Advanced-Differentiation-Rules.pdf

β€’β€’
ADVANCED
DIFFERENTIATION
RULES
Basic Calculus
IMPLICIT DIFFERENTIATION
Implicit Differentiation
β€’ Most of you are sometimes face with situations where
you need to choose between expressing explicitly and
expressing implicitly. Of course, you will choose the
one that is clear and not ambiguous. The same
situation happens also in mathematics, especially
when dealing with functions. A function is written in
explicit form when it is expressed as 𝑦 = 𝑓(π‘₯). All
functions that are dealt with in the previous modules
are written in this form.
Implicit Differentiation
β€’However, there are times when mathematical
functions are written in more complicated form,
wherein it is difficult (or sometimes impossible)
to express 𝑦 explicitly in terms of π‘₯ . Such
functions are expressed in implicit form. This
section of the module will try to explain how
these functions can be differentiated.
Implicit Differentiation
β€’To start, consider the following equations
describing two familiar curves:
𝑦 = π‘₯2
+ 3
π‘₯2
+ 3𝑦 = 4
Implicit Differentiation
β€’The first function defines 𝑦 as a function
of π‘₯ explicitly, because for each π‘₯, the equation
gives the explicit formula 𝑦 = 𝑓 π‘₯ for finding
the corresponding value of 𝑦. You can easily
differentiate this function following the usual
process by applying the differentiation rules:
𝑑𝑦
𝑑π‘₯
= 2π‘₯
Implicit Differentiation
β€’The second function may still be differentiated
easily, provided that it is possible to express it in
explicit form. Because π‘₯2
+ 3𝑦 = 4 , then by
algebraic manipulation, 𝑦 = βˆ’
1
3
π‘₯2
+
4
3
. You can
now differentiate this function and yield
𝑑𝑦
𝑑π‘₯
= βˆ’
1
3
2π‘₯ = βˆ’
2
3
π‘₯
Implicit Differentiation
β€’However, there are cases when it is totally
impossible to rewrite the given equation as
function of π‘₯, such as π‘₯4
+ 2π‘₯𝑦 βˆ’ 𝑦3
+ 2 = 0. It
is in these instances that implicit differentiation
is used.
Implicit Differentiation
β€’ Because the equation is written in implicit form, the
process of implicit differentiation involves
differentiating each term of an equation on both
sides, including those that contain the variably 𝑦. To
totally understand how this works, remember that
you are always differentiating in terms of π‘₯. Thus, you
must differentiate the π‘₯ terms in the usual way. But
for the 𝑦 terms, the chain rule must be applied
because 𝑦 is defined implicitly as a function of π‘₯. For
example, the expression π‘₯3
+ 3𝑦2
has a derivative
of 3π‘₯2
+ 6𝑦
𝑑𝑦
𝑑π‘₯
.
Implicit Differentiation
β€’ To further guide you on the implicit differentiation
process, follow these steps:
β€’ Differentiate both sides of the equation with respect
to π‘₯.
β€’ Combine all terms containing
𝑑𝑦
𝑑π‘₯
on the left side of the
equation and all the other terms on the right side.
β€’ On the left side of the equation, factor out
𝑑𝑦
𝑑π‘₯
.
β€’ Isolate
𝑑𝑦
𝑑π‘₯
by dividing out the other factor on the left side.
Example 1:
β€’Find
𝑑𝑦
𝑑π‘₯
given that 𝑦3
+ 𝑦 βˆ’ 3π‘₯2
= 2π‘₯ + 5.
Solution:
β€’Differentiate both sides of the equation with
respect to π‘₯.
𝑑
𝑑π‘₯
𝑦3
+ 𝑦 βˆ’ 3π‘₯2
=
𝑑
𝑑π‘₯
2π‘₯ + 5
β€’Take derivative of each term with respect
to π‘₯ and use chain rule.
3𝑦2
𝑑𝑦
𝑑π‘₯
+
𝑑𝑦
𝑑π‘₯
βˆ’ 6π‘₯ = 2
Solution:
β€’Combine all terms with
𝑑𝑦
𝑑π‘₯
on the left side.
3𝑦2
𝑑𝑦
𝑑π‘₯
+
𝑑𝑦
𝑑π‘₯
= 6π‘₯ + 2
β€’Factor out
𝑑𝑦
𝑑π‘₯
.
𝑑𝑦
𝑑π‘₯
3𝑦2
+ 1 = 6π‘₯ + 2
Solution:
β€’Divide both sides by 3𝑦2
+ 1 to isolate
𝑑𝑦
𝑑π‘₯
.
𝑑𝑦
𝑑π‘₯
=
6π‘₯ + 2
3𝑦2 + 1
Example 2:
β€’Given the equation π‘₯2
𝑦 + 2π‘₯𝑦2
= π‘₯4
+ 𝑦4
,
find
𝑑𝑦
𝑑π‘₯
.
Solution:
β€’Solution: Differentiate both sides of the equation
with respect to π‘₯.
𝑑
𝑑π‘₯
π‘₯2
𝑦 + 2π‘₯𝑦2
=
𝑑
𝑑π‘₯
π‘₯4
+ 𝑦4
Solution:
π‘₯2
𝑑𝑦
𝑑π‘₯
+ 2π‘₯𝑦 + 4π‘₯𝑦
𝑑𝑦
𝑑π‘₯
+ 2𝑦2
= 4π‘₯3
+ 4𝑦3
𝑑𝑦
𝑑π‘₯
Differentiate
with respect
to π‘₯
π‘₯2
𝑑𝑦
𝑑π‘₯
+ 4π‘₯𝑦
𝑑𝑦
𝑑π‘₯
βˆ’ 4𝑦3
𝑑𝑦
𝑑π‘₯
= 4π‘₯3
βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 Combination
of terms
with
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
(π‘₯2
+ 4π‘₯𝑦 βˆ’ 4𝑦3) = 4π‘₯3
βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 Factoring
out
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
=
4π‘₯3
βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2
π‘₯2 + 4π‘₯𝑦 βˆ’ 4𝑦3
Division of
π‘₯2
+ 4π‘₯𝑦 βˆ’
4𝑦3
Solution:
β€’The implicit differentiation can be used to find
the slope of the tangent line to the curve, given
that it is not a function, as in the next examples.
Example 3:
β€’Find the slope of the curve described by π‘₯2
+
𝑦2
= 1 at
1
2
,
3
2
Solution:
β€’The equation is that of unit circle. Thus, it is not
a function. We can, however, restrict to apply
implicit differentiation.
β€’Differentiate both sides with respect to π‘₯.
𝑑
𝑑π‘₯
π‘₯2
+ 𝑦2
=
𝑑𝑦
𝑑π‘₯
1
𝑑
𝑑π‘₯
π‘₯2
+
𝑑
𝑑π‘₯
𝑦2
= 0
Solution:
β€’2π‘₯ + 2𝑦
𝑑𝑦
𝑑π‘₯
= 0
β€’2𝑦
𝑑𝑦
𝑑π‘₯
= βˆ’2π‘₯
β€’
𝑑𝑦
𝑑π‘₯
= βˆ’
2π‘₯
2𝑦
= βˆ’
π‘₯
𝑦
Solution:
β€’To find the slope at point at point
1
2
,
3
2
,
substitute
1
2
for π‘₯ and
3
2
for 𝑦. You now obtain.
β€’
𝑑𝑦
𝑑π‘₯
= βˆ’
π‘₯
𝑦
= βˆ’
1
2
3
2
= βˆ’
1
2
βˆ™
2
3
= βˆ’
1
3
Example 4:
β€’Find the equation of the tangent line to the
curve π‘₯3
+ 𝑦3
= 9 at the point 1, 2 .
Solution:
β€’Sometimes, you can use 𝑦′
instead of
𝑑𝑦
𝑑π‘₯
.
Differentiating implicitly with respect to π‘₯,
β€’
𝑑𝑦
𝑑π‘₯
π‘₯3
+ 𝑦3
=
𝑑𝑦
𝑑π‘₯
9
β€’3π‘₯2
+ 3𝑦2
𝑦′
= 0
β€’3𝑦2
𝑦′
= βˆ’3π‘₯2
‒𝑦′
= βˆ’
3π‘₯2
3𝑦2 = βˆ’
π‘₯2
𝑦2
Solution:
β€’Now, at the point 1, 2 , the slope π‘š of the
tangent line is π‘š = βˆ’
π‘₯2
𝑦2 = βˆ’
1 2
2 2 = βˆ’
1
4
. Using the
point-slope form of the equation of the line, you
now have
‒𝑦 βˆ’ 2 = βˆ’
1
4
π‘₯ βˆ’ 1
‒𝑦 = βˆ’
1
4
π‘₯ +
1
4
+ 2
‒𝑦 = βˆ’
1
4
π‘₯ +
9
4
Example 5:
β€’ Consider the equation π‘₯2
+ 𝑦2
= 9.
a) Find 𝑦′
by implicit differentiation.
b) Derive two functions that can be defined
from the equation.
c) Find the derivative of each functions
obtained in (b) by explicit differentiation.
d) Verify that the result obtained in (a) agrees
with result in (c).
Solution:
β€’Differentiating implicitly, you find that
β€’2π‘₯ + 2𝑦 𝑦′
= 0
β€’2𝑦 𝑦′
= βˆ’2π‘₯
‒𝑦′
= βˆ’
2π‘₯
2𝑦
= βˆ’
π‘₯
𝑦
Solution:
β€’Solving the equation for 𝑦, you have 𝑦2
= 9 βˆ’ π‘₯2
.
Thus,
‒𝑦 = Β± 9 βˆ’ π‘₯2
β€’Let 𝑓 π‘₯ = 9 βˆ’ π‘₯2 and 𝑔 π‘₯ = βˆ’ 9 βˆ’ π‘₯2.
Solution:
β€’Because 𝑓 π‘₯ = 9 βˆ’ π‘₯2, by using chain rule, you
now have
‒𝑓′
π‘₯ =
1
2
9 βˆ’ π‘₯2 βˆ’
1
2 βˆ’2π‘₯ =
1
2
βˆ’2π‘₯ βˆ™
1
9βˆ’π‘₯2
=
βˆ’
π‘₯
9βˆ’π‘₯2
β€’Similarly, you get 𝑔′
π‘₯ =
π‘₯
9βˆ’π‘₯2
.
Solution:
β€’For 𝑦 = 𝑓 π‘₯ where 𝑓 π‘₯ = 9 βˆ’ π‘₯2, you have
from (c),
‒𝑓′
π‘₯ = βˆ’
π‘₯
9βˆ’π‘₯2
= βˆ’
π‘₯
𝑦
β€’For 𝑦 = 𝑔 π‘₯ where 𝑔 π‘₯ = βˆ’ 9 βˆ’ π‘₯2, you have
from (c),
‒𝑔′
π‘₯ =
π‘₯
9βˆ’π‘₯2
=
π‘₯
βˆ’ 9βˆ’π‘₯2
= βˆ’
π‘₯
𝑦
Solution:
β€’The explicit differentiation for both functions
agrees with the answer in (a).
Big Idea:
β€’The implicit differentiation is performed on
functions that are difficult to express directly. As a
result, the differentiation process takes longer
than usual and also a bit confusing when not
properly carried out. This is the same for the
things you cannot express directly. They may imply
the right message, but the receiver might
interpret them incorrectly when properly stated.
