SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Downloaden Sie, um offline zu lesen
Supersymmetric Q-balls and boson stars in
(d + 1) dimensions
Jürgen Riedel
in collaboration with Betti Hartmann, Jacobs University Bremen
School of Engineering and Science
Jacobs University Bremen, Germany
February 10, 2014
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Solitons in non-linear field theories
General properties of soliton solutions
localized, finite energy, stable, regular solutions of
non-linear equations
can be viewed as models of elementary particles
Examples
Topological solitons: Skyrme model of hadrons in high
energy physics one of first models and magnetic
monopoles
Non-topological solitons: Q-balls (flat space-time) and
boson stars (generalisation in curved space-time)
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Topolocial solitons
Properties of topological solitons
Boundary conditions at spatial infinity are topological
different from that of the vacuum state
Degenerated vacua states at spatial infinity
cannot be continuously deformed to a single vacuum
Example in one dimension: L = 1
2 (∂µφ)2
− λ
4 φ2 − m2
λ
broken symmetry φ → −φ with two degenerate vacua at
φ = ±m/
√
λ
N.S. Manton and P.M. Sutcliffe Topological solitons, Cambridge University Press, 2004
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Non-topolocial solitons
Properties of topological solitons
Solutions possess the same boundary conditions at
infinity as the physical vacuum state
Degenerate vacuum states do not necessarily exist
Require an additive conservation law, e.g. gauge
invariance under an arbitrary global phase
transformation
S. R. Coleman, Nucl. Phys. B 262 (1985), 263, R. Friedberg, T. D. Lee and A. Sirlin, Phys. Rev. D 13 (1976) 2739),
D. J. Kaup, Phys. Rev. 172 (1968), 1331, R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35 (1987), 3658, P.
Jetzer, Phys. Rept. 220 (1992), 163, F. E. Schunck and E. Mielke, Class. Quant. Grav. 20 (2003) R31, F. E.
Schunck and E. Mielke, Phys. Lett. A 249 (1998), 389.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Non-topolocial solitons
Derrick’s non-existence theorem
Derrick’s theorem puts restrictions to localized soliton
solutions in more than one spatial dimension
No (stable) stationary point of energy exists with respect
to λ for a scalar with purely potential interactions
Around Derrick’s Theorem
if one includes appropriate gauge fields, gravitational
fields or higher derivatives in field Lagrangian
if one considers solutions which are periodic in time
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Non-topolocial solitons
Model in one dimension)
With complex scalar field
Φ(x, t) : L = ∂µΦ∂µΦ∗ − U(|Φ|), U(|Φ|) minimum at Φ = 0
Lagrangian is invariant under transformation
φ(x) → eiαφ(x)
Give rise to Noether charge Q = 1
i dx3φ∗ ˙φ − φ ˙φ∗)
Solution that minimizes the energy for fixed Q:
Φ(x, t) = φ(x)eiωt
Solutions have been constructed in (3 + 1)-dimensional
models with non-normalizable Φ6-potential
M.S. Volkov and E. Wöhnert, Phys. Rev. D 66 (2002), 085003, B. Kleihaus, J. Kunz and M. List, Phys. Rev. D 72
(2005), 064002, B. Kleihaus, J. Kunz, M. List and I. Schaffer, Phys. Rev. D 77 (2008), 064025.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Existence conditions for Q-balls
Condition 1:
V (0) < 0; Φ ≡ 0 local maximum ⇒ ω2 < ω2
max ≡ U (0)
Condition 2:
ω2 > ω2
min ≡ minφ[2U(φ)/φ2] minimum over all φ
Consequences:
Restricted interval ω2
min < ω2 < ω2
max ;
U (0) > minφ[2U(φ)/φ2]
Q-balls are rotating in inner space with ω stabilized by
having a lower energy to charge ratio as the free
particles
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Existence conditions for Q-balls
φ
V(φ)
−4 −2 0 2 4
−0.02−0.010.000.010.02
ω = 1.2
V = 0.0
Figure : Effective potential V(φ) = ω2φ2 − U(|Φ|).
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Model for Q-balls and boson stars in d + 1 dimensions
Action
S =
√
−gdd+1x R−2Λ
16πGd+1
+ Lm + 1
8πGd+1
dd x
√
−hK
negative cosmological constant Λ = −d(d − 1)/(2 2)
Matter Lagrangian
Lm = −∂MΦ∂MΦ∗ − U(|Φ|) , M = 0, 1, ...., d
Gauge mediated potential
USUSY(|Φ|) =
m2|Φ|2 if |Φ| ≤ ηsusy
m2η2
susy = const. if |Φ| > ηsusy
(1)
U(|Φ|) = m2
η2
susy 1 − exp −
|Φ|2
η2
susy
(2)
A. Kusenko, Phys. Lett. B 404 (1997), 285; Phys. Lett. B 405 (1997), 108, L. Campanelli and M. Ruggieri,
