SlideShare a Scribd company logo
1 of 25
Trapezoidal Rule of Integration 
1
What is Integration 
Integration: 
The process of measuring 
the area under a function 
plotted on a graph. 
b 
I f ( x )dx 
= ò 
a 
Where: 
f(x) is the integrand 
a= lower limit of integration 
b= upper limit of integration 
f(x) 
a b 
y 
http://2 numericalmethods.eng.usf.edu 
x
Basis of Trapezoidal Rule 
Trapezoidal Rule is based on the Newton-Cotes 
Formula that states if one can approximate the 
integrand as an nth order polynomial… 
b 
I f ( x )dx 
= ò 
a 
where f ( x ) » fn( x ) 
n 
fn( x ) = a + a x + ...+ an x - 
+ a n 
x n 
and 0 1 - 
1 
1 
http://3 numericalmethods.eng.usf.edu
Basis of Trapezoidal Rule 
Then the integral of that function is approximated 
by the integral of that nth order polynomial. 
b 
b 
f ( x ) f ( x ) 
ò » ò 
a 
n 
a 
Trapezoidal Rule assumes n=1, that is, the area 
under the linear polynomial, 
ù 
úû 
f ( a ) ò = ( b - a ) é + 
f ( b ) a 
b 
êë 
2 
f ( x )dx 
http://4 numericalmethods.eng.usf.edu
Derivation of the Trapezoidal Rule 
http://5 numericalmethods.eng.usf.edu
Method Derived From Geometry 
The area under the 
curve is a trapezoid. 
The integral 
f x dx Area of trapezoid 
b 
ò ( ) » 
a 
= 1 
( Sum of parallel sides )( height ) 
2 
1 
= ( f ( b ) + f ( a ))( b - a ) 
2 
ù 
úû 
( b a ) f ( a ) f ( b ) 
= - é + 
êë 
2 
f(x) 
a b 
Figure 2: Geometric Representation 
y 
http://6 numericalmethods.eng.usf.edu 
x 
f1(x)
Example 1 
The vertical distance covered by a rocket from t=8 to t=30 
seconds is given by: 
2000 140000 . t dt 
æ ù 
- ö úû 
çè 
êëé 
30 
ò ÷ø 
- 
x = 
ln 
8 
9 8 
t 
140000 2100 
a) Use single segment Trapezoidal rule to find the distance 
covered. 
t E 
b) Find the true error, for part (a). 
e 
c) Find the absolute relative true error, a for part (a). 
http://7 numericalmethods.eng.usf.edu
Solution 
ù 
úû 
I » ( b - a ) é f ( a ) + 
f ( b ) 
êë 
2 
a) 
a = 8 b = 30 
2000 é 
140000 ù 
úû 
- f ( t ) ln 9 8 
. t 
t 
êë 
- 
140000 2100 
= 
ù 
é 
8 2000 140000 - úû 
f ( ) ln 9 8 8 
. ( ) 
( ) 
êë 
- 
140000 2100 8 
= 
ù 
é 
30 2000 140000 - úû 
f ( ) ln 9 8 30 
. ( ) 
( ) 
êë 
- 
140000 2100 30 
= 
=177.27 m / s 
= 901.67 m / s 
http://8 numericalmethods.eng.usf.edu
Solution (cont) 
ù 
úû 
I = ( 30 - 8 ) é 177.27 + 
901.67 
êë 
2 
= 11868 m 
a) 
b) The exact value of the above integral is 
2000 140000 . t dt 
æ é 
ù 
- úû 
çèö 30 
ò ÷ø 
x ln =11061 m 
êë 
- 
= 
8 
9 8 
t 
140000 2100 
http://9 numericalmethods.eng.usf.edu
Solution (cont) 
b) E True Value Approximate Value t = - 
= 11061-11868 
= -807 m 
c) The absolute relative true error, t , would be Î 