DERIVATIVE RULES FOR
EXPONENTIAL AND
LOGARITHMIC FUNCTIONS
WITH BASE 𝒆
Derivative Rules for exponential and Logarithmic
Functions with Base 𝒆
β€’You probably have now mastered how to
differentiate algebraic functions based on the
examples and exercises in the previous module.
Not all functions, however, are algebraic in form,
so you cannot apply the techniques for
differentiation right away. In the case of
exponential and logarithmic functions, they also
have a set of rules that you must follows in
finding the derivatives.
Derivative Rules for exponential and Logarithmic
Functions with Base 𝒆
β€’ Among all the exponential functions of the form 𝑦 = π‘Žπ‘₯
,
natural exponential function is of great importance in
terms of differentiation. Recall that the natural
exponential function is written as 𝑦 = 𝑒π‘₯
, where 𝑒 is the
Euler number, an irrational number equivalent
to 2.718281828 …. The most important thing about the
natural exponential function is that its derivative is
itself. Hence,
𝑑
𝑑π‘₯
𝑒π‘₯
= 𝑒π‘₯
. To prove this, examine the
value of 𝑒 once again. You may want to verify these
values using your calculator.
Derivative Rules for exponential and Logarithmic
Functions with Base 𝒆
Table 12.1. Values of 𝑒 as π‘₯ approaches 0
π‘₯ 1 + π‘₯
(1 + π‘₯)
1
π‘₯
0.1 1.1 2.59374246
0.01 1.01 2.704813829
0.001 1.001 2.716923932
0.0001 1.0001 2.718145927
0.00001 1.00001 2.718268237
0.000001 1.000001 2.718280469
0.0000001 1.0000001 2.718281694
0.00000001 1.00000001 2.718281786
Derivative Rules for exponential and Logarithmic
Functions with Base 𝒆
β€’From table 12.1, the value of
(1 + π‘₯)
1
π‘₯ approaches the
number 𝑒 as π‘₯ approaches 0. Thus,
lim
π‘₯β†’0
(1 + π‘₯)
1
π‘₯= 𝑒. This implies that as π‘₯ becomes
sufficiently small, 𝑒 = (1 + π‘₯)
1
π‘₯ or 𝑒π‘₯
= 1 + π‘₯ .
Now, suppose 𝑓 π‘₯ = 𝑒π‘₯
. Then,
Derivative Rules for exponential and Logarithmic
Functions with Base 𝒆
𝑓′(π‘₯) = lim
β„Žβ†’0
𝑒π‘₯+β„Ž
βˆ’ 𝑒π‘₯
β„Ž
Definition of derivative
= lim
β„Žβ†’0
𝑒π‘₯
(π‘’β„Ž
βˆ’ 1)
β„Ž
Factoring out 𝑒π‘₯
= lim
β„Žβ†’0
𝑒π‘₯
(1 + β„Ž βˆ’ 1)
β„Ž
Based on π‘’β„Ž
= 1 + β„Ž
= lim
β„Žβ†’0
𝑒π‘₯
(β„Ž)
β„Ž
Simplifying terms
= lim
β„Žβ†’0
𝑒π‘₯
= 𝑒π‘₯
Derivative of Natural Exponential Functions
β€’The natural exponential functions is its own
derivative, that is,
𝑑
𝑑π‘₯
𝑒π‘₯
= 𝑒π‘₯
β€’Generally, if 𝑒 is a differentiable function of π‘₯,
then
𝑑
𝑑π‘₯
𝑒𝑒
= 𝑒𝑒
𝑑𝑒
Example 6:
β€’Differentiate each function.
a) 𝑓 π‘₯ = 𝑒3π‘₯
b) 𝑔 π‘₯ = π‘’βˆ’2π‘₯2
c) 𝑝 π‘₯ = π‘₯𝑒2π‘₯
d) β„Ž π‘₯ =
𝑒2π‘₯+1
𝑒π‘₯βˆ’1
Solution:
β€’Let 𝑒 = 3π‘₯. Then,
𝑑
𝑑π‘₯
𝑒3π‘₯
= 𝑒3π‘₯
βˆ™ 3 = 3𝑒3π‘₯
β€’Let 𝑒 = βˆ’2π‘₯2
. Then,
𝑑
𝑑π‘₯
π‘’βˆ’2π‘₯2
= π‘’βˆ’2π‘₯2
βˆ™ βˆ’4π‘₯ =
βˆ’ 4π‘₯π‘’βˆ’2π‘₯2
β€’Using the product rule,
𝑝′
π‘₯ = π‘₯ βˆ™
𝑑
𝑑π‘₯
𝑒2π‘₯
+ 𝑒2π‘₯
βˆ™
𝑑
𝑑π‘₯
π‘₯
= π‘₯ 2𝑒2π‘₯
+ 𝑒2π‘₯
= 2π‘₯𝑒2π‘₯
+ 𝑒2π‘₯
Solution:
β€’Let 𝑒 = 𝑒2π‘₯
+ 1 and 𝑣 = 𝑒π‘₯
βˆ’ 1 . Then, 𝑑𝑒 =
2𝑒2π‘₯
and 𝑑𝑣 = 𝑒π‘₯
. Applying quotient rule,
β„Žβ€²
π‘₯ =
𝑒π‘₯
βˆ’ 1 2𝑒2π‘₯
βˆ’ (𝑒2π‘₯
+ 1)(𝑒π‘₯
)
(𝑒π‘₯βˆ’1)2
=
2𝑒3π‘₯
βˆ’ 2𝑒2π‘₯
βˆ’ 𝑒3π‘₯
βˆ’ 𝑒π‘₯
(𝑒π‘₯βˆ’1)2
=
𝑒3π‘₯
βˆ’ 2𝑒2π‘₯
βˆ’ 𝑒π‘₯
(𝑒π‘₯βˆ’1)2
β€’Now that you know the derivative of the natural
exponential function, you can now derive the rule
for the derivative of its inverse, which is the
natural logarithmic function. The derivative of the
natural logarithmic function may be derived by
using implicit differentiation. Suppose that 𝑦 =
ln π‘₯.
𝑦 = ln π‘₯ Given
𝑒𝑦
= π‘₯ Exponential notation
𝑑
𝑑π‘₯
𝑒𝑦
=
𝑑
𝑑π‘₯
π‘₯
Differentiating both sides
𝑒𝑦
𝑑𝑦
𝑑π‘₯
= 1
Implicit differentiation
𝑑𝑦
𝑑π‘₯
=
1
𝑒𝑦
Isolating
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
=
1
π‘₯
𝑒𝑦
= π‘₯
Derivative of Natural Logarithmic Function
β€’The derivative of the natural logarithmic function
is the reciprocal function, that is,
𝑑
𝑑π‘₯
ln π‘₯ =
1
π‘₯
β€’If 𝑒 is differentiable function of π‘₯, then
𝑑
𝑑π‘₯
ln 𝑒 =
1
𝑒
𝑑𝑒
Example 7:
β€’Find the derivative of each function.
a) 𝑦 = ln 4π‘₯
b) 𝑓 π‘₯ = ln(5π‘₯2
+ 3)
c) 𝑔 π‘₯ =
π‘₯
ln π‘₯
d) β„Ž π‘₯ = π‘₯ ln π‘₯
Solution:
β€’Let 𝑒 = 4π‘₯ . Applying the derivative of natural
logarithmic function, you have
𝑑
𝑑π‘₯
ln 4π‘₯ =
1
4π‘₯
βˆ™
𝑑
𝑑π‘₯
4π‘₯ =
4
4π‘₯
=
1
π‘₯
β€’Let 𝑒 = 5π‘₯2
+ 3. Then,
𝑑
𝑑π‘₯
ln(5π‘₯2
+ 3) =
1
5π‘₯2 + 3
βˆ™
𝑑
𝑑π‘₯
(5π‘₯2
+ 3) =
1
5π‘₯2 + 3
(10π‘₯) =
10π‘₯
5π‘₯2 + 3
Solution:
β€’Using quotient rule, you have
𝑑
𝑑π‘₯
π‘₯
ln π‘₯
=
(ln π‘₯)
𝑑
𝑑π‘₯
π‘₯ βˆ’ π‘₯
𝑑
𝑑π‘₯
[ln π‘₯]
(ln π‘₯)2
Quotient Rule
=
ln π‘₯ βˆ’ π‘₯
1
π‘₯
ln2π‘₯
Recall: (ln π‘₯)2
= ln2
π‘₯
=
ln π‘₯ βˆ’ 1
ln2π‘₯
Simplify
Solution:
β€’Using product rule, you have
β„Žβ€²
π‘₯ = π‘₯ βˆ™
𝑑
𝑑π‘₯
ln π‘₯ + ln π‘₯
𝑑
𝑑π‘₯
βˆ™ π‘₯
= π‘₯ βˆ™
1
π‘₯
+ ln π‘₯
= 1 + ln π‘₯
Example 8:
β€’Find the derivative of 𝑓 π‘₯ = ln
4π‘₯+2
π‘₯βˆ’1 2
Solution:
β€’Recall that the quotient rule of logarithms states
that the logarithm of a quotient is equal to the
difference of the logarithm of the numerator and
the logarithm of the denominator.
𝑓 π‘₯ = ln
4π‘₯ + 2
π‘₯ βˆ’ 1 2
= ln 4π‘₯ + 2 βˆ’ ln π‘₯ βˆ’ 1 2
β€’By power rule of logarithms,
𝑓 π‘₯ = ln 4π‘₯ + 2 βˆ’ 2 ln(π‘₯ βˆ’ 1)
Solution:
β€’Thus,
𝑓′
π‘₯ =
𝑑
𝑑π‘₯
ln 4π‘₯ + 2 βˆ’ 2
𝑑
𝑑π‘₯
ln(π‘₯ βˆ’ 1)
=
1
4π‘₯ + 2
βˆ™ 4 βˆ’ 2 βˆ™
1
π‘₯ βˆ’ 1
=
4
(4π‘₯ + 2)
βˆ’
2
π‘₯ βˆ’ 1
=
βˆ’2π‘₯ βˆ’ 4
(2π‘₯ + 1)(π‘₯ βˆ’ 1)
DERIVATIVE RULES FOR
GENERAL EXPONENTIAL AND
LOGARITHMIC FUNCTIONS
Derivative Rules for General Exponential and
Logarithmic Functions
β€’When the given exponential or logarithmic
function expressed using a base other than the
number 𝑒, the following rules may be applied.
These rules can be derived through rewriting the
function using base 𝑒.
