥) 𝑑𝑥 = 0 2 2 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 1, ∫ 𝑓( 𝑥) 𝑑𝑥 = 0 2 2 2. ∫ 𝑓( 𝑥) 𝑑𝑥 −2 0 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 2,∫ 𝑓( 𝑥) 𝑑𝑥 = − ∫ 𝑓( 𝑥) 𝑑𝑥 = −12 0 −2 −2 0 3. ∫ 𝑓( 𝑥) 𝑑𝑥 1 1 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 1,∫ 𝑓( 𝑥) 𝑑𝑥 = 0 1 1 4. ∫ 𝑓( 𝑥) 𝑑𝑥 2 −2 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 3,∫ 𝑓( 𝑥) 𝑑𝑥 = ∫ 𝑓( 𝑥) 𝑑𝑥 + ∫ 𝑓( 𝑥) 𝑑𝑥 = 12 + 15 = 27 2 0 0 −2 2 −2 5. ∫ 5𝑓( 𝑥) 𝑑𝑥 0 −2 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 4,∫ 5𝑓( 𝑥) 𝑑𝑥 = 5 ∫ 𝑓( 𝑥) 𝑑𝑥 = 5(12) = 60 0 −2 0 −2 6. ∫ 10𝑓( 𝑥) 𝑑𝑥 −2 2 𝐷𝑖𝑘𝑒𝑡𝑎ℎ𝑢𝑖 𝑑𝑎𝑟𝑖 𝑠𝑜𝑎𝑙 𝑛𝑜 4 𝑏𝑎ℎ𝑤𝑎 ∫ 𝑓 = 27, 𝑚𝑎𝑘𝑎 𝑚𝑒𝑛𝑔𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝑠𝑖𝑓𝑎𝑡 2 & 4, 2 −2 ∫ 𝑓( 𝑥) 𝑑𝑥 = −10∫ 𝑓( 𝑥) 𝑑𝑥 = −10(27) = −270 2 −2 −2 2 Diberikan ∫ 𝑓( 𝑥) 𝑑𝑥 = −8 𝑑𝑎𝑛 ∫ 𝑔( 𝑥) 𝑑𝑥 = 22 5 1 5 1 7. ∫ [ 𝑓( 𝑥) + 𝑔( 𝑥)] 𝑑𝑥 5 1 Mengggunakan sifat 5, ∫ [ 𝑓( 𝑥) + 𝑔( 𝑥)] 𝑑𝑥 = ∫ 𝑓( 𝑥) 𝑑𝑥 + ∫ 𝑔( 𝑥) 𝑑𝑥 = −8 + 22 = 14 5 1 5 1 5 1 8. ∫ [ 𝑓( 𝑥) − 𝑔( 𝑥)] 5 1 𝑑𝑥 Menggunakan sifat 5, ∫ [𝑓( 𝑥) − 𝑔( 𝑥) 𝑑𝑥 = 5 1 ∫ 𝑓( 𝑥) 𝑑𝑥 − 5 1 ∫ 𝑔( 𝑥) 𝑑𝑥 = −8 − 22 = −30 5 1
  • 6. 9. ∫ 5 1 1 2 𝑓( 𝑥) 𝑑𝑥 Menggunakan sifat 4, ∫ 5 1 1 2 𝑓( 𝑥) 𝑑𝑥 = 1 2 ∫ 𝑓( 𝑥) 𝑑𝑥 = 5 1 1 2 (−8) = −4 10. ∫ 2𝑔(𝑥) 5 1 𝑑𝑥 + ∫ 3𝑓(𝑥) 5 1 𝑑𝑥 Menggunakan sifat 4, ∫ 2𝑔( 𝑥) 𝑑𝑥 + 5 1 ∫ 3𝑓( 𝑥) 𝑑𝑥 = 2 5 1 ∫ 𝑔( 𝑥) 𝑑𝑥 + 3 5 1 ∫ 𝑓( 𝑥) 5 1 = 2(22)+ 3(−8) = 44 − 24 = 20