Î = 11061-11868 ´ 100 
t = 7.2959% 
11061 
http://10 numericalmethods.eng.usf.edu
Multiple Segment Trapezoidal Rule 
In Example 1, the true error using single segment trapezoidal rule was 
large. We can divide the interval [8,30] into [8,19] and [19,30] intervals 
and apply Trapezoidal rule over each segment. 
2000 æ 
140000 ö ÷ø 
- çè 
f ( t ) ln 9 8 
. t 
t 
- 
140000 2100 
= 
30 
19 
30 
f ( t )dt f ( t )dt f ( t )dt 
ò = ò + ò 
19 
8 
8 
ù 
úû 
(19 8 ) f ( 8 ) f (19 ) ( ) f ( ) f ( ) 
+ - é + úû 
30 19 19 30 
êë 
ù 
= - é + 
êë 
2 
2 
http://11 numericalmethods.eng.usf.edu
Multiple Segment Trapezoidal Rule 
With 
f (8 ) =177.27 m / s 
f ( 30 ) = 901.67 m/ s 
f (19 ) = 484.75 m / s 
ù 
úû 
30 
ò = - é + 2 
+ - é + úû 
(30 19) 484.75 901.67 
êë 
ù 
( ) (19 8) 177.27 484.75 
êë 
2 
8 
f t dt 
= 11266 m 
Hence: 
http://12 numericalmethods.eng.usf.edu
Multiple Segment Trapezoidal Rule 
Et = 11061-11266 
= -205 m 
The true error is: 
The true error now is reduced from -807 m to -205 m. 
Extending this procedure to divide the interval into equal 
segments to apply the Trapezoidal rule; the sum of the 
results obtained for each segment is the approximate 
value of the integral. 
http://13 numericalmethods.eng.usf.edu
Multiple Segment Trapezoidal Rule 
f(x) 
a b 
y 
h = b - a 
b 
I f ( x )dx 
http://14 numericalmethods.eng.usf.edu 
x 
Figure 4: Multiple (n=4) Segment Trapezoidal 
Rule 
Divide into equal segments 
as shown in Figure 4. Then 
the width of each segment is: 
n 
The integral I is: 
= ò 
a
Multiple Segment Trapezoidal Rule 
The integral I can be broken into h integrals as: 
a + ( n - 
)h 
a h 
a h 
1 
+ 
+ 
= + + + + 
b 
2 
f ( x )dx f ( x )dx ... f ( x )dx f ( x )dx 
ò ò ò ò 
a + ( n - 
)h 
a + ( n - 
)h 
a + 
h 
a 
1 
2 
ò b 
a 
f ( x )dx 
Applying Trapezoidal rule on each segment gives: 
ò b a 
f ( x )dx 
ù 
b a n 
1 
f ( a ) f ( a ih ) f ( b ) 
úû 
+ + - = å - 
é + 
êë 
þ ý ü 
î í ì 
= 
n 
i 
1 
2 
2 
http://15 numericalmethods.eng.usf.edu
Example 2 
The vertical distance covered by a rocket from to seconds is 
given by: 
30 
2000 140000 . t dt 
æ é 
ù 
- 9 8 
úû 
ö çè 
x ln 
ò ÷ø 
êë 
- 
= 
8 
t 
140000 2100 
a) Use two-segment Trapezoidal rule to find the distance covered. 
b) Find the true error, E 
t for part (a). 
c) Find the absolute relative true error, e 
a for part (a). http://16 numericalmethods.eng.usf.edu
Solution 
a) The solution using 2-segment Trapezoidal rule is 
ù 
n 
1 
f ( a ) f ( a ih ) f ( b ) 
úû 
I b a 
î í ì + + - = å - 
é + 
êë 
þ ý ü 
= 
n 
i 
1 
2 
2 
n = 2 a = 8 b = 30 
h = b - a = 30 - 8 
= 11 
2 
n 
