Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Triangle congruence (Group 1) Grade 8

Triangle congruence (Grade 8) MATHEMATICS

  • Als Erste(r) kommentieren

Triangle congruence (Group 1) Grade 8

  1. 1. HyL (Hypotenuse-Leg) Congruence Theorem If the hypotenuse and a leg of one right triangle are congruent to the corresponding hypotenuse and a leg of another triangle, then the triangles are congruent.
  2. 2. A B C D Given: AD  BC BA  AC Prove: ABD  ACD
  3. 3. PROOF Statement Reasons Perpendiculars form right angles A triangle with a 90 angle is a right triangle Given ADB and ADC are right triangles ADB and ADC are right triangles AD = AD Reflexive Hypotenuse-leg Postulate BA  AC ADB  ADC
  4. 4. HyA(Hypotenuse-Acute angle) Congruence Theorem If the hypotenuse and an acute angle of one right triangle are congruent to the corresponding hypotenuse and an acute angle of another right triangle, then the triangles are congruent
  5. 5. C and R are right angles A AB  PQ B  Q B C P R Q Given: Prove: ABC  PQR
  6. 6. PROOF Statement Reasons Given Any two right angles are congruent HyA Congruence C and R are right angles AB  PQ B  Q C  R ABC  PQR Theorem

×