Derivative with Other Bases
β€’ Let 𝑒 be a differentiable function of π‘₯ and π‘Ž is a real
number such that π‘Ž > 0 and π‘Ž β‰  1. Then,
β€’
𝑑
𝑑π‘₯
π‘Žπ‘₯
= (ln π‘Ž)π‘Žπ‘₯
β€’
𝑑
𝑑π‘₯
logπ‘Ž π‘₯ =
1
ln π‘Ž
1
π‘₯
β€’
𝑑
𝑑π‘₯
π‘Žπ‘’
= (ln π‘Ž)π‘Žπ‘’
𝑑𝑒
β€’
𝑑
𝑑π‘₯
logπ‘Ž 𝑒 =
1
ln π‘Ž
1
𝑒
𝑑𝑒
Theorem:
𝑑
𝑑π‘₯
π‘Žπ‘₯
= (ln π‘Ž)π‘Žπ‘₯
Proof: By definition, π‘Žπ‘₯
= 𝑒π‘₯(ln π‘Ž)
. Therefore,
𝑑
𝑑π‘₯
π‘Žπ‘₯
=
𝑑
𝑑π‘₯
𝑒π‘₯(ln π‘Ž)
= 𝑒π‘₯(ln π‘Ž)
βˆ™
𝑑
𝑑π‘₯
π‘₯(ln π‘Ž)
= 𝑒π‘₯(ln π‘Ž)
βˆ™ π‘₯ βˆ™
𝑑
𝑑π‘₯
(ln π‘Ž) + ln π‘Ž
Now, using constant rule,
𝑑
𝑑π‘₯
(ln π‘Ž) = 0. Thus,
𝑑
𝑑π‘₯
π‘Žπ‘₯
= 𝑒π‘₯(ln π‘Ž)
βˆ™ 0 + ln π‘Ž
= 𝑒π‘₯(ln π‘Ž)
βˆ™ ln π‘Ž
= (ln π‘Ž)π‘Žπ‘₯
Theorem:
𝑑
𝑑π‘₯
logπ‘Ž π‘₯ =
1
ln π‘Ž
1
π‘₯
Proof: Using the change-of-base formula,
logπ‘Ž π‘₯ =
ln π‘₯
ln π‘Ž
. Thus,
𝑑
𝑑π‘₯
logπ‘Ž π‘₯ =
𝑑
𝑑π‘₯
ln π‘₯
ln π‘Ž
=
ln π‘Ž βˆ™
𝑑
𝑑π‘₯
ln π‘₯ βˆ’ ln π‘₯ βˆ™
𝑑
𝑑π‘₯
ln π‘Ž
ln2π‘Ž
=
ln π‘Ž βˆ™
1
π‘₯
βˆ’ 0
ln2π‘Ž
=
1
π‘₯
ln π‘Ž βˆ™
1
ln2π‘Ž
=
1
ln π‘Ž
1
π‘₯
Example 1:
β€’Find the derivative of the following function:
a) 𝑦 = 52π‘₯
b) 𝑦 = 𝑒π‘₯
+ 8π‘₯
c) 𝑦 = log5(3π‘₯2
+ 1)
d) 𝑦 = log π‘₯ π‘₯ βˆ’ 2 3
Solution:
‒𝑦 = 52π‘₯
𝑑
𝑑π‘₯
52π‘₯
= 52π‘₯
βˆ™ ln 5 βˆ™
𝑑
𝑑π‘₯
2π‘₯ = (2 ln 5)52π‘₯
‒𝑦 = 𝑒π‘₯
+ 8π‘₯
𝑑
𝑑π‘₯
𝑒π‘₯
+ 8π‘₯
=
𝑑
𝑑π‘₯
𝑒π‘₯
+
𝑑
𝑑π‘₯
8π‘₯
= 𝑒π‘₯
+ ln 8 8π‘₯
Solution:
‒𝑦 = log5 3π‘₯2
+ 1
𝑑
𝑑π‘₯
log5 3π‘₯2
+ 1 =
1
ln 5
1
3π‘₯2 + 1
βˆ™
𝑑
𝑑π‘₯
3π‘₯2
+ 1
=
1
ln 5
1
3π‘₯2 + 1
6π‘₯
=
6π‘₯
(ln 5) 3π‘₯2 + 1
Solution:
β€’This function will be best differentiated if it will be
simplified first using the product rule for logarithms, i.e.,
log 𝑒𝑣 = log 𝑒 + log 𝑣. Also, recall that this is a case of
common logarithm in which the base, although not
written, is understood to be 10.
log π‘₯ π‘₯ βˆ’ 2 3
= log π‘₯ + log π‘₯ βˆ’ 2 3
= log π‘₯ + 3 log(π‘₯ βˆ’ 2)
𝑑
𝑑π‘₯
log π‘₯ π‘₯ βˆ’ 2 3
=
𝑑
𝑑π‘₯
log π‘₯ + 3 log(π‘₯ βˆ’ 2)
Solution:
=
𝑑
𝑑π‘₯
log π‘₯ + 3
𝑑
𝑑π‘₯
log(π‘₯ βˆ’ 2)
=
1
ln 10
1
π‘₯
+ 3
1
ln 10
1
π‘₯ βˆ’ 2
βˆ™
𝑑
𝑑π‘₯
π‘₯ βˆ’ 2
=
1
π‘₯ ln 10
+
3
π‘₯ βˆ’ 2 ln 10
=
4π‘₯ βˆ’ 2
(π‘₯ ln 10)(π‘₯ βˆ’ 2)
DERIVATIVE RULES FOR
TRIGONOMETRIC
FUNCTIONS
Derivative Rules for Trigonometric Functions
β€’You will deepen your understanding of
trigonometric functions as you explore their
derivatives. The trigonometric functions have
many useful applications in several fields such
as physics, astronomy, and biological sciences.
Needed in the formulation of the rule for the
derivatives of the six trigonometric functions are
the two important trigonometric limits:
lim
π‘₯β†’0
sin π‘₯
π‘₯
= 1 and lim
π‘₯β†’0
1βˆ’cos π‘₯
π‘₯
= 0.
Derivative Rules for Trigonometric Functions
β€’The derivations of the differentiation formulas
for trigonometric functions are based on these
two limits. To start, let us derive the formula
for
𝑑
𝑑π‘₯
sin π‘₯ as follows.
β€’By the definition of the derivative,
𝑑
𝑑π‘₯
sin π‘₯ = lim
β„Žβ†’0
sin π‘₯ + β„Ž βˆ’ sin π‘₯
β„Ž
Derivative Rules for Trigonometric Functions
β€’Using the sum identity for sine, you have sin π‘₯ + β„Ž =
sin π‘₯ cos β„Ž + cos π‘₯ sin β„Ž. Then,
𝑑
𝑑π‘₯
sin π‘₯ = lim
β„Žβ†’0
sin π‘₯ cos β„Ž + cos π‘₯ sin β„Ž βˆ’ sin π‘₯
β„Ž
= lim
β„Žβ†’0
cos π‘₯ sin β„Ž
β„Ž
+
sin π‘₯ cos β„Ž βˆ’ sin π‘₯
β„Ž
= lim
β„Žβ†’0
cos π‘₯ sin β„Ž
β„Ž
+ lim
β„Žβ†’0
sin π‘₯ cos β„Ž βˆ’ sin π‘₯
β„Ž
Derivative Rules for Trigonometric Functions
= lim
β„Žβ†’0
cos π‘₯ βˆ™
sin β„Ž
β„Ž
+ lim
β„Žβ†’0
βˆ’ sin π‘₯
= cos π‘₯ lim
β„Žβ†’0
sin β„Ž
β„Ž
βˆ’ sin π‘₯ lim
β„Žβ†’0
1 βˆ’ cos β„Ž
β„Ž
= cos π‘₯ 1 βˆ’ sin π‘₯ (0)
𝑑
𝑑π‘₯
sin π‘₯ = cos π‘₯
Derivative Rules for Trigonometric Functions
β€’Thus, the derivative of the sine function is the cosine
function. To derive the differentiation formula forcos π‘₯, you
have
𝑑
𝑑π‘₯
cos π‘₯ = lim
β„Žβ†’0
cos π‘₯ + β„Ž βˆ’ cos π‘₯
β„Ž
= lim
β„Žβ†’0
cos π‘₯ cos β„Ž βˆ’ sin π‘₯ sin β„Ž βˆ’ cos π‘₯
β„Ž
= lim
β„Žβ†’0
cos π‘₯ cos β„Ž βˆ’ cos π‘₯ βˆ’ (sin π‘₯ sin β„Ž)
β„Ž
Derivative Rules for Trigonometric Functions
= lim
β„Žβ†’0
cos π‘₯ cos β„Ž βˆ’ cos π‘₯
β„Ž
= βˆ’ cos π‘₯ lim
β„Žβ†’0
1 βˆ’ cos β„Ž
β„Ž
= βˆ’ cos π‘₯ 0 βˆ’ sin π‘₯ (1)
𝑑
𝑑π‘₯
cos π‘₯ = βˆ’ sin π‘₯
Derivative Rules for Trigonometric Functions
β€’In general, for any function 𝑒 differentiable at
any value of π‘₯ ,
𝑑
𝑑π‘₯
sin 𝑒 =
cos 𝑒 𝑑𝑒 and
𝑑
𝑑π‘₯
cos 𝑒 = βˆ’ sin 𝑒 𝑑𝑒 . The
following gives the differentiation formulas for
the other functions. Their derivatives are left for
you as an exercise.
Derivatives of the Trigonometric Functions
β€’
𝑑
𝑑π‘₯
sin 𝑒 = cos 𝑒 𝑑𝑒
β€’
𝑑
𝑑π‘₯
cos 𝑒 = βˆ’ sin 𝑒 𝑑𝑒
β€’
𝑑
𝑑π‘₯
tan 𝑒 = sec2
𝑒 𝑑𝑒
Derivatives of the Trigonometric Functions
β€’
𝑑
𝑑π‘₯
cot 𝑒 = βˆ’csc2
𝑒 𝑑𝑒
β€’
𝑑
𝑑π‘₯
sec 𝑒 = sec 𝑒 tan 𝑒 𝑑𝑒
β€’
𝑑
𝑑π‘₯
csc 𝑒 = βˆ’ csc 𝑒 cot 𝑒 𝑑𝑒
Example 1:
β€’Differentiate the following functions:
a) 𝑦 = cos 3π‘₯
b) 𝑦 = sin 6π‘₯2
βˆ’ 1
c) 𝑦 = tan
5π‘₯
4
d) 𝑦 = sec(6π‘₯)
Solution:
β€’Let 𝑒 = 3π‘₯. Then,
𝑑
𝑑π‘₯
cos 3π‘₯ = βˆ’ sin 3π‘₯ βˆ™
𝑑
𝑑π‘₯
3π‘₯ = βˆ’3 sin 3π‘₯
β€’Let 𝑒 = 6π‘₯2
βˆ’ 1. Applying the derivative rule for sine,
𝑑
𝑑π‘₯
sin 6π‘₯2
βˆ’ 1 = cos 6π‘₯2
βˆ’ 1 βˆ™
𝑑𝑦
𝑑π‘₯
6π‘₯2
βˆ’ 1
= 12π‘₯ cos 6π‘₯2
βˆ’ 1
Solution:
β€’Let 𝑒 =
5π‘₯
4
. Therefore,
𝑑
𝑑π‘₯
tan
5π‘₯
4
= sec2
5π‘₯
4
βˆ™
𝑑
𝑑π‘₯
5π‘₯
4
=
5
4
sec2
5π‘₯
4
β€’Let 𝑒 = 6π‘₯. Then 𝑑𝑒 = 6 and you have
𝑑
𝑑π‘₯
sec 6π‘₯ = sec 6π‘₯ tan 6π‘₯ βˆ™ 6 = 6 sec 6π‘₯ tan 6π‘₯
Example 2:
β€’Differentiate 𝑦 = (1 βˆ’ cos 2π‘₯)4
Solution:
β€’ Applying the chain rule, let 𝑒 = 1 βˆ’ cos 2π‘₯.