http://17 numericalmethods.eng.usf.edu
Solution (cont) 
ù 
30 8 2 1 
f ( ) f ( a ih ) f ( ) 
úû 
+ + - = å - 
é + 
êë 
þ ý ü 
î í ì 
8 2 30 
= 
( ) 
I 
i 
2 2 
1 
= 22 + + 
[ f (8 ) 2 f (19 ) f ( 30 )] 
4 
= 22 . + ( . ) + . 
[177 27 2 484 75 901 67] 
4 
= 11266 m 
Then: 
http://18 numericalmethods.eng.usf.edu
Solution (cont) 
b) The exact value of the above integral is 
2000 140000 . t dt 
æ é 
ù 
- úû 
çè 
ö 30 
ò ÷ø 
x ln = 11061 m 
êë 
- 
= 
8 
9 8 
t 
140000 2100 
so the true error is 
Et = True Value - Approximate Value 
=11061 -11266 
http://19 numericalmethods.eng.usf.edu
Solution (cont) 
c) The absolute relative true error, t , would be Î 
100 
Î = True Error ´ t 
True Value 
100 
= 11061-11266 ´ 
11061 
= 1.8534% 
http://20 numericalmethods.eng.usf.edu
Solution (cont) 
Table 1 gives the values 
obtained using multiple 
segment Trapezoidal rule 
for: 
% t Î % a Î 
n Value Et 
1 11868 -807 7.296 --- 
2 11266 -205 1.853 5.343 
3 11153 -91.4 0.8265 1.019 
4 11113 -51.5 0.4655 0.3594 
5 11094 -33.0 0.2981 0.1669 
6 11084 -22.9 0.2070 0.09082 
7 11078 -16.8 0.1521 0.05482 
8 11074 -12.9 0.1165 0.03560 
30 
2000 140000 . t dt 
æ é 
ù 
- úû 
çè 
ö ò ÷ø 
êë 
- 
x = 
ln 
8 
9 8 
t 
140000 2100 
Table 1: Multiple Segment Trapezoidal Rule 
Values 
http://21 numericalmethods.eng.usf.edu
Example 3 
Use Multiple Segment Trapezoidal Rule to find 
the area under the curve 
f ( x ) x 
300 from x = 0 to x =10 . 
ex 
+ 
= 
1 
h = 10 - 0 = 
Using two segments, we get 5 
2 
f ( ) ( ) 0 
10 039 
0 300 00 = 
1 
+ 
= 
e 
f ( ) ( ) = 
5 300 55 . 
and 
f ( ) ( ) = 
10 300 10 10 . 
= 0 136 
1 
e 
+ 
1 
e 
+ 
= 
http://22 numericalmethods.eng.usf.edu
Solution 
ù 
n 
1 
f ( a ) f ( a ih ) f ( b ) 
úû 
é 
+ + - = å - 
êë 
+ 
þ ý ü 
î í ì 
= 
I b a 
n 
i 
1 
2 
2 
ù 
10 0 2 1 
f ( ) f ( ) f ( ) 
úû 
êë é 
+ 
þ ý ü 
+ + - = å - 
î í ì 
0 2 0 5 10 
= 
( ) i 
2 2 
1 
= 10 + + 
[ f ( 0 ) 2 f ( 5 ) f (10 )] 
4 
= 10 + ( . ) + . 
[0 2 10 039 0 136] 
4 
= 50.535 
Then: 
http://23 numericalmethods.eng.usf.edu
Solution (cont) 
So what is the true value of this integral? 
x 
x = 
+ ò 
dx . 
e 
246 59 
10 300 
0 
1 
Making the absolute relative true error: 
% 
. . 
Î = 246 59 - 50 535 ´ 
t 100 
. 
246 59 
= 79.506% 
http://24 numericalmethods.eng.usf.edu
Solution (cont) 
Table 2: Values obtained using Multiple Segment 
Trapezoidal Rule for: 
n Approximate 
Value 
10 
01 
x 
x 
300 dx 
e 
ò + 
Et Ît 
1 0.681 245.91 99.724% 
2 50.535 196.05 79.505% 
4 170.61 75.978 30.812% 
8 227.04 19.546 7.927% 
16 241.70 4.887 1.982% 
32 245.37 1.222 0.495% 
64 246.28 0.305 0.124% 
http://25 numericalmethods.eng.usf.edu

