Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Project Generation from Mineral Potential Target Analysis

19 Aufrufe

Veröffentlicht am

Mineral potential mapping has been used in the mineral exploration industry in New Zealand since the early 2000s. The most recent maps that have been released as publicly available datasets are the work conducted by MBIE and GNS, mapping the potential for REE, Ni-Co and Li mineralisation in New Zealand. Although done at a country-wide scale, these models can identify broad areas of mineral potential, and importantly with further work can be refined to make exploration targets. This presentation will focus on a post modelling analysis of the GNS Lithium model, specifically over the Li in hydrothermally altered sediments mineral system in the Taupo Volcanic Zone.

Veröffentlicht in: Wissenschaft
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Project Generation from Mineral Potential Target Analysis

  1. 1. Project Generation from Mineral Potential Target Analysis Emory Beck emory@kenex.co.nz www.kenex.co.nz
  2. 2. What are targets? How are targets created? What attribute information can be assigned to a target? How are targets ranked? Why conduct additional target analyses? Key Questions
  3. 3. Geochemistry Geology Geophysics Mineral System
  4. 4. From Turnbull et al, 2018
  5. 5. What are Targets? Defined as: • Areas of highest mineral potential • Best combination of predictive variables that map the mineral system Used to: • Focus exploration • Acquire new ground • Guide land planning and management • Plan drilling
  6. 6. Lithium pprb reclassified. 10 highest; 1 lowest post probability Lithium pprb grid (from model) How are Targets Created? 1. Post probability of producing mines. 2. Specifying a percentage reduction of the study area. 3. Using natural breaks in the post probability values. Cut-off methods
  7. 7. Attributing Targets with Model Data
  8. 8. Approximately 486 Lithium targets have been identified in the Taupo Volcanic Zone Ranked by maximum and mean post probability How are Targets Ranked?
  9. 9. • Model Name, year and type • Commodity • Mineralisation style • Country • Datum/Projection • Unit Cell • Success Rate • Conditional Dependence • Geochemical data (drill, rock, stream and soil sample numbers, max assays) • Geology – lithology and age • Faults • Geophysical surveys • Tenement status • Ownership information • Cadastral and cultural data (proximity to urban areas...) • Environmental restrictions Attributing Targets with Additional Information
  10. 10. Why Analyse Targets?
  11. 11. Our Business Is To Help Companies Discover New Opportunities www.kenex.co.nz