𝑑𝑒 =
𝑑
𝑑π‘₯
1 βˆ’
𝑑
𝑑π‘₯
cos 2π‘₯ = 0 βˆ’ βˆ’ sin 2π‘₯
𝑑
𝑑π‘₯
2π‘₯
= 2 sin 2π‘₯
β€’ Therefore,
𝑦′
= 4𝑒3
𝑑𝑒
= 4 1 βˆ’ cos 2π‘₯ 3
(2 sin 2π‘₯)
= (8 sin 2π‘₯) 1 βˆ’ cos 2π‘₯ 3
Example 3:
β€’Given that 𝑓 π‘₯ =
sin π‘₯
1βˆ’2 cos π‘₯
, find 𝑓′(π‘₯).
Solution:
β€’ Let 𝑒 = sin π‘₯ and 𝑣 = 1 βˆ’ 2 cos π‘₯ , giving 𝑑𝑒 =
cos π‘₯ and 𝑑𝑣 = 2 sin π‘₯. Applying quotient rule, you have
𝑓′
π‘₯ =
1 βˆ’ 2 cos π‘₯ cos π‘₯ βˆ’ sin π‘₯ 2 sin π‘₯
1 βˆ’ 2 cos π‘₯ 2
=
cos π‘₯ βˆ’ 2cos2
π‘₯ βˆ’ 2sin2
π‘₯
1 βˆ’ 2 cos π‘₯ 2
Solution:
=
cos π‘₯ βˆ’ 2(cos2
π‘₯ + sin2
π‘₯)
1 βˆ’ 2 cos π‘₯ 2
=
cos π‘₯ βˆ’ 2(1)
1 βˆ’ 2 cos π‘₯ 2
=
cos π‘₯ βˆ’ 2
1 βˆ’ 2 cos π‘₯ 2
Example 4:
β€’Differentiate the following: 𝑦 =
sin 3π‘₯
4+5 cos 2π‘₯
Solution:
β€’ Apply the quotient rule followed by chain rule. Then
𝑦′
=
4 + 5 cos 2π‘₯ 3 cos 3π‘₯ βˆ’ sin 3π‘₯ βˆ’10 sin 2π‘₯
4 + 5 cos 2π‘₯ 2
=
12 cos 3π‘₯ + 15 cos 2π‘₯ cos 3π‘₯ + (10 sin 2π‘₯ sin 3π‘₯)
4 + 5 cos 2π‘₯ 2
=
12 cos 3π‘₯ + 15 cos 2π‘₯ cos 3π‘₯ + 10 sin 2π‘₯ sin 3π‘₯
4 + 5 cos 2π‘₯ 2
Example 5:
β€’Given that π‘₯ cos 𝑦 + 𝑦 cos π‘₯ = 1, find
𝑑𝑦
𝑑π‘₯
.
Solution:
β€’ Differentiating implicitly with respect to π‘₯, you get
π‘₯ βˆ™ βˆ’ sin 𝑦
𝑑𝑦
𝑑π‘₯
+ cos 𝑦 1 + 𝑦 βˆ™ βˆ’ sin π‘₯ + cos π‘₯
𝑑𝑦
𝑑π‘₯
= 0
βˆ’π‘₯ sin 𝑦
𝑑𝑦
𝑑π‘₯
+ cos 𝑦 βˆ’ 𝑦 sin π‘₯ + cos π‘₯
𝑑𝑦
𝑑π‘₯
= 0
βˆ’ sin 𝑦
𝑑𝑦
𝑑π‘₯
+ cos π‘₯
𝑑𝑦
𝑑π‘₯
= 𝑦 sin π‘₯ βˆ’ cos 𝑦
𝑑𝑦
𝑑π‘₯
cos π‘₯ βˆ’ π‘₯ sin 𝑦 = 𝑦 sin π‘₯ βˆ’ cos 𝑦
𝑑𝑦
𝑑π‘₯
=
𝑦 sin π‘₯ βˆ’ cos 𝑦
cos π‘₯ βˆ’ π‘₯ sin 𝑦
Example 6:
β€’Find the second the derivative of 𝑔 π‘₯ =
cot 3π‘₯3
.
Solution:
β€’ To find the first derivative, use chain rule and the
differentiation rule for sine:
𝑔′
π‘₯ = βˆ’csc2
3π‘₯2
βˆ™ 9π‘₯2
= βˆ’9π‘₯2
csc2
3π‘₯3
β€’ Then,
𝑔′′
π‘₯ =
𝑑
𝑑π‘₯
βˆ’9π‘₯2
csc2
3π‘₯3
Solution:
= βˆ’9π‘₯2
βˆ™
𝑑
𝑑π‘₯
csc2
3π‘₯3
+ csc2
3π‘₯3
βˆ™
𝑑
𝑑π‘₯
βˆ’9π‘₯2
= βˆ’9π‘₯2
2 csc 3π‘₯3
βˆ’ csc 3π‘₯3
cot 3π‘₯3
9π‘₯2
+ csc2
3π‘₯3
βˆ’18π‘₯
= 162π‘₯4
csc2
3π‘₯3
cot 3π‘₯3
βˆ’ 18π‘₯ csc2
3π‘₯3
= 18π‘₯ csc2
3π‘₯3
9π‘₯3
cot 3π‘₯3
βˆ’ 1
Example 7:
β€’In a certain city, the normal average
temperature (in degrees Fahrenheit) is modelled
by the function 𝑓 𝑑 = 49 βˆ’ 18 cos
πœ‹(π‘‘βˆ’32)
180
,
where 𝑑 is the time in days so that 𝑑 =
1 corresponds to the first of January. What is the
expected date of the warmest day and the
coolest day?
Solution:
β€’ To solve this problem, you need to find the value of 𝑑 such
that 𝑓′
𝑑 = 0.
𝑓′
𝑑 = 0 βˆ’ 18
𝑑
𝑑𝑑
cos
πœ‹ 𝑑 βˆ’ 32
180
= βˆ’18 βˆ’ sin
πœ‹ 𝑑 βˆ’ 32
180
βˆ™
𝑑
𝑑𝑑
πœ‹ 𝑑 βˆ’ 32
180
= 18 sin
πœ‹(𝑑 βˆ’ 32)
180
βˆ™
πœ‹
180
=
πœ‹
10
sin
πœ‹ 𝑑 βˆ’ 32
180
Solution:
β€’ Then,
πœ‹
10
sin
πœ‹ 𝑑 βˆ’ 32
180
= 0
sin
πœ‹ 𝑑 βˆ’ 32
180
= 0
Solution:
β€’ In trigonometry, you have learned thatsin πœƒ = 0 for all
multiples of πœ‹. Thus,
πœ‹ 𝑑 βˆ’ 32
180
= 0
πœ‹ 𝑑 βˆ’ 32 = 0
𝑑 βˆ’ 32 = 0
𝑑 = 32
Solution:
πœ‹ 𝑑 βˆ’ 32
180
= πœ‹
πœ‹ 𝑑 βˆ’ 32 = 180πœ‹
𝑑 βˆ’ 32 = 180
𝑑 = 212
Solution:
πœ‹ 𝑑 βˆ’ 32
180
= 2πœ‹
πœ‹ 𝑑 βˆ’ 32 = 360πœ‹
𝑑 βˆ’ 32 = 360
𝑑 = 392
Solution:
β€’ For πœƒ = 2πœ‹ onward, 𝑑 is already out of the domain because a
year has only 365 days. Substituting n the original function,
if 𝑑 = 32,
𝑓 𝑑 = 49 βˆ’ 18 cos
πœ‹ 32 βˆ’ 32
180
= 49 βˆ’ 18 cos 0 = 49 βˆ’ 18 1
= 31℉
β€’ If 𝑑 = 212,
𝑓 𝑑 = 49 βˆ’ 18 cos
πœ‹ 212 βˆ’ 32
180
= 49 βˆ’ 18 cos 0
= 49 βˆ’ 18 βˆ’1
= 67℉
Solution:
β€’ Therefore, the coolest day will happen when 𝑑 = 32, i.e.,
the first of February, and the warmest day will be
when 𝑑 = 212, or 31st of July, provided that it is not leap
year.
1 von 98

Recomendados

Lesson 9 transcendental functions von
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functionsLawrence De Vera
14.6K viewsβ€’30 Folien
Integral calculus von
Integral calculusIntegral calculus
Integral calculusFarzad Javidanrad
26K viewsβ€’23 Folien
P1-Chp12-Differentiation.pptx von
P1-Chp12-Differentiation.pptxP1-Chp12-Differentiation.pptx
P1-Chp12-Differentiation.pptxssusere6db97
12 viewsβ€’56 Folien
MT102 Π›Π΅ΠΊΡ† 11 von
MT102 Π›Π΅ΠΊΡ† 11MT102 Π›Π΅ΠΊΡ† 11
MT102 Π›Π΅ΠΊΡ† 11ssuser184df1
57 viewsβ€’31 Folien
P1-Chp2-Quadratics.pptx von
P1-Chp2-Quadratics.pptxP1-Chp2-Quadratics.pptx
P1-Chp2-Quadratics.pptxBELLABELLA472963
75 viewsβ€’42 Folien
P1-Chp12-Differentiation (1).pptx von
P1-Chp12-Differentiation (1).pptxP1-Chp12-Differentiation (1).pptx
P1-Chp12-Differentiation (1).pptxMIhaelaCorche1
60 viewsβ€’60 Folien

MΓ‘s contenido relacionado

Similar a Advanced-Differentiation-Rules.pdf

4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS von
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONSGogely The Great
631 viewsβ€’15 Folien
Gen Math topic 1.pptx von
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptxAngeloReyes58
102 viewsβ€’94 Folien
Division of polynomials von
Division of polynomialsDivision of polynomials
Division of polynomialsYann Villarreal
2.5K viewsβ€’12 Folien
Basic calculus (ii) recap von
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recapFarzad Javidanrad
5.2K viewsβ€’51 Folien
GraphTransformations.pptx von
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptxSrideviNagarjuna
54 viewsβ€’32 Folien
Quadratic equations and function von
Quadratic equations and functionQuadratic equations and function
Quadratic equations and functionMelchor Cachuela
360 viewsβ€’8 Folien

Similar a Advanced-Differentiation-Rules.pdf(20)

4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS von Gogely The Great
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS
4 ESO Academics - UNIT 04 - EQUATIONS AND INEQUATIONS
Gogely The Greatβ€’631 views
Gen Math topic 1.pptx von AngeloReyes58
Gen Math topic 1.pptxGen Math topic 1.pptx
Gen Math topic 1.pptx
AngeloReyes58β€’102 views
Division of polynomials von Yann Villarreal
Division of polynomialsDivision of polynomials
Division of polynomials
Yann Villarrealβ€’2.5K views
Quadratic equations and function von Melchor Cachuela
Quadratic equations and functionQuadratic equations and function
Quadratic equations and function
Melchor Cachuelaβ€’360 views
Ejercicios resueltos de analisis matematico 1 von tinardo
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardoβ€’328 views
Differential Calculus- differentiation von Santhanam Krishnan
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Santhanam Krishnanβ€’132 views
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS von Rai University
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai Universityβ€’1.9K views
Chapter 2 - Types of a Function.pdf von ManarKareem1
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
ManarKareem1β€’10 views
Limit Fungsi Matematika von AdeSaepudin4
Limit Fungsi MatematikaLimit Fungsi Matematika
Limit Fungsi Matematika
AdeSaepudin4β€’66 views
1.6 Other Types of Equations von smiller5
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equations
smiller5β€’25 views
MT102 Π›Π΅ΠΊΡ† 10 von ssuser184df1
MT102 Π›Π΅ΠΊΡ† 10MT102 Π›Π΅ΠΊΡ† 10
MT102 Π›Π΅ΠΊΡ† 10
ssuser184df1β€’70 views
what_are_Derivative.pdf von PatrickNokrek
what_are_Derivative.pdfwhat_are_Derivative.pdf
what_are_Derivative.pdf
PatrickNokrekβ€’1 view
Unit-1 Basic Concept of Algorithm.pptx von ssuser01e301
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptx
ssuser01e301β€’8 views
LESSON_2_Solving_Quadratic_Equations_by_Completing_the_Square_and_Using_the_Q... von MaryEuniceRodriguez1
LESSON_2_Solving_Quadratic_Equations_by_Completing_the_Square_and_Using_the_Q...LESSON_2_Solving_Quadratic_Equations_by_Completing_the_Square_and_Using_the_Q...