More Related Content

What's hot

Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula Deep Dalsania
 
Difference between grouped and ungrouped data
Difference between grouped and ungrouped dataDifference between grouped and ungrouped data
Difference between grouped and ungrouped dataAtiq Rehman
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Syed Ahmed Zaki
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integrationTarun Gehlot
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equationsRifat Rahamatullah
 
Geometric probability distribution
Geometric probability distributionGeometric probability distribution
Geometric probability distributionNadeem Uddin
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 
regression and correlation
regression and correlationregression and correlation
regression and correlationPriya Sharma
 
Application of interpolation and finite difference
Application of interpolation and finite differenceApplication of interpolation and finite difference
Application of interpolation and finite differenceManthan Chavda
 
Linear regression
Linear regressionLinear regression
Linear regressionSreerajVA
 
1575 numerical differentiation and integration
1575 numerical differentiation and integration1575 numerical differentiation and integration
1575 numerical differentiation and integrationDr Fereidoun Dejahang
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Spline interpolation numerical methods presentation
Spline interpolation numerical methods presentationSpline interpolation numerical methods presentation
Spline interpolation numerical methods presentationShohanur Nishad
 

What's hot (20)

Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
 
Es272 ch3a
Es272 ch3aEs272 ch3a
Es272 ch3a
 
Group Theory
Group TheoryGroup Theory
Group Theory
 
Difference between grouped and ungrouped data
Difference between grouped and ungrouped dataDifference between grouped and ungrouped data
Difference between grouped and ungrouped data
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Presentation on Solution to non linear equations
Presentation on Solution to non linear equationsPresentation on Solution to non linear equations
Presentation on Solution to non linear equations
 
Geometric probability distribution
Geometric probability distributionGeometric probability distribution
Geometric probability distribution
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
regression and correlation
regression and correlationregression and correlation
regression and correlation
 
Application of interpolation and finite difference
Application of interpolation and finite differenceApplication of interpolation and finite difference
Application of interpolation and finite difference
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Linear regression
Linear regressionLinear regression
Linear regression
 
Interpolation
InterpolationInterpolation
Interpolation
 
Secant method
Secant methodSecant method
Secant method
 
1575 numerical differentiation and integration
1575 numerical differentiation and integration1575 numerical differentiation and integration
1575 numerical differentiation and integration
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Spline interpolation numerical methods presentation
Spline interpolation numerical methods presentationSpline interpolation numerical methods presentation
Spline interpolation numerical methods presentation
 
HYPERBOLIC FUNCTION
HYPERBOLIC FUNCTIONHYPERBOLIC FUNCTION
HYPERBOLIC FUNCTION
 

Viewers also liked

Viewers also liked (20)

Integration
IntegrationIntegration
Integration
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
weddle's rule
weddle's ruleweddle's rule
weddle's rule
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Calc 4.6
Calc 4.6Calc 4.6
Calc 4.6
 
Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 
Numerical Integration
Numerical IntegrationNumerical Integration
Numerical Integration
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of numerical methods
Applications of numerical methodsApplications of numerical methods
Applications of numerical methods
 
C++ TUTORIAL 8
C++ TUTORIAL 8C++ TUTORIAL 8
C++ TUTORIAL 8
 
Multiple sagement trapezoidal rule
Multiple sagement trapezoidal ruleMultiple sagement trapezoidal rule
Multiple sagement trapezoidal rule
 
MAT210/Integration/Basic 2013-14
MAT210/Integration/Basic 2013-14MAT210/Integration/Basic 2013-14
MAT210/Integration/Basic 2013-14
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Romberg’s method
Romberg’s methodRomberg’s method
Romberg’s method
 
Eulermethod2
Eulermethod2Eulermethod2
Eulermethod2
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 

Similar to Trapezoidal Rule of Integration Explained

Numerical Differentiations Solved examples
Numerical Differentiations Solved examplesNumerical Differentiations Solved examples
Numerical Differentiations Solved examplesDevelopedia
 
Bca3010 computer oreineted numerical methods
Bca3010   computer oreineted numerical methodsBca3010   computer oreineted numerical methods
Bca3010 computer oreineted numerical methodssmumbahelp
 