Phys. Rev. D 77 (2008), 043504
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Model for Q-balls and boson stars in d + 1 dimensions
Einstein Equations are a coupled ODE
GMN + ΛgMN = 8πGd+1TMN , M, N = 0, 1, .., d (3)
Energy-momentum tensor
TMN = gMNL − 2
∂L
∂gMN
(4)
Klein-Gordon equation
−
∂U
∂|Φ|2
Φ = 0 . (5)
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Model for Q-balls and boson stars in d + 1 dimensions
Locally conserved Noether current jM, M = 0, 1, .., d
jM
= −
i
2
Φ∗
∂M
Φ − Φ∂M
Φ∗
with jM
;M = 0 . (6)
Globally conserved Noether charge Q
Q = − dd
x
√
−gj0
. (7)
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Ansatz Q-balls and boson stars for d + 1 dimensions
Metric in spherical Schwarzschild-like coordinates
ds2
= −A2
(r)N(r)dt2
+
1
N(r)
dr2
+ r2
dΩ2
d−1, (8)
where
N(r) = 1 −
2n(r)
rd−2
−
2Λ
(d − 1)d
r2
(9)
Stationary Ansatz for complex scalar field
Φ(t, r) = eiωt
φ(r) (10)
Rescaling using dimensionless quantities
r →
r
m
, ω → mω, → /m, φ → ηsusyφ, n → n/md−2
(11)
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Einstein equations in (d + 1) dimensions
Equations for the metric functions:
n = κ
rd−1
2
Nφ 2
+ U(φ) +
ω2φ2
A2N
, (12)
A = κr Aφ 2
+
ω2φ2
AN2
, (13)
κ = 8πGd+1η2
susy = 8π
η2
susy
Md−1
pl,d+1
(14)
Matter field equation:
rd−1
ANφ = rd−1
A
1
2
∂U
∂φ
−
ω2φ
NA2
. (15)
Appropriate boundary conditions:
φ (0) = 0 , n(0) = 0 , A(∞) = 1
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Expressions for Charge Q and Mass M
The explicit expression for the Noether charge
Q =
2πd/2
Γ(d/2)
∞
0
dr rd−1
ω
φ2
AN
(16)
Mass for κ = 0
M =
2πd/2
Γ(d/2)
∞
0
dr rd−1
Nφ 2
+
ω2φ2
N
+ U(φ) (17)
Mass for κ = 0
n(r 1) = M + n1r2∆+d
+ .... (18)
Y. Brihaye and B. Hartmann, Nonlinearity 21 (2008), 1937, D. Astefanesei and E. Radu, Phys. Lett. B 587
(2004) 7, D. Astefanesei and E. Radu, Nucl. Phys. B 665 (2003) 594 [gr-qc/0309131].
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Expressions for Charge Q and Mass M
The scalar field function falls of exponentially for Λ = 0
φ(r >> 1) ∼
1
r
d−1
2
exp − 1 − ω2r + ... (19)
The scalar field function falls of power-law for Λ < 0
φ(r >> 1) =
φ∆
r∆
, ∆ =
d
2
±
d2
4
+ 2 . (20)
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Q-balls in Minkowski and AdS background
ω
M
0.4 0.6 0.8 1.0 1.2 1.4
1e+001e+021e+041e+06
Λ
= 0.0 2d
= 0.0 3d
= 0.0 4d
= 0.0 5d
= 0.0 6d
= −0.1 2d
= −0.1 3d
= −0.1 4d
= −0.1 5d
= −0.1 6d
ω= 1.0
ω
Q
0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e+001e+021e+041e+06
Λ
= 0.0 2d
= 0.0 3d
= 0.0 4d
= 0.0 5d
= 0.0 6d
= −0.1 2d
= −0.1 3d
= −0.1 4d
= −0.1 5d
= −0.1 6d
ω= 1.0
Figure : Mass M of the Q-balls in dependence on their charge Q for different values
of d in Minkowski space-time (Λ = 0) (left) and AdS (Λ < 0) (right)
B. Hartmann and J. Riedel, Phys. Rev. D 86 (2012) 104008 [arXiv:1204.6239 [hep-th]], B. Hartmann and J. Riedel,
Phys. Rev. D 87 (2013) 044003 [arXiv:1210.0096 [hep-th]]
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Q-balls in Minkowski and AdS background
φ
V
−5 0 5
−0.050.050.150.25
ω
= 0.02
= 0.05
= 0.7
= 0.9
= 1.2
φ
V
−5 0 5
01234
Λ
= 0.0
= −0.01
= −0.05
= −0.1
= −0.5
Figure : Effective potential V(φ) = ω2φ2 − U(|Φ|) for Q-balls in an AdS background
for fixed r = 10,Λ = −0.1 and different values of ω (left),for fixed r = 10, ω = 0.3 and
different values of Λ (right).
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Q-balls in Minkowski background
Λ
ωmax
−0.10 −0.15 −0.20 −0.25 −0.30 −0.35 −0.40 −0.45
1.21.41.61.82.0
φ(0) = 0
= 2d
= 4d
= 6d
= 8d
= 10d
= 2d (analytical)
= 4d (analytical)
= 6d (analytical)
= 8d (analytical)
= 10d (analytical)
−0.1010 −0.1014 −0.1018
1.2651.2751.285
6d
8d
d + 1
ωmax
3 4 5 6 7 8 9 10
1.01.21.41.61.82.0
Λ
= −0.01
= −0.1
= −0.5
= −0.01 (analytical)
= −0.1 (analytical)
= −0.5 (analytical)
3.0 3.2 3.4
1.321.341.36
Λ = −0.1
Figure : The value of ωmax = ∆/ in dependence on Λ (left) and in dependence on d
(right).
E. Radu and B. Subagyo, Spinning scalar solitons in anti-de Sitter spacetime, arXiv:1207.3715 [gr-qc]
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Q-balls in Minkowski background
Q
M
1e+00 1e+02 1e+04 1e+06
1e+001e+021e+041e+06
Λ
= 0.0 2d
= 0.0 3d
= 0.0 4d
= 0.0 5d
= 0.0 6d
= (M=Q)
20 40 60 100
204080
2d
200 300 400
200300450
3d
1500 2500 4000
15003000