  • 7. Latihan 9.3 1. 𝑑 𝑑𝑥 [∫ ( 𝑡2 + 3)−5𝑥 0 𝑑𝑡] = ( 𝑥2 + 3)−5 = 1 ( 𝑥2 + 3)5 2. 𝑑 𝑑𝑥 [∫ √3𝑡 + 5 𝑥 1 𝑑𝑡] = √3𝑥 + 5 3. 𝑑 𝑑𝑥 [∫ 𝑡 sin 𝑡 𝑥4 𝜋 ] = 𝑥4 sin( 𝑥4). 𝑑 𝑑𝑥 ( 𝑥4) = 𝑥4 sin( 𝑥4). 4𝑥3 = 4𝑥7 sin( 𝑥4) 4. 𝑑 𝑑𝑥 [∫ √𝑡235𝑥2 −5 𝑑𝑡] = √(5𝑥2)23 . 𝑑 𝑑𝑥 (5𝑥2) = √25𝑥43 .10𝑥 = 10𝑥 √25𝑥43 5. 𝑑 𝑑𝑥 [∫ ( 𝑡2 − 2𝑡 + 1) 𝑥+2 −10 𝑑𝑡 = ( 𝑥 + 2)2 − 2( 𝑥 + 2) + 1 = 𝑥2 + 4𝑥 + 4 − 2𝑥 − 4 + 1 = 𝑥2 + 2𝑥 + 1 6. 𝐹( 𝑥) = ∫ sin(3𝑡)𝑥 0 𝑑𝑡 𝐹′( 𝑥) = 𝑑 𝑑𝑥 [∫ sin(3𝑡) 𝑥 0 𝑑𝑡] 𝐹′( 𝑥) = sin 3𝑥 7. 𝐹( 𝑥) = ∫ 1 𝑡+1 4𝑥 5 𝑑𝑡 𝐹′( 𝑥) = 𝑑 𝑑𝑥 [∫ 1 𝑡 + 1 4𝑥 5 𝑑𝑡] 𝐹′( 𝑥) = 1 4𝑥 + 1 8. 𝐹( 𝑥) = ∫ 6𝑡2sin 𝑥 0 𝑑𝑡 𝐹′( 𝑥) = 𝑑 𝑑𝑥 [∫ 6𝑡2 sin 𝑥 0 𝑑𝑡] 𝐹′( 𝑥) = 6(sin 𝑥)2
  • 8. 𝐹′( 𝑥) = 6. 𝑠𝑖𝑛2 𝑥 9. 𝐹( 𝑥) = ∫ 2𝑡4√ 𝑥 −3 𝑑𝑡 𝐹′( 𝑥) = 𝑑 𝑑𝑥 [∫ 2𝑡4 √ 𝑥 −3 𝑑𝑡] 𝐹′( 𝑥) = 2(√ 𝑥) 4 𝐹′( 𝑥) = 2𝑥2 10. 𝐹( 𝑥) = ∫ 3𝑡 − 7 2𝑥+1 −8 𝑑𝑡 𝐹′( 𝑥) = 𝑑 𝑑𝑥 [∫ (3𝑡 − 7) 2𝑥+1 −8 𝑑𝑡] 𝐹′( 𝑥) = 3(2𝑥 + 1) − 7 𝐹′( 𝑥) = 6𝑥 + 3 − 7 𝐹′( 𝑥) = 6𝑥 − 4
  • 9. Latihan 9.4 1. 𝑓( 𝑥) = 2𝑥 + 6 , dan interval [-1,1] ∫ 𝑏 𝑎 𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎) ∫ 1 −1 (2𝑥 + 6) 𝑑𝑥 = (2𝑐 + 6)(1 − (−1)) ( 2 2 𝑥2 + +6𝑥) | 1 −1 = (2c+6) (1+1) (𝑥2 − 6𝑥 ) | 1 −1 = (2𝑐 + 6).2 ((12 + 6.1) − ((−1)2 + 6 (−1))) = 4𝑐 + 12 7 − (−5) = 4𝑐 + 12 12 = 4𝑐 + 12 12 − 12 = 4𝑐 0 = 4𝑐 𝑐 = 0 4 = 0 2. 𝑓( 𝑥) = 2 − 5√ 𝑥 , dan interval [0,4] ∫ 𝑏 𝑎 𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎) ∫ 4 0 (2 − 5√ 𝑥)𝑑𝑥 = (2 − 5 √ 𝑐)(4 − 0) ∫ 4 0 (2 − 5𝑥 1 2 )𝑑𝑥 = (2 − 5 √ 𝑐)(4) 2𝑥 − 5 3 2⁄ 𝑥 3 2|4 0 = 8 − 20√ 𝑐 (2.4 − 10 3 4 3 2 ) − (0) = 8 − 20√ 𝑐 8 − 80 3 = 8 − 20√ 𝑐 20√ 𝑐 = 8 − 8 + 80 3 = 80 3 60√ 𝑐 = 80 √ 𝑐 = 80 60 = 4 3 (√ 𝑐)2 = ( 4 3 ) 2 𝑐 = 16 9 = 1,778 3. 𝑓( 𝑥) = 4 𝑥3 , dan interval [1,4] ∫ 𝑏 𝑎 𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎) ∫ 4 1 ( 4 𝑥3) 𝑑𝑥 = 4 𝑐3 (4 − 1) ∫ 4 1 (4𝑥−3) 𝑑𝑥 = 4 𝑐3 (3) ( 4 −2 𝑥−2 ) | 4 1 = 12 𝑐3