1. (5 pts) Which of these graphs represent a one-to-one function .docx
1. (5 pts) Which of these graphs represent a one-to-one function .docx1. (5 pts) Which of these graphs represent a one-to-one function .docx
1. (5 pts) Which of these graphs represent a one-to-one function .docxlindorffgarrik
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesNatalia
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuacionesNatalia
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
Solution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and UlabySolution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and Ulabyspaceradar35
 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...Yong Heui Cho
 

Similar to Trapezoidal Rule of Integration Explained (20)

assignment_2
assignment_2assignment_2
assignment_2
 
Online Signals and Systems Assignment Help
Online Signals and Systems Assignment HelpOnline Signals and Systems Assignment Help
Online Signals and Systems Assignment Help
 
Signal Processing Homework Help
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
Solutions fox
Solutions   foxSolutions   fox
Solutions fox
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Numerical Differentiations Solved examples
Numerical Differentiations Solved examplesNumerical Differentiations Solved examples
Numerical Differentiations Solved examples
 
Numerical methods generating polynomial
Numerical methods generating polynomialNumerical methods generating polynomial
Numerical methods generating polynomial
 
Bca3010 computer oreineted numerical methods
Bca3010   computer oreineted numerical methodsBca3010   computer oreineted numerical methods
Bca3010 computer oreineted numerical methods
 
1. (5 pts) Which of these graphs represent a one-to-one function .docx
1. (5 pts) Which of these graphs represent a one-to-one function .docx1. (5 pts) Which of these graphs represent a one-to-one function .docx
1. (5 pts) Which of these graphs represent a one-to-one function .docx
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Raices de ecuaciones
Raices de ecuacionesRaices de ecuaciones
Raices de ecuaciones
 
Efoom 2020
Efoom 2020Efoom 2020
Efoom 2020
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
 
D021018022
D021018022D021018022
D021018022
 
Solution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and UlabySolution Manual Image Processing for Engineers by Yagle and Ulaby
Solution Manual Image Processing for Engineers by Yagle and Ulaby
 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
Control System Assignment Help
Control System Assignment HelpControl System Assignment Help
Control System Assignment Help
 