4d
16000 19000 22000
1600020000
5d
140000 170000 200000
140000180000
6d
Figure : Mass M of the Q-balls in dependence on their charge Q for different values
of d in Minkowski space-time
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Q-balls in AdS background
Q
M
1e+00 1e+02 1e+04 1e+06 1e+08
1e+001e+021e+041e+061e+08
Λ
= −0.1 2d
= −0.1 3d
= −0.1 4d
= −0.1 5d
= −0.1 6d
= (M=Q)
1500 2500 4000
15003000
2d
1500 2500 4000
15003000
3d
1500 2500 4000
15003000
4d
1500 2500 4000
15003000
5d
1500 2500 4000
15003000
6d
Figure : Mass M in dependence on Q for d = 2, 3, 4, 5, 6 and Λ = −0.1.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Excited Q-balls
φ
V(φ)
−4 −2 0 2 4
−0.02−0.010.000.010.02
ω = 1.2
V = 0.0
Figure : Effective potential V(φ) and excited solutions.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Excited Q-balls
r
φ
0 5 10 15 20
−0.10.10.20.30.40.5
k
= 0
= 1
= 2
φ = 0.0
Figure : Profile of the scalar field function φ(r) for Q-balls with k = 0, 1, 2 nodes,
respectively.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Excited Q-balls
ω
M
0.5 1.0 1.5 2.0
110100100010000
Λ & k
= −0.1 & 0 4d
= −0.1 & 1 4d
= −0.1 & 2 4d
= −0.1 & 0 3d
= −0.1 & 1 3d
= −0.1 & 2 3d
Q
M
1e+01 1e+02 1e+03 1e+04 1e+05
1e+011e+021e+031e+041e+05
Λ & k
= −0.1 & 0 4d
= −0.1 & 1 4d
= −0.1 & 2 4d
= −0.1 & 0 3d
= −0.1 & 1 3d
= −0.1 & 2 3d
Figure : Mass M of the Q-balls in dependence on ω (left) and in dependence on the
charge Q (right) in AdS space-time for different values of d and number of nodes k.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Boson stars in Minkowski background
ω
M
0.2 0.4 0.6 0.8 1.0 1.2
10505005000
κ
= 0.005 5d
= 0.01 5d
= 0.005 4d
= 0.01 4d
= 0.005 3d
= 0.01 3d
= 0.005 2d
= 0.01 2d
ω= 1.0
0.95 0.98 1.01
50200500
3d
0.995 0.998 1.001
20006000
4d
0.95 0.98 1.01
20006000
5d
Figure : The value of the mass M of the boson stars in dependence on the frequency
ω for Λ = 0 and different values of d and κ. The small subfigures show the behaviour
of M, respectively at the approach of ωmax for d = 3, 4, 5 (from left to right).
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Boson stars in Minkowski background
ω
M
0.9980 0.9985 0.9990 0.9995 1.0000
1e+011e+031e+051e+07
D
= 4.0d
= 4.5d
= 4.8d
= 5.0d
ω= 1.0
0.9990 0.9994 0.9998
5e+035e+05
5d
Figure : Mass M of the boson stars in asymptotically flat space-time in dependence
on the frequency ω close to ωmax.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Boson stars in Minkowski background
r
φ
φ(0)
0 200 400 600 800 1000
0.00.20.40.60.81.0
φ(0) & ω
= 2.190 & 0.9995 lower branch
= 1.880 & 0.9999 middle branch
= 0.001 & 0.9999 upper branch
0 5 10 15 20
0.000.100.20
Figure : Profiles of the scalar field function φ(r)/φ(0) for the case where three
branches of solutions exist close to ωmax in d = 5. Here κ = 0.001.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Boson stars in Minkowski background
Q
M
1e+01 1e+03 1e+05 1e+07
1e+011e+031e+051e+07
κ
= 0.001 5d
= 0.005 5d
= 0.001 4d
= 0.005 4d
= 0.001 3d
= 0.005 3d
= 0.001 3d
= 0.005 2d
ω= 1.0
10000 15000 20000 25000
200030005000
100000 150000 250000 400000
1e+045e+04
Figure : Mass M of the boson stars in asymptotically flat space-time in dependence
on their charge Q for different values of κ and d.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Boson stars in AdS background
ω
M
0.2 0.4 0.6 0.8 1.0 1.2 1.4
110100100010000
κ
= 0.005 5d
= 0.01 5d
= 0.005 4d
= 0.01 4d
= 0.005 3d
= 0.01 3d
= 0.005 2d
= 0.01 2d
ω= 1.0
ω
Q
0.2 0.4 0.6 0.8 1.0 1.2 1.4
1101001000
κ
= 0.005 5d
= 0.01 5d
= 0.005 4d
= 0.01 4d
= 0.005 3d
= 0.01 3d
= 0.005 2d
= 0.01 2d
ω= 1.0
Figure : The value of the mass M (left) and the charge Q (right) of the boson stars in
dependence on the frequency ω in asymptotically flat space-time (Λ = 0) and
asymptotically AdS space-time (Λ = −0.1) for different values of d and κ.
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Boson stars in AdS background
Q
M
1 10 100 1000 10000
110100100010000
κ
= 0.01 6d
= 0.005 6d
= 0.01 5d
= 0.005 5d
= 0.01 4d
= 0.005 4d
= 0.01 3d
= 0.005 3d
= 0.01 2d
= 0.005 2d
ω= 1.0
1000 1500 2000 2500
5006008001000
Figure : Mass M of the boson stars in AdS space-time in dependence on their
charge Q for different values of κ and d. Λ = 0.001
Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions

Weitere ähnliche Inhalte

Was ist angesagt?

Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
Gauss Bonnet Boson Stars
Gauss Bonnet Boson StarsGauss Bonnet Boson Stars
Gauss Bonnet Boson StarsJurgen Riedel
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 

Was ist angesagt? (20)

Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Gauss Bonnet Boson Stars
Gauss Bonnet Boson StarsGauss Bonnet Boson Stars
Gauss Bonnet Boson Stars
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 

Andere mochten auch

Augmented Reality with Open Source Software
Augmented Reality with Open Source SoftwareAugmented Reality with Open Source Software
Augmented Reality with Open Source Softwarenobby
 
3M Integration Challenge
3M Integration Challenge3M Integration Challenge
3M Integration ChallengeTerri Nair
 
Saline vs hartmann's solution (audit)
Saline vs hartmann's solution (audit)Saline vs hartmann's solution (audit)
Saline vs hartmann's solution (audit)gasmandoddy
 
Question Four - Evaluation
Question Four - Evaluation Question Four - Evaluation
Question Four - Evaluation saiflambe24
 
Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014
Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014
Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014Jurgen Riedel
 
Segmentación de Datos, seguridad en la privacidad del paciente
Segmentación de Datos, seguridad en la privacidad del pacienteSegmentación de Datos, seguridad en la privacidad del paciente
Segmentación de Datos, seguridad en la privacidad del pacienteFabián Descalzo
 
Question 4 Evaluation
Question 4 Evaluation Question 4 Evaluation
Question 4 Evaluation saiflambe24
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...Jurgen Riedel
 
Question One - Evaluation
Question One - EvaluationQuestion One - Evaluation
Question One - Evaluationsaiflambe24
 
PhD Defense, Oldenburg, Germany, June, 2014
PhD Defense, Oldenburg, Germany, June, 2014PhD Defense, Oldenburg, Germany, June, 2014
PhD Defense, Oldenburg, Germany, June, 2014Jurgen Riedel
 
Negative Pressure Wound Therapy
Negative Pressure Wound TherapyNegative Pressure Wound Therapy
Negative Pressure Wound TherapyTriage Meditech
 
El derechoinformatico - El largo brazo de la ley
 El derechoinformatico  - El largo brazo de la ley El derechoinformatico  - El largo brazo de la ley
El derechoinformatico - El largo brazo de la leyFabián Descalzo
 
Light Forms Tec
Light Forms TecLight Forms Tec
Light Forms TecLifeForms
 

Andere mochten auch (16)

Augmented Reality with Open Source Software
Augmented Reality with Open Source SoftwareAugmented Reality with Open Source Software
Augmented Reality with Open Source Software
 
3M Integration Challenge
3M Integration Challenge3M Integration Challenge
3M Integration Challenge
 
Saline vs hartmann's solution (audit)
Saline vs hartmann's solution (audit)Saline vs hartmann's solution (audit)
Saline vs hartmann's solution (audit)
 
Wound care
Wound care Wound care
Wound care
 
Midas rec2 rec
Midas rec2 recMidas rec2 rec
Midas rec2 rec
 
Question Four - Evaluation
Question Four - Evaluation Question Four - Evaluation
Question Four - Evaluation
 
Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014
Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014
Gauss–Bonnet Boson Stars in AdS, Bielefeld, Germany, 2014
 
Segmentación de Datos, seguridad en la privacidad del paciente
Segmentación de Datos, seguridad en la privacidad del pacienteSegmentación de Datos, seguridad en la privacidad del paciente
Segmentación de Datos, seguridad en la privacidad del paciente
 
Question 4 Evaluation
Question 4 Evaluation Question 4 Evaluation
Question 4 Evaluation
 
Evaluation
EvaluationEvaluation
Evaluation
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Mexico city ta...
 