LESSON_2_Solving_Quadratic_Equations_by_Completing_the_Square_and_Using_the_Q...
MaryEuniceRodriguez1β€’96 views

Último

[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines von
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
[DSC Europe 23] Luca Morena - From Psychohistory to Curious MachinesDataScienceConferenc1
5 viewsβ€’20 Folien
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf von
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOPPOTUS - Malaysians on Malaysia 3Q2023.pdf
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOppotus
27 viewsβ€’19 Folien
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... von
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...DataScienceConferenc1
7 viewsβ€’11 Folien
SUPER STORE SQL PROJECT.pptx von
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptxkhan888620
13 viewsβ€’16 Folien
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation von
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented GenerationDataScienceConferenc1
17 viewsβ€’29 Folien
CRM stick or twist workshop von
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshopinfo828217
14 viewsβ€’16 Folien

Último(20)

[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines von DataScienceConferenc1
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
DataScienceConferenc1β€’5 views
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf von Oppotus
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOPPOTUS - Malaysians on Malaysia 3Q2023.pdf
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf
Oppotusβ€’27 views
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... von DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
DataScienceConferenc1β€’7 views
SUPER STORE SQL PROJECT.pptx von khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan888620β€’13 views
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation von DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
DataScienceConferenc1β€’17 views
CRM stick or twist workshop von info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info828217β€’14 views
Best Home Security Systems.pptx von mogalang
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptx
mogalangβ€’9 views
PRIVACY AWRE PERSONAL DATA STORAGE von antony420421
PRIVACY AWRE PERSONAL DATA STORAGEPRIVACY AWRE PERSONAL DATA STORAGE
PRIVACY AWRE PERSONAL DATA STORAGE
antony420421β€’7 views
Ukraine Infographic_22NOV2023_v2.pdf von AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurinβ€’1.4K views
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f... von DataScienceConferenc1
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...
DataScienceConferenc1β€’5 views
Chapter 3b- Process Communication (1) (1)(1) (1).pptx von ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig2004β€’8 views
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ... von DataScienceConferenc1
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
DataScienceConferenc1β€’10 views
CRIJ4385_Death Penalty_F23.pptx von yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm100β€’7 views
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int... von DataScienceConferenc1
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
DataScienceConferenc1β€’5 views
shivam tiwari.pptx von AanyaMishra4
shivam tiwari.pptxshivam tiwari.pptx
shivam tiwari.pptx
AanyaMishra4β€’5 views
CRM stick or twist.pptx von info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info828217β€’11 views
[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks von DataScienceConferenc1
[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks
[DSC Europe 23] Aleksandar Tomcic - Adversarial Attacks
DataScienceConferenc1β€’5 views
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx von DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
DataScienceConferenc1β€’10 views

Advanced-Differentiation-Rules.pdf

  • 3. Implicit Differentiation β€’ Most of you are sometimes face with situations where you need to choose between expressing explicitly and expressing implicitly. Of course, you will choose the one that is clear and not ambiguous. The same situation happens also in mathematics, especially when dealing with functions. A function is written in explicit form when it is expressed as 𝑦 = 𝑓(π‘₯). All functions that are dealt with in the previous modules are written in this form.
  • 4. Implicit Differentiation β€’However, there are times when mathematical functions are written in more complicated form, wherein it is difficult (or sometimes impossible) to express 𝑦 explicitly in terms of π‘₯ . Such functions are expressed in implicit form. This section of the module will try to explain how these functions can be differentiated.
  • 5. Implicit Differentiation β€’To start, consider the following equations describing two familiar curves: 𝑦 = π‘₯2 + 3 π‘₯2 + 3𝑦 = 4
  • 6. Implicit Differentiation β€’The first function defines 𝑦 as a function of π‘₯ explicitly, because for each π‘₯, the equation gives the explicit formula 𝑦 = 𝑓 π‘₯ for finding the corresponding value of 𝑦. You can easily differentiate this function following the usual process by applying the differentiation rules: 𝑑𝑦 𝑑π‘₯ = 2π‘₯
  • 7. Implicit Differentiation β€’The second function may still be differentiated easily, provided that it is possible to express it in explicit form. Because π‘₯2 + 3𝑦 = 4 , then by algebraic manipulation, 𝑦 = βˆ’ 1 3 π‘₯2 + 4 3 . You can now differentiate this function and yield 𝑑𝑦 𝑑π‘₯ = βˆ’ 1 3 2π‘₯ = βˆ’ 2 3 π‘₯
  • 8. Implicit Differentiation β€’However, there are cases when it is totally impossible to rewrite the given equation as function of π‘₯, such as π‘₯4 + 2π‘₯𝑦 βˆ’ 𝑦3 + 2 = 0. It is in these instances that implicit differentiation is used.
  • 9. Implicit Differentiation β€’ Because the equation is written in implicit form, the process of implicit differentiation involves differentiating each term of an equation on both sides, including those that contain the variably 𝑦. To totally understand how this works, remember that you are always differentiating in terms of π‘₯. Thus, you must differentiate the π‘₯ terms in the usual way. But for the 𝑦 terms, the chain rule must be applied because 𝑦 is defined implicitly as a function of π‘₯. For example, the expression π‘₯3 + 3𝑦2 has a derivative of 3π‘₯2 + 6𝑦 𝑑𝑦 𝑑π‘₯ .
  • 10. Implicit Differentiation β€’ To further guide you on the implicit differentiation process, follow these steps: β€’ Differentiate both sides of the equation with respect to π‘₯. β€’ Combine all terms containing 𝑑𝑦 𝑑π‘₯ on the left side of the equation and all the other terms on the right side. β€’ On the left side of the equation, factor out 𝑑𝑦 𝑑π‘₯ . β€’ Isolate 𝑑𝑦 𝑑π‘₯ by dividing out the other factor on the left side.
  • 11. Example 1: β€’Find 𝑑𝑦 𝑑π‘₯ given that 𝑦3 + 𝑦 βˆ’ 3π‘₯2 = 2π‘₯ + 5.
  • 12. Solution: β€’Differentiate both sides of the equation with respect to π‘₯. 𝑑 𝑑π‘₯ 𝑦3 + 𝑦 βˆ’ 3π‘₯2 = 𝑑 𝑑π‘₯ 2π‘₯ + 5 β€’Take derivative of each term with respect to π‘₯ and use chain rule. 3𝑦2 𝑑𝑦 𝑑π‘₯ + 𝑑𝑦 𝑑π‘₯ βˆ’ 6π‘₯ = 2
  • 13. Solution: β€’Combine all terms with 𝑑𝑦 𝑑π‘₯ on the left side. 3𝑦2 𝑑𝑦 𝑑π‘₯ + 𝑑𝑦 𝑑π‘₯ = 6π‘₯ + 2 β€’Factor out 𝑑𝑦 𝑑π‘₯ . 𝑑𝑦 𝑑π‘₯ 3𝑦2 + 1 = 6π‘₯ + 2
  • 14. Solution: β€’Divide both sides by 3𝑦2 + 1 to isolate 𝑑𝑦 𝑑π‘₯ . 𝑑𝑦 𝑑π‘₯ = 6π‘₯ + 2 3𝑦2 + 1
  • 15. Example 2: β€’Given the equation π‘₯2 𝑦 + 2π‘₯𝑦2 = π‘₯4 + 𝑦4 , find 𝑑𝑦 𝑑π‘₯ .
  • 16. Solution: β€’Solution: Differentiate both sides of the equation with respect to π‘₯. 𝑑 𝑑π‘₯ π‘₯2 𝑦 + 2π‘₯𝑦2 = 𝑑 𝑑π‘₯ π‘₯4 + 𝑦4
  • 17. Solution: π‘₯2 𝑑𝑦 𝑑π‘₯ + 2π‘₯𝑦 + 4π‘₯𝑦 𝑑𝑦 𝑑π‘₯ + 2𝑦2 = 4π‘₯3 + 4𝑦3 𝑑𝑦 𝑑π‘₯ Differentiate with respect to π‘₯ π‘₯2 𝑑𝑦 𝑑π‘₯ + 4π‘₯𝑦 𝑑𝑦 𝑑π‘₯ βˆ’ 4𝑦3 𝑑𝑦 𝑑π‘₯ = 4π‘₯3 βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 Combination of terms with 𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯ (π‘₯2 + 4π‘₯𝑦 βˆ’ 4𝑦3) = 4π‘₯3 βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 Factoring out 𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯ = 4π‘₯3 βˆ’ 2π‘₯𝑦 βˆ’ 2𝑦2 π‘₯2 + 4π‘₯𝑦 βˆ’ 4𝑦3 Division of π‘₯2 + 4π‘₯𝑦 βˆ’ 4𝑦3
  • 18. Solution: β€’The implicit differentiation can be used to find the slope of the tangent line to the curve, given that it is not a function, as in the next examples.
  • 19. Example 3: β€’Find the slope of the curve described by π‘₯2 + 𝑦2 = 1 at 1 2 , 3 2
  • 20. Solution: β€’The equation is that of unit circle. Thus, it is not a function. We can, however, restrict to apply implicit differentiation. β€’Differentiate both sides with respect to π‘₯. 𝑑 𝑑π‘₯ π‘₯2 + 𝑦2 = 𝑑𝑦 𝑑π‘₯ 1 𝑑 𝑑π‘₯ π‘₯2 + 𝑑 𝑑π‘₯ 𝑦2 = 0
  • 21. Solution: β€’2π‘₯ + 2𝑦 𝑑𝑦 𝑑π‘₯ = 0 β€’2𝑦 𝑑𝑦 𝑑π‘₯ = βˆ’2π‘₯ β€’ 𝑑𝑦 𝑑π‘₯ = βˆ’ 2π‘₯ 2𝑦 = βˆ’ π‘₯ 𝑦
  • 22. Solution: β€’To find the slope at point at point 1 2 , 3 2 , substitute 1 2 for π‘₯ and 3 2 for 𝑦. You now obtain. β€’ 𝑑𝑦 𝑑π‘₯ = βˆ’ π‘₯ 𝑦 = βˆ’ 1 2 3 2 = βˆ’ 1 2 βˆ™ 2 3 = βˆ’ 1 3
  • 23. Example 4: β€’Find the equation of the tangent line to the curve π‘₯3 + 𝑦3 = 9 at the point 1, 2 .