Trapezoidal Rule of Integration Explained

  • 1. Trapezoidal Rule of Integration 1
  • 2. What is Integration Integration: The process of measuring the area under a function plotted on a graph. b I f ( x )dx = ò a Where: f(x) is the integrand a= lower limit of integration b= upper limit of integration f(x) a b y http://2 numericalmethods.eng.usf.edu x
  • 3. Basis of Trapezoidal Rule Trapezoidal Rule is based on the Newton-Cotes Formula that states if one can approximate the integrand as an nth order polynomial… b I f ( x )dx = ò a where f ( x ) » fn( x ) n fn( x ) = a + a x + ...+ an x - + a n x n and 0 1 - 1 1 http://3 numericalmethods.eng.usf.edu
  • 4. Basis of Trapezoidal Rule Then the integral of that function is approximated by the integral of that nth order polynomial. b b f ( x ) f ( x ) ò » ò a n a Trapezoidal Rule assumes n=1, that is, the area under the linear polynomial, ù úû f ( a ) ò = ( b - a ) é + f ( b ) a b êë 2 f ( x )dx http://4 numericalmethods.eng.usf.edu
  • 5. Derivation of the Trapezoidal Rule http://5 numericalmethods.eng.usf.edu
  • 6. Method Derived From Geometry The area under the curve is a trapezoid. The integral f x dx Area of trapezoid b ò ( ) » a = 1 ( Sum of parallel sides )( height ) 2 1 = ( f ( b ) + f ( a ))( b - a ) 2 ù úû ( b a ) f ( a ) f ( b ) = - é + êë 2 f(x) a b Figure 2: Geometric Representation y http://6 numericalmethods.eng.usf.edu x f1(x)
  • 7. Example 1 The vertical distance covered by a rocket from t=8 to t=30 seconds is given by: 2000 140000 . t dt æ ù - ö úû çè êëé 30 ò ÷ø - x = ln 8 9 8 t 140000 2100 a) Use single segment Trapezoidal rule to find the distance covered. t E b) Find the true error, for part (a). e c) Find the absolute relative true error, a for part (a). http://7 numericalmethods.eng.usf.edu
  • 8. Solution ù úû I » ( b - a ) é f ( a ) + f ( b ) êë 2 a) a = 8 b = 30 2000 é 140000 ù úû - f ( t ) ln 9 8 . t t êë - 140000 2100 = ù é 8 2000 140000 - úû f ( ) ln 9 8 8 . ( ) ( ) êë - 140000 2100 8 = ù é 30 2000 140000 - úû f ( ) ln 9 8 30 . ( ) ( ) êë - 140000 2100 30 = =177.27 m / s = 901.67 m / s http://8 numericalmethods.eng.usf.edu
  • 9. Solution (cont) ù úû I = ( 30 - 8 ) é 177.27 + 901.67 êë 2 = 11868 m a) b) The exact value of the above integral is 2000 140000 . t dt æ é ù - úû çèö 30 ò ÷ø x ln =11061 m êë - = 8 9 8 t 140000 2100 http://9 numericalmethods.eng.usf.edu
  • 10. Solution (cont) b) E True Value Approximate Value t = - = 11061-11868 = -807 m c) The absolute relative true error, t , would be Î Î = 11061-11868 ´ 100 t = 7.2959% 11061 http://10 numericalmethods.eng.usf.edu
  • 11. Multiple Segment Trapezoidal Rule In Example 1, the true error using single segment trapezoidal rule was large. We can divide the interval [8,30] into [8,19] and [19,30] intervals and apply Trapezoidal rule over each segment. 2000 æ 140000 ö ÷ø - çè f ( t ) ln 9 8 . t t - 140000 2100 = 30 19 30 f ( t )dt f ( t )dt f ( t )dt ò = ò + ò 19 8 8 ù úû (19 8 ) f ( 8 ) f (19 ) ( ) f ( ) f ( ) + - é + úû 30 19 19 30 êë ù = - é + êë 2 2 http://11 numericalmethods.eng.usf.edu
  • 12. Multiple Segment Trapezoidal Rule With f (8 ) =177.27 m / s f ( 30 ) = 901.67 m/ s f (19 ) = 484.75 m / s ù úû 30 ò = - é + 2 + - é + úû (30 19) 484.75 901.67 êë ù ( ) (19 8) 177.27 484.75 êë 2 8 f t dt = 11266 m Hence: http://12 numericalmethods.eng.usf.edu
  • 13. Multiple Segment Trapezoidal Rule Et = 11061-11266 = -205 m The true error is: The true error now is reduced from -807 m to -205 m. Extending this procedure to divide the interval into equal segments to apply the Trapezoidal rule; the sum of the results obtained for each segment is the approximate value of the integral. http://13 numericalmethods.eng.usf.edu