Question One - Evaluation
Question One - EvaluationQuestion One - Evaluation
Question One - Evaluation
 
PhD Defense, Oldenburg, Germany, June, 2014
PhD Defense, Oldenburg, Germany, June, 2014PhD Defense, Oldenburg, Germany, June, 2014
PhD Defense, Oldenburg, Germany, June, 2014
 
Negative Pressure Wound Therapy
Negative Pressure Wound TherapyNegative Pressure Wound Therapy
Negative Pressure Wound Therapy
 
El derechoinformatico - El largo brazo de la ley
 El derechoinformatico  - El largo brazo de la ley El derechoinformatico  - El largo brazo de la ley
El derechoinformatico - El largo brazo de la ley
 
Light Forms Tec
Light Forms TecLight Forms Tec
Light Forms Tec
 

Ähnlich wie Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar 1st 2013

Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-timeSUSY Q-Balls and Boson Stars in Anti-de Sitter space-time
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-timeJurgen Riedel
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014Jurgen Riedel
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de númerosmmasdeu
 
From planar maps to spatial topology change in 2d gravity
From planar maps to spatial topology change in 2d gravityFrom planar maps to spatial topology change in 2d gravity
From planar maps to spatial topology change in 2d gravityTimothy Budd
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-fieldcerniagigante
 
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012Jurgen Riedel
 
Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk
Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talkGauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk
Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talkJurgen Riedel
 
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesSOURAV DAS
 

Ähnlich wie Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar 1st 2013 (20)

Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-timeSUSY Q-Balls and Boson Stars in Anti-de Sitter space-time
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
 
Non standard
Non standardNon standard
Non standard
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de números
 
From planar maps to spatial topology change in 2d gravity
From planar maps to spatial topology change in 2d gravityFrom planar maps to spatial topology change in 2d gravity
From planar maps to spatial topology change in 2d gravity
 
41-50
41-5041-50
41-50
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
 
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012
SUSY Q-Balls and Boson Stars in Anti-de Sitter space-time - Cancun talk 2012
 
Lecture6 svdd
Lecture6 svddLecture6 svdd
Lecture6 svdd
 
Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk
Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talkGauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk
Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk
 
B02606010
B02606010B02606010
B02606010
 
Real Time Spectroscopy
Real Time SpectroscopyReal Time Spectroscopy
Real Time Spectroscopy
 
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2021 Question Paper | Sourav Sir's Classes
 

Kürzlich hochgeladen

cybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationcybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationSanghamitraMohapatra5
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasChayanika Das
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxMedical College
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...Chayanika Das
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasChayanika Das
 
Unveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s PotentialUnveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s PotentialMarkus Roggen
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfSubhamKumar3239
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11GelineAvendao
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 

Kürzlich hochgeladen (20)

cybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationcybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitation
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
Introduction Classification Of Alkaloids
Introduction Classification Of AlkaloidsIntroduction Classification Of Alkaloids
Introduction Classification Of Alkaloids
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 
Introduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptxIntroduction of Human Body & Structure of cell.pptx
Introduction of Human Body & Structure of cell.pptx
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
 
Ultrastructure and functions of Chloroplast.pptx
Ultrastructure and functions of Chloroplast.pptxUltrastructure and functions of Chloroplast.pptx
Ultrastructure and functions of Chloroplast.pptx
 
Unveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s PotentialUnveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s Potential
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdf
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 

Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar 1st 2013

  • 1. Supersymmetric Q-balls and boson stars in (d + 1) dimensions Jürgen Riedel in collaboration with Betti Hartmann, Jacobs University Bremen School of Engineering and Science Jacobs University Bremen, Germany February 10, 2014 Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 2. Solitons in non-linear field theories General properties of soliton solutions localized, finite energy, stable, regular solutions of non-linear equations can be viewed as models of elementary particles Examples Topological solitons: Skyrme model of hadrons in high energy physics one of first models and magnetic monopoles Non-topological solitons: Q-balls (flat space-time) and boson stars (generalisation in curved space-time) Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 3. Topolocial solitons Properties of topological solitons Boundary conditions at spatial infinity are topological different from that of the vacuum state Degenerated vacua states at spatial infinity cannot be continuously deformed to a single vacuum Example in one dimension: L = 1 2 (∂µφ)2 − λ 4 φ2 − m2 λ broken symmetry φ → −φ with two degenerate vacua at φ = ±m/ √ λ N.S. Manton and P.M. Sutcliffe Topological solitons, Cambridge University Press, 2004 Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 4. Non-topolocial solitons Properties of topological solitons Solutions possess the same boundary conditions at infinity as the physical vacuum state Degenerate vacuum states do not necessarily exist Require an additive conservation law, e.g. gauge invariance under an arbitrary global phase transformation S. R. Coleman, Nucl. Phys. B 262 (1985), 263, R. Friedberg, T. D. Lee and A. Sirlin, Phys. Rev. D 13 (1976) 2739), D. J. Kaup, Phys. Rev. 172 (1968), 1331, R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35 (1987), 3658, P. Jetzer, Phys. Rept. 220 (1992), 163, F. E. Schunck and E. Mielke, Class. Quant. Grav. 20 (2003) R31, F. E. Schunck and E. Mielke, Phys. Lett. A 249 (1998), 389. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 5. Non-topolocial solitons Derrick’s non-existence theorem Derrick’s theorem puts restrictions to localized soliton solutions in more than one spatial dimension No (stable) stationary point of energy exists with respect to λ for a scalar with purely potential interactions Around Derrick’s Theorem if one includes appropriate gauge fields, gravitational fields or higher derivatives in field Lagrangian if one considers solutions which are periodic in time Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 6. Non-topolocial solitons Model in one dimension) With complex scalar field Φ(x, t) : L = ∂µΦ∂µΦ∗ − U(|Φ|), U(|Φ|) minimum at Φ = 0 Lagrangian is invariant under transformation φ(x) → eiαφ(x) Give rise to Noether charge Q = 1 i dx3φ∗ ˙φ − φ ˙φ∗) Solution that minimizes the energy for fixed Q: Φ(x, t) = φ(x)eiωt Solutions have been constructed in (3 + 1)-dimensional models with non-normalizable Φ6-potential M.S. Volkov and E. Wöhnert, Phys. Rev. D 66 (2002), 085003, B. Kleihaus, J. Kunz and M. List, Phys. Rev. D 72 (2005), 064002, B. Kleihaus, J. Kunz, M. List and I. Schaffer, Phys. Rev. D 77 (2008), 064025. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 7. Existence conditions for Q-balls Condition 1: V (0) < 0; Φ ≡ 0 local maximum ⇒ ω2 < ω2 max ≡ U (0) Condition 2: ω2 > ω2 min ≡ minφ[2U(φ)/φ2] minimum over all φ Consequences: Restricted interval ω2 min < ω2 < ω2 max ; U (0) > minφ[2U(φ)/φ2] Q-balls are rotating in inner space with ω stabilized by having a lower energy to charge ratio as the free particles Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 8. Existence conditions for Q-balls φ V(φ) −4 −2 0 2 4 −0.02−0.010.000.010.02 ω = 1.2 V = 0.0 Figure : Effective potential V(φ) = ω2φ2 − U(|Φ|). Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 9. Model for Q-balls and boson stars in d + 1 dimensions Action S = √ −gdd+1x R−2Λ 16πGd+1 + Lm + 1 8πGd+1 dd x √ −hK negative cosmological constant Λ = −d(d − 1)/(2 2) Matter Lagrangian Lm = −∂MΦ∂MΦ∗ − U(|Φ|) , M = 0, 1, ...., d Gauge mediated potential USUSY(|Φ|) = m2|Φ|2 if |Φ| ≤ ηsusy m2η2 susy = const. if |Φ| > ηsusy (1) U(|Φ|) = m2 η2 susy 1 − exp − |Φ|2 η2 susy (2) A. Kusenko, Phys. Lett. B 404 (1997), 285; Phys. Lett. B 405 (1997), 108, L. Campanelli and M. Ruggieri, Phys. Rev. D 77 (2008), 043504 Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 10. Model for Q-balls and boson stars in d + 1 dimensions Einstein Equations are a coupled ODE GMN + ΛgMN = 8πGd+1TMN , M, N = 0, 1, .., d (3) Energy-momentum tensor TMN = gMNL − 2 ∂L ∂gMN (4) Klein-Gordon equation − ∂U ∂|Φ|2 Φ = 0 . (5) Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 11. Model for Q-balls and boson stars in d + 1 dimensions Locally conserved Noether current jM, M = 0, 1, .., d jM = − i 2 Φ∗ ∂M Φ − Φ∂M Φ∗ with jM ;M = 0 . (6) Globally conserved Noether charge Q Q = − dd x √ −gj0 . (7) Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 12. Ansatz Q-balls and boson stars for d + 1 dimensions Metric in spherical Schwarzschild-like coordinates ds2 = −A2 (r)N(r)dt2 + 1 N(r) dr2 + r2 dΩ2 d−1, (8) where N(r) = 1 − 2n(r) rd−2 − 2Λ (d − 1)d r2 (9) Stationary Ansatz for complex scalar field Φ(t, r) = eiωt φ(r) (10) Rescaling using dimensionless quantities r → r m , ω → mω, → /m, φ → ηsusyφ, n → n/md−2 (11) Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 13. Einstein equations in (d + 1) dimensions Equations for the metric functions: n = κ rd−1 2 Nφ 2 + U(φ) + ω2φ2 A2N , (12) A = κr Aφ 2 + ω2φ2 AN2 , (13) κ = 8πGd+1η2 susy = 8π η2 susy Md−1 pl,d+1 (14) Matter field equation: rd−1 ANφ = rd−1 A 1 2 ∂U ∂φ − ω2φ NA2 . (15) Appropriate boundary conditions: φ (0) = 0 , n(0) = 0 , A(∞) = 1 Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 14. Expressions for Charge Q and Mass M The explicit expression for the Noether charge Q = 2πd/2 Γ(d/2) ∞ 0 dr rd−1 ω φ2 AN (16) Mass for κ = 0 M = 2πd/2 Γ(d/2) ∞ 0 dr rd−1 Nφ 2 + ω2φ2 N + U(φ) (17) Mass for κ = 0 n(r 1) = M + n1r2∆+d + .... (18) Y. Brihaye and B. Hartmann, Nonlinearity 21 (2008), 1937, D. Astefanesei and E. Radu, Phys. Lett. B 587 (2004) 7, D. Astefanesei and E. Radu, Nucl. Phys. B 665 (2003) 594 [gr-qc/0309131]. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 15. Expressions for Charge Q and Mass M The scalar field function falls of exponentially for Λ = 0 φ(r >> 1) ∼ 1 r d−1 2 exp − 1 − ω2r + ... (19) The scalar field function falls of power-law for Λ < 0 φ(r >> 1) = φ∆ r∆ , ∆ = d 2 ± d2 4 + 2 . (20) Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 16. Q-balls in Minkowski and AdS background ω M 0.4 0.6 0.8 1.0 1.2 1.4 1e+001e+021e+041e+06 Λ = 0.0 2d = 0.0 3d = 0.0 4d = 0.0 5d = 0.0 6d = −0.1 2d = −0.1 3d = −0.1 4d = −0.1 5d = −0.1 6d ω= 1.0 ω Q 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1e+001e+021e+041e+06 Λ = 0.0 2d = 0.0 3d = 0.0 4d = 0.0 5d = 0.0 6d = −0.1 2d = −0.1 3d = −0.1 4d = −0.1 5d = −0.1 6d ω= 1.0 Figure : Mass M of the Q-balls in dependence on their charge Q for different values of d in Minkowski space-time (Λ = 0) (left) and AdS (Λ < 0) (right) B. Hartmann and J. Riedel, Phys. Rev. D 86 (2012) 104008 [arXiv:1204.6239 [hep-th]], B. Hartmann and J. Riedel, Phys. Rev. D 87 (2013) 044003 [arXiv:1210.0096 [hep-th]] Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 17. Q-balls in Minkowski and AdS background φ V −5 0 5 −0.050.050.150.25 ω = 0.02 = 0.05 = 0.7 = 0.9 = 1.2 φ V −5 0 5 01234 Λ = 0.0 = −0.01 = −0.05 = −0.1 = −0.5 Figure : Effective potential V(φ) = ω2φ2 − U(|Φ|) for Q-balls in an AdS background for fixed r = 10,Λ = −0.1 and different values of ω (left),for fixed r = 10, ω = 0.3 and different values of Λ (right). Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 18. Q-balls in Minkowski background Λ ωmax −0.10 −0.15 −0.20 −0.25 −0.30 −0.35 −0.40 −0.45 1.21.41.61.82.0 φ(0) = 0 = 2d = 4d = 6d = 8d = 10d = 2d (analytical) = 4d (analytical) = 6d (analytical) = 8d (analytical) = 10d (analytical) −0.1010 −0.1014 −0.1018 1.2651.2751.285 6d 8d d + 1 ωmax 3 4 5 6 7 8 9 10 1.01.21.41.61.82.0 Λ = −0.01 = −0.1 = −0.5 = −0.01 (analytical) = −0.1 (analytical) = −0.5 (analytical) 3.0 3.2 3.4 1.321.341.36 Λ = −0.1 Figure : The value of ωmax = ∆/ in dependence on Λ (left) and in dependence on d (right). E. Radu and B. Subagyo, Spinning scalar solitons in anti-de Sitter spacetime, arXiv:1207.3715 [gr-qc] Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 19. Q-balls in Minkowski background Q M 1e+00 1e+02 1e+04 1e+06 1e+001e+021e+041e+06 Λ = 0.0 2d = 0.0 3d = 0.0 4d = 0.0 5d = 0.0 6d = (M=Q) 20 40 60 100 204080 2d 200 300 400 200300450 3d 1500 2500 4000 15003000 4d 16000 19000 22000 1600020000 5d 140000 170000 200000 140000180000 6d Figure : Mass M of the Q-balls in dependence on their charge Q for different values of d in Minkowski space-time Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 20. Q-balls in AdS background Q M 1e+00 1e+02 1e+04 1e+06 1e+08 1e+001e+021e+041e+061e+08 Λ = −0.1 2d = −0.1 3d = −0.1 4d = −0.1 5d = −0.1 6d = (M=Q) 1500 2500 4000 15003000 2d 1500 2500 4000 15003000 3d 1500 2500 4000 15003000 4d 1500 2500 4000 15003000 5d 1500 2500 4000 15003000 6d Figure : Mass M in dependence on Q for d = 2, 3, 4, 5, 6 and Λ = −0.1. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 21. Excited Q-balls φ V(φ) −4 −2 0 2 4 −0.02−0.010.000.010.02 ω = 1.2 V = 0.0 Figure : Effective potential V(φ) and excited solutions. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 22. Excited Q-balls r φ 0 5 10 15 20 −0.10.10.20.30.40.5 k = 0 = 1 = 2 φ = 0.0 Figure : Profile of the scalar field function φ(r) for Q-balls with k = 0, 1, 2 nodes, respectively. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 23. Excited Q-balls ω M 0.5 1.0 1.5 2.0 110100100010000 Λ & k = −0.1 & 0 4d = −0.1 & 1 4d = −0.1 & 2 4d = −0.1 & 0 3d = −0.1 & 1 3d = −0.1 & 2 3d Q M 1e+01 1e+02 1e+03 1e+04 1e+05 1e+011e+021e+031e+041e+05 Λ & k = −0.1 & 0 4d = −0.1 & 1 4d = −0.1 & 2 4d = −0.1 & 0 3d = −0.1 & 1 3d = −0.1 & 2 3d Figure : Mass M of the Q-balls in dependence on ω (left) and in dependence on the charge Q (right) in AdS space-time for different values of d and number of nodes k. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 24. Boson stars in Minkowski background ω M 0.2 0.4 0.6 0.8 1.0 1.2 10505005000 κ = 0.005 5d = 0.01 5d = 0.005 4d = 0.01 4d = 0.005 3d = 0.01 3d = 0.005 2d = 0.01 2d ω= 1.0 0.95 0.98 1.01 50200500 3d 0.995 0.998 1.001 20006000 4d 0.95 0.98 1.01 20006000 5d Figure : The value of the mass M of the boson stars in dependence on the frequency ω for Λ = 0 and different values of d and κ. The small subfigures show the behaviour of M, respectively at the approach of ωmax for d = 3, 4, 5 (from left to right). Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 25. Boson stars in Minkowski background ω M 0.9980 0.9985 0.9990 0.9995 1.0000 1e+011e+031e+051e+07 D = 4.0d = 4.5d = 4.8d = 5.0d ω= 1.0 0.9990 0.9994 0.9998 5e+035e+05 5d Figure : Mass M of the boson stars in asymptotically flat space-time in dependence on the frequency ω close to ωmax. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 26. Boson stars in Minkowski background r φ φ(0) 0 200 400 600 800 1000 0.00.20.40.60.81.0 φ(0) & ω = 2.190 & 0.9995 lower branch = 1.880 & 0.9999 middle branch = 0.001 & 0.9999 upper branch 0 5 10 15 20 0.000.100.20 Figure : Profiles of the scalar field function φ(r)/φ(0) for the case where three branches of solutions exist close to ωmax in d = 5. Here κ = 0.001. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 27. Boson stars in Minkowski background Q M 1e+01 1e+03 1e+05 1e+07 1e+011e+031e+051e+07 κ = 0.001 5d = 0.005 5d = 0.001 4d = 0.005 4d = 0.001 3d = 0.005 3d = 0.001 3d = 0.005 2d ω= 1.0 10000 15000 20000 25000 200030005000 100000 150000 250000 400000 1e+045e+04 Figure : Mass M of the boson stars in asymptotically flat space-time in dependence on their charge Q for different values of κ and d. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 28. Boson stars in AdS background ω M 0.2 0.4 0.6 0.8 1.0 1.2 1.4 110100100010000 κ = 0.005 5d = 0.01 5d = 0.005 4d = 0.01 4d = 0.005 3d = 0.01 3d = 0.005 2d = 0.01 2d ω= 1.0 ω Q 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1101001000 κ = 0.005 5d = 0.01 5d = 0.005 4d = 0.01 4d = 0.005 3d = 0.01 3d = 0.005 2d = 0.01 2d ω= 1.0 Figure : The value of the mass M (left) and the charge Q (right) of the boson stars in dependence on the frequency ω in asymptotically flat space-time (Λ = 0) and asymptotically AdS space-time (Λ = −0.1) for different values of d and κ. Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions
  • 29. Boson stars in AdS background Q M 1 10 100 1000 10000 110100100010000 κ = 0.01 6d = 0.005 6d = 0.01 5d = 0.005 5d = 0.01 4d = 0.005 4d = 0.01 3d = 0.005 3d = 0.01 2d = 0.005 2d ω= 1.0 1000 1500 2000 2500 5006008001000 Figure : Mass M of the boson stars in AdS space-time in dependence on their charge Q for different values of κ and d. Λ = 0.001 Jürgen Riedel & Betti Hartmann Supersymmetric Q-balls and boson stars in (d + 1) dimensions