  • 24. Solution: β€’Sometimes, you can use 𝑦′ instead of 𝑑𝑦 𝑑π‘₯ . Differentiating implicitly with respect to π‘₯, β€’ 𝑑𝑦 𝑑π‘₯ π‘₯3 + 𝑦3 = 𝑑𝑦 𝑑π‘₯ 9 β€’3π‘₯2 + 3𝑦2 𝑦′ = 0 β€’3𝑦2 𝑦′ = βˆ’3π‘₯2 ‒𝑦′ = βˆ’ 3π‘₯2 3𝑦2 = βˆ’ π‘₯2 𝑦2
  • 25. Solution: β€’Now, at the point 1, 2 , the slope π‘š of the tangent line is π‘š = βˆ’ π‘₯2 𝑦2 = βˆ’ 1 2 2 2 = βˆ’ 1 4 . Using the point-slope form of the equation of the line, you now have ‒𝑦 βˆ’ 2 = βˆ’ 1 4 π‘₯ βˆ’ 1 ‒𝑦 = βˆ’ 1 4 π‘₯ + 1 4 + 2 ‒𝑦 = βˆ’ 1 4 π‘₯ + 9 4
  • 26. Example 5: β€’ Consider the equation π‘₯2 + 𝑦2 = 9. a) Find 𝑦′ by implicit differentiation. b) Derive two functions that can be defined from the equation. c) Find the derivative of each functions obtained in (b) by explicit differentiation. d) Verify that the result obtained in (a) agrees with result in (c).
  • 27. Solution: β€’Differentiating implicitly, you find that β€’2π‘₯ + 2𝑦 𝑦′ = 0 β€’2𝑦 𝑦′ = βˆ’2π‘₯ ‒𝑦′ = βˆ’ 2π‘₯ 2𝑦 = βˆ’ π‘₯ 𝑦
  • 28. Solution: β€’Solving the equation for 𝑦, you have 𝑦2 = 9 βˆ’ π‘₯2 . Thus, ‒𝑦 = Β± 9 βˆ’ π‘₯2 β€’Let 𝑓 π‘₯ = 9 βˆ’ π‘₯2 and 𝑔 π‘₯ = βˆ’ 9 βˆ’ π‘₯2.
  • 29. Solution: β€’Because 𝑓 π‘₯ = 9 βˆ’ π‘₯2, by using chain rule, you now have ‒𝑓′ π‘₯ = 1 2 9 βˆ’ π‘₯2 βˆ’ 1 2 βˆ’2π‘₯ = 1 2 βˆ’2π‘₯ βˆ™ 1 9βˆ’π‘₯2 = βˆ’ π‘₯ 9βˆ’π‘₯2 β€’Similarly, you get 𝑔′ π‘₯ = π‘₯ 9βˆ’π‘₯2 .
  • 30. Solution: β€’For 𝑦 = 𝑓 π‘₯ where 𝑓 π‘₯ = 9 βˆ’ π‘₯2, you have from (c), ‒𝑓′ π‘₯ = βˆ’ π‘₯ 9βˆ’π‘₯2 = βˆ’ π‘₯ 𝑦 β€’For 𝑦 = 𝑔 π‘₯ where 𝑔 π‘₯ = βˆ’ 9 βˆ’ π‘₯2, you have from (c), ‒𝑔′ π‘₯ = π‘₯ 9βˆ’π‘₯2 = π‘₯ βˆ’ 9βˆ’π‘₯2 = βˆ’ π‘₯ 𝑦
  • 31. Solution: β€’The explicit differentiation for both functions agrees with the answer in (a).
  • 32. Big Idea: β€’The implicit differentiation is performed on functions that are difficult to express directly. As a result, the differentiation process takes longer than usual and also a bit confusing when not properly carried out. This is the same for the things you cannot express directly. They may imply the right message, but the receiver might interpret them incorrectly when properly stated.
  • 33. DERIVATIVE RULES FOR EXPONENTIAL AND LOGARITHMIC FUNCTIONS WITH BASE 𝒆
  • 34. Derivative Rules for exponential and Logarithmic Functions with Base 𝒆 β€’You probably have now mastered how to differentiate algebraic functions based on the examples and exercises in the previous module. Not all functions, however, are algebraic in form, so you cannot apply the techniques for differentiation right away. In the case of exponential and logarithmic functions, they also have a set of rules that you must follows in finding the derivatives.
  • 35. Derivative Rules for exponential and Logarithmic Functions with Base 𝒆 β€’ Among all the exponential functions of the form 𝑦 = π‘Žπ‘₯ , natural exponential function is of great importance in terms of differentiation. Recall that the natural exponential function is written as 𝑦 = 𝑒π‘₯ , where 𝑒 is the Euler number, an irrational number equivalent to 2.718281828 …. The most important thing about the natural exponential function is that its derivative is itself. Hence, 𝑑 𝑑π‘₯ 𝑒π‘₯ = 𝑒π‘₯ . To prove this, examine the value of 𝑒 once again. You may want to verify these values using your calculator.
  • 36. Derivative Rules for exponential and Logarithmic Functions with Base 𝒆 Table 12.1. Values of 𝑒 as π‘₯ approaches 0 π‘₯ 1 + π‘₯ (1 + π‘₯) 1 π‘₯ 0.1 1.1 2.59374246 0.01 1.01 2.704813829 0.001 1.001 2.716923932 0.0001 1.0001 2.718145927 0.00001 1.00001 2.718268237 0.000001 1.000001 2.718280469 0.0000001 1.0000001 2.718281694 0.00000001 1.00000001 2.718281786
  • 37. Derivative Rules for exponential and Logarithmic Functions with Base 𝒆 β€’From table 12.1, the value of (1 + π‘₯) 1 π‘₯ approaches the number 𝑒 as π‘₯ approaches 0. Thus, lim π‘₯β†’0 (1 + π‘₯) 1 π‘₯= 𝑒. This implies that as π‘₯ becomes sufficiently small, 𝑒 = (1 + π‘₯) 1 π‘₯ or 𝑒π‘₯ = 1 + π‘₯ . Now, suppose 𝑓 π‘₯ = 𝑒π‘₯ . Then,
  • 38. Derivative Rules for exponential and Logarithmic Functions with Base 𝒆 𝑓′(π‘₯) = lim β„Žβ†’0 𝑒π‘₯+β„Ž βˆ’ 𝑒π‘₯ β„Ž Definition of derivative = lim β„Žβ†’0 𝑒π‘₯ (π‘’β„Ž βˆ’ 1) β„Ž Factoring out 𝑒π‘₯ = lim β„Žβ†’0 𝑒π‘₯ (1 + β„Ž βˆ’ 1) β„Ž Based on π‘’β„Ž = 1 + β„Ž = lim β„Žβ†’0 𝑒π‘₯ (β„Ž) β„Ž Simplifying terms = lim β„Žβ†’0 𝑒π‘₯ = 𝑒π‘₯
  • 39. Derivative of Natural Exponential Functions β€’The natural exponential functions is its own derivative, that is, 𝑑 𝑑π‘₯ 𝑒π‘₯ = 𝑒π‘₯ β€’Generally, if 𝑒 is a differentiable function of π‘₯, then 𝑑 𝑑π‘₯ 𝑒𝑒 = 𝑒𝑒 𝑑𝑒
  • 40. Example 6: β€’Differentiate each function. a) 𝑓 π‘₯ = 𝑒3π‘₯ b) 𝑔 π‘₯ = π‘’βˆ’2π‘₯2 c) 𝑝 π‘₯ = π‘₯𝑒2π‘₯ d) β„Ž π‘₯ = 𝑒2π‘₯+1 𝑒π‘₯βˆ’1
  • 41. Solution: β€’Let 𝑒 = 3π‘₯. Then, 𝑑 𝑑π‘₯ 𝑒3π‘₯ = 𝑒3π‘₯ βˆ™ 3 = 3𝑒3π‘₯ β€’Let 𝑒 = βˆ’2π‘₯2 . Then, 𝑑 𝑑π‘₯ π‘’βˆ’2π‘₯2 = π‘’βˆ’2π‘₯2 βˆ™ βˆ’4π‘₯ = βˆ’ 4π‘₯π‘’βˆ’2π‘₯2 β€’Using the product rule, 𝑝′ π‘₯ = π‘₯ βˆ™ 𝑑 𝑑π‘₯ 𝑒2π‘₯ + 𝑒2π‘₯ βˆ™ 𝑑 𝑑π‘₯ π‘₯ = π‘₯ 2𝑒2π‘₯ + 𝑒2π‘₯ = 2π‘₯𝑒2π‘₯ + 𝑒2π‘₯
  • 42. Solution: β€’Let 𝑒 = 𝑒2π‘₯ + 1 and 𝑣 = 𝑒π‘₯ βˆ’ 1 . Then, 𝑑𝑒 = 2𝑒2π‘₯ and 𝑑𝑣 = 𝑒π‘₯ . Applying quotient rule, β„Žβ€² π‘₯ = 𝑒π‘₯ βˆ’ 1 2𝑒2π‘₯ βˆ’ (𝑒2π‘₯ + 1)(𝑒π‘₯ ) (𝑒π‘₯βˆ’1)2 = 2𝑒3π‘₯ βˆ’ 2𝑒2π‘₯ βˆ’ 𝑒3π‘₯ βˆ’ 𝑒π‘₯ (𝑒π‘₯βˆ’1)2 = 𝑒3π‘₯ βˆ’ 2𝑒2π‘₯ βˆ’ 𝑒π‘₯ (𝑒π‘₯βˆ’1)2
  • 43. β€’Now that you know the derivative of the natural exponential function, you can now derive the rule for the derivative of its inverse, which is the natural logarithmic function. The derivative of the natural logarithmic function may be derived by using implicit differentiation. Suppose that 𝑦 = ln π‘₯.