  • 14. Multiple Segment Trapezoidal Rule f(x) a b y h = b - a b I f ( x )dx http://14 numericalmethods.eng.usf.edu x Figure 4: Multiple (n=4) Segment Trapezoidal Rule Divide into equal segments as shown in Figure 4. Then the width of each segment is: n The integral I is: = ò a
  • 15. Multiple Segment Trapezoidal Rule The integral I can be broken into h integrals as: a + ( n - )h a h a h 1 + + = + + + + b 2 f ( x )dx f ( x )dx ... f ( x )dx f ( x )dx ò ò ò ò a + ( n - )h a + ( n - )h a + h a 1 2 ò b a f ( x )dx Applying Trapezoidal rule on each segment gives: ò b a f ( x )dx ù b a n 1 f ( a ) f ( a ih ) f ( b ) úû + + - = å - é + êë þ ý ü î í ì = n i 1 2 2 http://15 numericalmethods.eng.usf.edu
  • 16. Example 2 The vertical distance covered by a rocket from to seconds is given by: 30 2000 140000 . t dt æ é ù - 9 8 úû ö çè x ln ò ÷ø êë - = 8 t 140000 2100 a) Use two-segment Trapezoidal rule to find the distance covered. b) Find the true error, E t for part (a). c) Find the absolute relative true error, e a for part (a). http://16 numericalmethods.eng.usf.edu
  • 17. Solution a) The solution using 2-segment Trapezoidal rule is ù n 1 f ( a ) f ( a ih ) f ( b ) úû I b a î í ì + + - = å - é + êë þ ý ü = n i 1 2 2 n = 2 a = 8 b = 30 h = b - a = 30 - 8 = 11 2 n http://17 numericalmethods.eng.usf.edu
  • 18. Solution (cont) ù 30 8 2 1 f ( ) f ( a ih ) f ( ) úû + + - = å - é + êë þ ý ü î í ì 8 2 30 = ( ) I i 2 2 1 = 22 + + [ f (8 ) 2 f (19 ) f ( 30 )] 4 = 22 . + ( . ) + . [177 27 2 484 75 901 67] 4 = 11266 m Then: http://18 numericalmethods.eng.usf.edu
  • 19. Solution (cont) b) The exact value of the above integral is 2000 140000 . t dt æ é ù - úû çè ö 30 ò ÷ø x ln = 11061 m êë - = 8 9 8 t 140000 2100 so the true error is Et = True Value - Approximate Value =11061 -11266 http://19 numericalmethods.eng.usf.edu
  • 20. Solution (cont) c) The absolute relative true error, t , would be Î 100 Î = True Error ´ t True Value 100 = 11061-11266 ´ 11061 = 1.8534% http://20 numericalmethods.eng.usf.edu
  • 21. Solution (cont) Table 1 gives the values obtained using multiple segment Trapezoidal rule for: % t Î % a Î n Value Et 1 11868 -807 7.296 --- 2 11266 -205 1.853 5.343 3 11153 -91.4 0.8265 1.019 4 11113 -51.5 0.4655 0.3594 5 11094 -33.0 0.2981 0.1669 6 11084 -22.9 0.2070 0.09082 7 11078 -16.8 0.1521 0.05482 8 11074 -12.9 0.1165 0.03560 30 2000 140000 . t dt æ é ù - úû çè ö ò ÷ø êë - x = ln 8 9 8 t 140000 2100 Table 1: Multiple Segment Trapezoidal Rule Values http://21 numericalmethods.eng.usf.edu
  • 22. Example 3 Use Multiple Segment Trapezoidal Rule to find the area under the curve f ( x ) x 300 from x = 0 to x =10 . ex + = 1 h = 10 - 0 = Using two segments, we get 5 2 f ( ) ( ) 0 10 039 0 300 00 = 1 + = e f ( ) ( ) = 5 300 55 . and f ( ) ( ) = 10 300 10 10 . = 0 136 1 e + 1 e + = http://22 numericalmethods.eng.usf.edu
  • 23. Solution ù n 1 f ( a ) f ( a ih ) f ( b ) úû é + + - = å - êë + þ ý ü î í ì = I b a n i 1 2 2 ù 10 0 2 1 f ( ) f ( ) f ( ) úû êë é + þ ý ü + + - = å - î í ì 0 2 0 5 10 = ( ) i 2 2 1 = 10 + + [ f ( 0 ) 2 f ( 5 ) f (10 )] 4 = 10 + ( . ) + . [0 2 10 039 0 136] 4 = 50.535 Then: http://23 numericalmethods.eng.usf.edu
  • 24. Solution (cont) So what is the true value of this integral? x x = + ò dx . e 246 59 10 300 0 1 Making the absolute relative true error: % . . Î = 246 59 - 50 535 ´ t 100 . 246 59 = 79.506% http://24 numericalmethods.eng.usf.edu
  • 25. Solution (cont) Table 2: Values obtained using Multiple Segment Trapezoidal Rule for: n Approximate Value 10 01 x x 300 dx e ò + Et Ît 1 0.681 245.91 99.724% 2 50.535 196.05 79.505% 4 170.61 75.978 30.812% 8 227.04 19.546 7.927% 16 241.70 4.887 1.982% 32 245.37 1.222 0.495% 64 246.28 0.305 0.124% http://25 numericalmethods.eng.usf.edu