  • 10. (−2 𝑥−2) | 4 1 = 12 𝑐3 (−2 .4−2) − (−2 1−2) = 12 𝑐3 −2 16 − (−2) = 12 𝑐3 −0,125 + 2 = 12 𝑐3 1,875 = 12 𝑐3 1,875 𝑐3 = 12 𝑐3 = 12 1,875 𝑐3 = 6,4 𝑐 = √6,43 = 1,86 4. 𝑓( 𝑥) = sin 𝑥 , dan interval [0, 𝜋] ∫ 𝑏 𝑎 𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏 − 𝑎) ∫ 𝜋 0 (sin 𝑥) 𝑑𝑥 = sin 𝑐 ( 𝜋 − 0) (− cos 𝑥) | 𝜋 0 = 𝜋 sin 𝑐 (− cos 𝜋) − (− cos0) = 𝜋 sin 𝑐 (− cos 180°)− (−cos0) = 180°sin 𝑐 1 + 1 = 180sin 𝑐 2 = 180. sin 𝑐 𝑠𝑖𝑛 𝑐 = 2 180 = 0,01 𝑐 = 𝑎𝑟𝑐 sin 0,01 = 0,57 5. 𝑓( 𝑥) = 1 𝑥 , dan interval [1,3] ∫ 𝑏 𝑎 𝑓( 𝑥) 𝑑𝑥 = 𝑓 (𝑐)(𝑏− 𝑎) ∫ 3 1 ( 1 𝑥 ) 𝑑𝑥 = 1 𝑐 (3 − 1) ∫ 3 1 ( 1 𝑥 ) 𝑑𝑥 = 1 𝑐 (2) ln| 𝑥| ] 3 1 = 2 𝑐 ln|3| − ln |1| = 2 𝑐 1,1 − 0 = 2 𝑐 1,1 𝑐 = 2 𝑐 = 2 1,1 = 1,82
  • 11. 6. 𝑓( 𝑥) = 𝑥2 , dan interval [-2,2] 1 𝑏−𝑎 ∫ 𝑏 𝑎 𝑓( 𝑥) 𝑑𝑥 = 1 2−(−2) ∫ 2 −2 (𝑥2 ) 𝑑𝑥 = 1 4 ( 1 3 𝑥3 ) | 2 −2 = 1 4 (( 1 3 23 ) − ( 1 3 (−2)3 )) = 1 4 ( 8 3 − (− 8 3 )) = 1 4 . 16 3 = 4 3 7. 𝑓( 𝑥) = 1 𝑥 , dan interval [1,3] 1 𝑏 − 𝑎 ∫ 𝑓( 𝑥) 𝑏 𝑎 𝑑𝑥 = 1 3−1 ∫ 1 𝑥 3 1 𝑑𝑥 = 1 2 [ln 𝑥] | 3 1 = 1 2 [ln3 − ln 1] = 1 2 (1,0986) = 0,5493 8. 𝑓( 𝑥) = cos 𝑥 , dan interval [ −𝜋 2 , 𝜋 2 ] 1 𝑏 − 𝑎 ∫ 𝑓( 𝑥) 𝑏 𝑎 𝑑𝑥 = 1 𝜋 2 −( −𝜋 2 ) ∫ cos 𝑥 𝜋 2 −𝜋 2 𝑑𝑥 = 1 𝜋 [sin 𝑥] | 𝜋 2 −𝜋 2 = 1 𝜋 [sin(90°) − sin(−90°)] = 1 𝜋 (1 − (−1)) = 2 𝜋 9. 𝑓( 𝑥) = 9 2 √ 𝑥 , dan interval [1,4] 1 𝑏 − 𝑎 ∫ 𝑓( 𝑥) 𝑏 𝑎 𝑑𝑥 = 1 4 − 1 ∫ 9 2 4 1 √ 𝑥𝑑𝑥 = 1 3 ∫ 9 2 𝑥 1 2 4 1 𝑑𝑥 = 1 3 [ 9 2⁄ 3 2⁄ 𝑥 3 2]| 4 1 = 1 3 [3. 𝑥√ 𝑥]| 4 1 = 1 3 [3.4. √4 − 3.1. √1] = 1 3 (24 − 3) = 1 3 (21) = 7
  • 12. 10. 𝑓( 𝑥) = 𝑒 𝑥 , dan interval [0,1] 1 𝑏 − 𝑎 ∫ 𝑓( 𝑥) 𝑏 𝑎 𝑑𝑥 = 1 1 − 0 ∫ 𝑒 𝑥 1 0 𝑑𝑥 = 1( 𝑒 𝑥)| 1 0 = 𝑒1 − 𝑒0 = 2,718 − 1 = 1,718 Selesai