  • 44. 𝑦 = ln π‘₯ Given 𝑒𝑦 = π‘₯ Exponential notation 𝑑 𝑑π‘₯ 𝑒𝑦 = 𝑑 𝑑π‘₯ π‘₯ Differentiating both sides 𝑒𝑦 𝑑𝑦 𝑑π‘₯ = 1 Implicit differentiation 𝑑𝑦 𝑑π‘₯ = 1 𝑒𝑦 Isolating 𝑑𝑦 𝑑π‘₯ 𝑑𝑦 𝑑π‘₯ = 1 π‘₯ 𝑒𝑦 = π‘₯
  • 45. Derivative of Natural Logarithmic Function β€’The derivative of the natural logarithmic function is the reciprocal function, that is, 𝑑 𝑑π‘₯ ln π‘₯ = 1 π‘₯ β€’If 𝑒 is differentiable function of π‘₯, then 𝑑 𝑑π‘₯ ln 𝑒 = 1 𝑒 𝑑𝑒
  • 46. Example 7: β€’Find the derivative of each function. a) 𝑦 = ln 4π‘₯ b) 𝑓 π‘₯ = ln(5π‘₯2 + 3) c) 𝑔 π‘₯ = π‘₯ ln π‘₯ d) β„Ž π‘₯ = π‘₯ ln π‘₯
  • 47. Solution: β€’Let 𝑒 = 4π‘₯ . Applying the derivative of natural logarithmic function, you have 𝑑 𝑑π‘₯ ln 4π‘₯ = 1 4π‘₯ βˆ™ 𝑑 𝑑π‘₯ 4π‘₯ = 4 4π‘₯ = 1 π‘₯ β€’Let 𝑒 = 5π‘₯2 + 3. Then, 𝑑 𝑑π‘₯ ln(5π‘₯2 + 3) = 1 5π‘₯2 + 3 βˆ™ 𝑑 𝑑π‘₯ (5π‘₯2 + 3) = 1 5π‘₯2 + 3 (10π‘₯) = 10π‘₯ 5π‘₯2 + 3
  • 48. Solution: β€’Using quotient rule, you have 𝑑 𝑑π‘₯ π‘₯ ln π‘₯ = (ln π‘₯) 𝑑 𝑑π‘₯ π‘₯ βˆ’ π‘₯ 𝑑 𝑑π‘₯ [ln π‘₯] (ln π‘₯)2 Quotient Rule = ln π‘₯ βˆ’ π‘₯ 1 π‘₯ ln2π‘₯ Recall: (ln π‘₯)2 = ln2 π‘₯ = ln π‘₯ βˆ’ 1 ln2π‘₯ Simplify
  • 49. Solution: β€’Using product rule, you have β„Žβ€² π‘₯ = π‘₯ βˆ™ 𝑑 𝑑π‘₯ ln π‘₯ + ln π‘₯ 𝑑 𝑑π‘₯ βˆ™ π‘₯ = π‘₯ βˆ™ 1 π‘₯ + ln π‘₯ = 1 + ln π‘₯
  • 50. Example 8: β€’Find the derivative of 𝑓 π‘₯ = ln 4π‘₯+2 π‘₯βˆ’1 2
  • 51. Solution: β€’Recall that the quotient rule of logarithms states that the logarithm of a quotient is equal to the difference of the logarithm of the numerator and the logarithm of the denominator. 𝑓 π‘₯ = ln 4π‘₯ + 2 π‘₯ βˆ’ 1 2 = ln 4π‘₯ + 2 βˆ’ ln π‘₯ βˆ’ 1 2 β€’By power rule of logarithms, 𝑓 π‘₯ = ln 4π‘₯ + 2 βˆ’ 2 ln(π‘₯ βˆ’ 1)
  • 52. Solution: β€’Thus, 𝑓′ π‘₯ = 𝑑 𝑑π‘₯ ln 4π‘₯ + 2 βˆ’ 2 𝑑 𝑑π‘₯ ln(π‘₯ βˆ’ 1) = 1 4π‘₯ + 2 βˆ™ 4 βˆ’ 2 βˆ™ 1 π‘₯ βˆ’ 1 = 4 (4π‘₯ + 2) βˆ’ 2 π‘₯ βˆ’ 1 = βˆ’2π‘₯ βˆ’ 4 (2π‘₯ + 1)(π‘₯ βˆ’ 1)
  • 53. DERIVATIVE RULES FOR GENERAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS
  • 54. Derivative Rules for General Exponential and Logarithmic Functions β€’When the given exponential or logarithmic function expressed using a base other than the number 𝑒, the following rules may be applied. These rules can be derived through rewriting the function using base 𝑒.
  • 55. Derivative with Other Bases β€’ Let 𝑒 be a differentiable function of π‘₯ and π‘Ž is a real number such that π‘Ž > 0 and π‘Ž β‰  1. Then, β€’ 𝑑 𝑑π‘₯ π‘Žπ‘₯ = (ln π‘Ž)π‘Žπ‘₯ β€’ 𝑑 𝑑π‘₯ logπ‘Ž π‘₯ = 1 ln π‘Ž 1 π‘₯ β€’ 𝑑 𝑑π‘₯ π‘Žπ‘’ = (ln π‘Ž)π‘Žπ‘’ 𝑑𝑒 β€’ 𝑑 𝑑π‘₯ logπ‘Ž 𝑒 = 1 ln π‘Ž 1 𝑒 𝑑𝑒
  • 57. Proof: By definition, π‘Žπ‘₯ = 𝑒π‘₯(ln π‘Ž) . Therefore, 𝑑 𝑑π‘₯ π‘Žπ‘₯ = 𝑑 𝑑π‘₯ 𝑒π‘₯(ln π‘Ž) = 𝑒π‘₯(ln π‘Ž) βˆ™ 𝑑 𝑑π‘₯ π‘₯(ln π‘Ž) = 𝑒π‘₯(ln π‘Ž) βˆ™ π‘₯ βˆ™ 𝑑 𝑑π‘₯ (ln π‘Ž) + ln π‘Ž
  • 58. Now, using constant rule, 𝑑 𝑑π‘₯ (ln π‘Ž) = 0. Thus, 𝑑 𝑑π‘₯ π‘Žπ‘₯ = 𝑒π‘₯(ln π‘Ž) βˆ™ 0 + ln π‘Ž = 𝑒π‘₯(ln π‘Ž) βˆ™ ln π‘Ž = (ln π‘Ž)π‘Žπ‘₯
  • 60. Proof: Using the change-of-base formula, logπ‘Ž π‘₯ = ln π‘₯ ln π‘Ž . Thus, 𝑑 𝑑π‘₯ logπ‘Ž π‘₯ = 𝑑 𝑑π‘₯ ln π‘₯ ln π‘Ž = ln π‘Ž βˆ™ 𝑑 𝑑π‘₯ ln π‘₯ βˆ’ ln π‘₯ βˆ™ 𝑑 𝑑π‘₯ ln π‘Ž ln2π‘Ž = ln π‘Ž βˆ™ 1 π‘₯ βˆ’ 0 ln2π‘Ž = 1 π‘₯ ln π‘Ž βˆ™ 1 ln2π‘Ž = 1 ln π‘Ž 1 π‘₯
  • 61. Example 1: β€’Find the derivative of the following function: a) 𝑦 = 52π‘₯ b) 𝑦 = 𝑒π‘₯ + 8π‘₯ c) 𝑦 = log5(3π‘₯2 + 1) d) 𝑦 = log π‘₯ π‘₯ βˆ’ 2 3
  • 62. Solution: ‒𝑦 = 52π‘₯ 𝑑 𝑑π‘₯ 52π‘₯ = 52π‘₯ βˆ™ ln 5 βˆ™ 𝑑 𝑑π‘₯ 2π‘₯ = (2 ln 5)52π‘₯ ‒𝑦 = 𝑒π‘₯ + 8π‘₯ 𝑑 𝑑π‘₯ 𝑒π‘₯ + 8π‘₯ = 𝑑 𝑑π‘₯ 𝑒π‘₯ + 𝑑 𝑑π‘₯ 8π‘₯ = 𝑒π‘₯ + ln 8 8π‘₯
  • 63. Solution: ‒𝑦 = log5 3π‘₯2 + 1 𝑑 𝑑π‘₯ log5 3π‘₯2 + 1 = 1 ln 5 1 3π‘₯2 + 1 βˆ™ 𝑑 𝑑π‘₯ 3π‘₯2 + 1 = 1 ln 5 1 3π‘₯2 + 1 6π‘₯ = 6π‘₯ (ln 5) 3π‘₯2 + 1
  • 64. Solution: β€’This function will be best differentiated if it will be simplified first using the product rule for logarithms, i.e., log 𝑒𝑣 = log 𝑒 + log 𝑣. Also, recall that this is a case of common logarithm in which the base, although not written, is understood to be 10. log π‘₯ π‘₯ βˆ’ 2 3 = log π‘₯ + log π‘₯ βˆ’ 2 3 = log π‘₯ + 3 log(π‘₯ βˆ’ 2) 𝑑 𝑑π‘₯ log π‘₯ π‘₯ βˆ’ 2 3 = 𝑑 𝑑π‘₯ log π‘₯ + 3 log(π‘₯ βˆ’ 2)
  • 65. Solution: = 𝑑 𝑑π‘₯ log π‘₯ + 3 𝑑 𝑑π‘₯ log(π‘₯ βˆ’ 2) = 1 ln 10 1 π‘₯ + 3 1 ln 10 1 π‘₯ βˆ’ 2 βˆ™ 𝑑 𝑑π‘₯ π‘₯ βˆ’ 2 = 1 π‘₯ ln 10 + 3 π‘₯ βˆ’ 2 ln 10 = 4π‘₯ βˆ’ 2 (π‘₯ ln 10)(π‘₯ βˆ’ 2)
  • 67. Derivative Rules for Trigonometric Functions β€’You will deepen your understanding of trigonometric functions as you explore their derivatives. The trigonometric functions have many useful applications in several fields such as physics, astronomy, and biological sciences. Needed in the formulation of the rule for the derivatives of the six trigonometric functions are the two important trigonometric limits: lim π‘₯β†’0 sin π‘₯ π‘₯ = 1 and lim π‘₯β†’0 1βˆ’cos π‘₯ π‘₯ = 0.
  • 68. Derivative Rules for Trigonometric Functions β€’The derivations of the differentiation formulas for trigonometric functions are based on these two limits. To start, let us derive the formula for 𝑑 𝑑π‘₯ sin π‘₯ as follows. β€’By the definition of the derivative, 𝑑 𝑑π‘₯ sin π‘₯ = lim β„Žβ†’0 sin π‘₯ + β„Ž βˆ’ sin π‘₯ β„Ž
  • 69. Derivative Rules for Trigonometric Functions β€’Using the sum identity for sine, you have sin π‘₯ + β„Ž = sin π‘₯ cos β„Ž + cos π‘₯ sin β„Ž. Then, 𝑑 𝑑π‘₯ sin π‘₯ = lim β„Žβ†’0 sin π‘₯ cos β„Ž + cos π‘₯ sin β„Ž βˆ’ sin π‘₯ β„Ž = lim β„Žβ†’0 cos π‘₯ sin β„Ž β„Ž + sin π‘₯ cos β„Ž βˆ’ sin π‘₯ β„Ž = lim β„Žβ†’0 cos π‘₯ sin β„Ž β„Ž + lim β„Žβ†’0 sin π‘₯ cos β„Ž βˆ’ sin π‘₯ β„Ž
  • 70. Derivative Rules for Trigonometric Functions = lim β„Žβ†’0 cos π‘₯ βˆ™ sin β„Ž β„Ž + lim β„Žβ†’0 βˆ’ sin π‘₯ = cos π‘₯ lim β„Žβ†’0 sin β„Ž β„Ž βˆ’ sin π‘₯ lim β„Žβ†’0 1 βˆ’ cos β„Ž β„Ž = cos π‘₯ 1 βˆ’ sin π‘₯ (0) 𝑑 𝑑π‘₯ sin π‘₯ = cos π‘₯
  • 71. Derivative Rules for Trigonometric Functions β€’Thus, the derivative of the sine function is the cosine function. To derive the differentiation formula forcos π‘₯, you have 𝑑 𝑑π‘₯ cos π‘₯ = lim β„Žβ†’0 cos π‘₯ + β„Ž βˆ’ cos π‘₯ β„Ž = lim β„Žβ†’0 cos π‘₯ cos β„Ž βˆ’ sin π‘₯ sin β„Ž βˆ’ cos π‘₯ β„Ž = lim β„Žβ†’0 cos π‘₯ cos β„Ž βˆ’ cos π‘₯ βˆ’ (sin π‘₯ sin β„Ž) β„Ž
  • 72. Derivative Rules for Trigonometric Functions = lim β„Žβ†’0 cos π‘₯ cos β„Ž βˆ’ cos π‘₯ β„Ž = βˆ’ cos π‘₯ lim β„Žβ†’0 1 βˆ’ cos β„Ž β„Ž = βˆ’ cos π‘₯ 0 βˆ’ sin π‘₯ (1) 𝑑 𝑑π‘₯ cos π‘₯ = βˆ’ sin π‘₯
  • 73. Derivative Rules for Trigonometric Functions β€’In general, for any function 𝑒 differentiable at any value of π‘₯ , 𝑑 𝑑π‘₯ sin 𝑒 = cos 𝑒 𝑑𝑒 and 𝑑 𝑑π‘₯ cos 𝑒 = βˆ’ sin 𝑒 𝑑𝑒 . The following gives the differentiation formulas for the other functions. Their derivatives are left for you as an exercise.
  • 74. Derivatives of the Trigonometric Functions β€’ 𝑑 𝑑π‘₯ sin 𝑒 = cos 𝑒 𝑑𝑒 β€’ 𝑑 𝑑π‘₯ cos 𝑒 = βˆ’ sin 𝑒 𝑑𝑒 β€’ 𝑑 𝑑π‘₯ tan 𝑒 = sec2 𝑒 𝑑𝑒
  • 75. Derivatives of the Trigonometric Functions β€’ 𝑑 𝑑π‘₯ cot 𝑒 = βˆ’csc2 𝑒 𝑑𝑒 β€’ 𝑑 𝑑π‘₯ sec 𝑒 = sec 𝑒 tan 𝑒 𝑑𝑒 β€’ 𝑑 𝑑π‘₯ csc 𝑒 = βˆ’ csc 𝑒 cot 𝑒 𝑑𝑒
  • 76. Example 1: β€’Differentiate the following functions: a) 𝑦 = cos 3π‘₯ b) 𝑦 = sin 6π‘₯2 βˆ’ 1 c) 𝑦 = tan 5π‘₯ 4 d) 𝑦 = sec(6π‘₯)
  • 77. Solution: β€’Let 𝑒 = 3π‘₯. Then, 𝑑 𝑑π‘₯ cos 3π‘₯ = βˆ’ sin 3π‘₯ βˆ™ 𝑑 𝑑π‘₯ 3π‘₯ = βˆ’3 sin 3π‘₯ β€’Let 𝑒 = 6π‘₯2 βˆ’ 1. Applying the derivative rule for sine, 𝑑 𝑑π‘₯ sin 6π‘₯2 βˆ’ 1 = cos 6π‘₯2 βˆ’ 1 βˆ™ 𝑑𝑦 𝑑π‘₯ 6π‘₯2 βˆ’ 1 = 12π‘₯ cos 6π‘₯2 βˆ’ 1
  • 78. Solution: β€’Let 𝑒 = 5π‘₯ 4 . Therefore, 𝑑 𝑑π‘₯ tan 5π‘₯ 4 = sec2 5π‘₯ 4 βˆ™ 𝑑 𝑑π‘₯ 5π‘₯ 4 = 5 4 sec2 5π‘₯ 4 β€’Let 𝑒 = 6π‘₯. Then 𝑑𝑒 = 6 and you have 𝑑 𝑑π‘₯ sec 6π‘₯ = sec 6π‘₯ tan 6π‘₯ βˆ™ 6 = 6 sec 6π‘₯ tan 6π‘₯
  • 79. Example 2: β€’Differentiate 𝑦 = (1 βˆ’ cos 2π‘₯)4
  • 80. Solution: β€’ Applying the chain rule, let 𝑒 = 1 βˆ’ cos 2π‘₯. 𝑑𝑒 = 𝑑 𝑑π‘₯ 1 βˆ’ 𝑑 𝑑π‘₯ cos 2π‘₯ = 0 βˆ’ βˆ’ sin 2π‘₯ 𝑑 𝑑π‘₯ 2π‘₯ = 2 sin 2π‘₯ β€’ Therefore, 𝑦′ = 4𝑒3 𝑑𝑒 = 4 1 βˆ’ cos 2π‘₯ 3 (2 sin 2π‘₯) = (8 sin 2π‘₯) 1 βˆ’ cos 2π‘₯ 3
  • 81. Example 3: β€’Given that 𝑓 π‘₯ = sin π‘₯ 1βˆ’2 cos π‘₯ , find 𝑓′(π‘₯).
  • 82. Solution: β€’ Let 𝑒 = sin π‘₯ and 𝑣 = 1 βˆ’ 2 cos π‘₯ , giving 𝑑𝑒 = cos π‘₯ and 𝑑𝑣 = 2 sin π‘₯. Applying quotient rule, you have 𝑓′ π‘₯ = 1 βˆ’ 2 cos π‘₯ cos π‘₯ βˆ’ sin π‘₯ 2 sin π‘₯ 1 βˆ’ 2 cos π‘₯ 2 = cos π‘₯ βˆ’ 2cos2 π‘₯ βˆ’ 2sin2 π‘₯ 1 βˆ’ 2 cos π‘₯ 2
  • 83. Solution: = cos π‘₯ βˆ’ 2(cos2 π‘₯ + sin2 π‘₯) 1 βˆ’ 2 cos π‘₯ 2 = cos π‘₯ βˆ’ 2(1) 1 βˆ’ 2 cos π‘₯ 2 = cos π‘₯ βˆ’ 2 1 βˆ’ 2 cos π‘₯ 2
  • 84. Example 4: β€’Differentiate the following: 𝑦 = sin 3π‘₯ 4+5 cos 2π‘₯
  • 85. Solution: β€’ Apply the quotient rule followed by chain rule. Then 𝑦′ = 4 + 5 cos 2π‘₯ 3 cos 3π‘₯ βˆ’ sin 3π‘₯ βˆ’10 sin 2π‘₯ 4 + 5 cos 2π‘₯ 2 = 12 cos 3π‘₯ + 15 cos 2π‘₯ cos 3π‘₯ + (10 sin 2π‘₯ sin 3π‘₯) 4 + 5 cos 2π‘₯ 2 = 12 cos 3π‘₯ + 15 cos 2π‘₯ cos 3π‘₯ + 10 sin 2π‘₯ sin 3π‘₯ 4 + 5 cos 2π‘₯ 2
  • 86. Example 5: β€’Given that π‘₯ cos 𝑦 + 𝑦 cos π‘₯ = 1, find 𝑑𝑦 𝑑π‘₯ .
  • 87. Solution: β€’ Differentiating implicitly with respect to π‘₯, you get π‘₯ βˆ™ βˆ’ sin 𝑦 𝑑𝑦 𝑑π‘₯ + cos 𝑦 1 + 𝑦 βˆ™ βˆ’ sin π‘₯ + cos π‘₯ 𝑑𝑦 𝑑π‘₯ = 0 βˆ’π‘₯ sin 𝑦 𝑑𝑦 𝑑π‘₯ + cos 𝑦 βˆ’ 𝑦 sin π‘₯ + cos π‘₯ 𝑑𝑦 𝑑π‘₯ = 0 βˆ’ sin 𝑦 𝑑𝑦 𝑑π‘₯ + cos π‘₯ 𝑑𝑦 𝑑π‘₯ = 𝑦 sin π‘₯ βˆ’ cos 𝑦 𝑑𝑦 𝑑π‘₯ cos π‘₯ βˆ’ π‘₯ sin 𝑦 = 𝑦 sin π‘₯ βˆ’ cos 𝑦 𝑑𝑦 𝑑π‘₯ = 𝑦 sin π‘₯ βˆ’ cos 𝑦 cos π‘₯ βˆ’ π‘₯ sin 𝑦
  • 88. Example 6: β€’Find the second the derivative of 𝑔 π‘₯ = cot 3π‘₯3 .
  • 89. Solution: β€’ To find the first derivative, use chain rule and the differentiation rule for sine: 𝑔′ π‘₯ = βˆ’csc2 3π‘₯2 βˆ™ 9π‘₯2 = βˆ’9π‘₯2 csc2 3π‘₯3 β€’ Then, 𝑔′′ π‘₯ = 𝑑 𝑑π‘₯ βˆ’9π‘₯2 csc2 3π‘₯3
  • 90. Solution: = βˆ’9π‘₯2 βˆ™ 𝑑 𝑑π‘₯ csc2 3π‘₯3 + csc2 3π‘₯3 βˆ™ 𝑑 𝑑π‘₯ βˆ’9π‘₯2 = βˆ’9π‘₯2 2 csc 3π‘₯3 βˆ’ csc 3π‘₯3 cot 3π‘₯3 9π‘₯2 + csc2 3π‘₯3 βˆ’18π‘₯ = 162π‘₯4 csc2 3π‘₯3 cot 3π‘₯3 βˆ’ 18π‘₯ csc2 3π‘₯3 = 18π‘₯ csc2 3π‘₯3 9π‘₯3 cot 3π‘₯3 βˆ’ 1
  • 91. Example 7: β€’In a certain city, the normal average temperature (in degrees Fahrenheit) is modelled by the function 𝑓 𝑑 = 49 βˆ’ 18 cos πœ‹(π‘‘βˆ’32) 180 , where 𝑑 is the time in days so that 𝑑 = 1 corresponds to the first of January. What is the expected date of the warmest day and the coolest day?
  • 92. Solution: β€’ To solve this problem, you need to find the value of 𝑑 such that 𝑓′ 𝑑 = 0. 𝑓′ 𝑑 = 0 βˆ’ 18 𝑑 𝑑𝑑 cos πœ‹ 𝑑 βˆ’ 32 180 = βˆ’18 βˆ’ sin πœ‹ 𝑑 βˆ’ 32 180 βˆ™ 𝑑 𝑑𝑑 πœ‹ 𝑑 βˆ’ 32 180 = 18 sin πœ‹(𝑑 βˆ’ 32) 180 βˆ™ πœ‹ 180 = πœ‹ 10 sin πœ‹ 𝑑 βˆ’ 32 180
  • 93. Solution: β€’ Then, πœ‹ 10 sin πœ‹ 𝑑 βˆ’ 32 180 = 0 sin πœ‹ 𝑑 βˆ’ 32 180 = 0
  • 94. Solution: β€’ In trigonometry, you have learned thatsin πœƒ = 0 for all multiples of πœ‹. Thus, πœ‹ 𝑑 βˆ’ 32 180 = 0 πœ‹ 𝑑 βˆ’ 32 = 0 𝑑 βˆ’ 32 = 0 𝑑 = 32
  • 95. Solution: πœ‹ 𝑑 βˆ’ 32 180 = πœ‹ πœ‹ 𝑑 βˆ’ 32 = 180πœ‹ 𝑑 βˆ’ 32 = 180 𝑑 = 212
  • 96. Solution: πœ‹ 𝑑 βˆ’ 32 180 = 2πœ‹ πœ‹ 𝑑 βˆ’ 32 = 360πœ‹ 𝑑 βˆ’ 32 = 360 𝑑 = 392
  • 97. Solution: β€’ For πœƒ = 2πœ‹ onward, 𝑑 is already out of the domain because a year has only 365 days. Substituting n the original function, if 𝑑 = 32, 𝑓 𝑑 = 49 βˆ’ 18 cos πœ‹ 32 βˆ’ 32 180 = 49 βˆ’ 18 cos 0 = 49 βˆ’ 18 1 = 31℉ β€’ If 𝑑 = 212, 𝑓 𝑑 = 49 βˆ’ 18 cos πœ‹ 212 βˆ’ 32 180 = 49 βˆ’ 18 cos 0 = 49 βˆ’ 18 βˆ’1 = 67℉
  • 98. Solution: β€’ Therefore, the coolest day will happen when 𝑑 = 32, i.e., the first of February, and the warmest day will be when 𝑑 = 212, or 31st of July, provided that it is not leap year.