# Beginning direct3d gameprogrammingmath01_primer_20160324_jintaeks

JinTaek SeoDivision of Digital Contents, Dongseo University um 동서대학교 디지털콘텐츠 학부
1 von 51

Introduction to coordinate geometry von
Introduction to coordinate geometryjoannahstevens
1.9K views11 Folien
Computer graphics von
Computer graphicsMydul Islam Rashed
609 views7 Folien
Introduction to homography von
Introduction to homographyShih-Hsiang Lin
13.3K views32 Folien
IIT JEE Coordinate Geometry- Preparation Tips to Practical Applications! - as... von
IIT JEE Coordinate Geometry- Preparation Tips to Practical Applications! - as...askiitian
3.5K views19 Folien
Ds lec 5_chap4 von
Ds lec 5_chap4Self-Employed
255 views29 Folien
Planar graph( Algorithm and Application ) von
Planar graph( Algorithm and Application )Abdullah Moin
521 views14 Folien

## Was ist angesagt?

Algebra booklet von
Algebra bookletRameenKamran1
29 views8 Folien
Maths IB Important von
Maths IB ImportantMagisetty Harikrushna
12.9K views19 Folien
Straight lines von
Straight linesindu psthakur
46.1K views54 Folien
April 15, 2015 von
April 15, 2015khyps13
256 views23 Folien
Coordinate geometry von
Coordinate geometryErlyn Geronimo
8.1K views40 Folien
992 views9 Folien

### Was ist angesagt?(19)

April 15, 2015 von khyps13
April 15, 2015
khyps13256 views
dinakudus992 views
Math unit38 vectors von eLearningJa
Math unit38 vectors
eLearningJa113 views
coordinate Geometry straight line von SahilPuri14
coordinate Geometry straight line
SahilPuri142.4K views
Coordinate geometry von Carl Davis
Coordinate geometry
Carl Davis520 views
Finding Area of a Composite Figure (Presentation) von CRISALDO CORDURA
Finding Area of a Composite Figure (Presentation)
CRISALDO CORDURA2.8K views
presentation on co-ordinate geometery von FutureX1
presentation on co-ordinate geometery
FutureX1170 views
Analytic geometry lecture1
3D Coordinate Geometry

329 views18 Folien
Copy Rights von
Copy RightsBriannaStyles
117 views6 Folien
395 views11 Folien
Bioteknologia von
Bioteknologiaiazpiro1
294 views12 Folien
Sant cugat von
Sant cugatDuraLaura1rC
150 views8 Folien

Bioteknologia von iazpiro1
Bioteknologia
iazpiro1294 views
magonal2240 views
Apresentação sobre os blogs moçambicanos para a conferência do cea von Nyikiwa
Apresentação sobre os blogs moçambicanos para a conferência do cea
Nyikiwa178 views
گلستان ابوالحسن1 von guest3ba11f
گلستان ابوالحسن1
guest3ba11f106 views
Beginning direct3d gameprogrammingmath02_logarithm_20160324_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingmath02_logarithm_20160324_jintaeks
JinTaek Seo213 views
Gas Natural Vehicular: un combustible econòmic, sostenible i tecnològicament ... von AMTU
Gas Natural Vehicular: un combustible econòmic, sostenible i tecnològicament ...
AMTU541 views
Tijs michiel verwest von montse81
Tijs michiel verwest
montse81335 views
Cara menghaspus section break von mbak_aul
Cara menghaspus section break
mbak_aul172 views
E 12 bsp1779_pankajkumarvisualcv von Pankaj Kumar
E 12 bsp1779_pankajkumarvisualcv
Pankaj Kumar204 views
Diversity Executive_The 4 Stages_1-2.2010 von Helene Lollis
Diversity Executive_The 4 Stages_1-2.2010
Helene Lollis128 views

## Similar a Beginning direct3d gameprogrammingmath01_primer_20160324_jintaeks

Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks von
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeksJinTaek Seo
205 views50 Folien
Beginning direct3d gameprogrammingmath03_vectors_20160328_jintaeks von
Beginning direct3d gameprogrammingmath03_vectors_20160328_jintaeksJinTaek Seo
193 views38 Folien
History,applications,algebra and mathematical form of plane in mathematics (p... von
History,applications,algebra and mathematical form of plane in mathematics (p...guesta62dea
2.8K views41 Folien
Co-ordinate Geometry.pptx von
Co-ordinate Geometry.pptxVictoriyaAmirtharaj
27 views12 Folien
Plano numerico von
Plano numericoDargelisGomez1
39 views22 Folien
Class 10 mathematics compendium von
Class 10 mathematics compendiumAPEX INSTITUTE
415 views16 Folien

### Similar a Beginning direct3d gameprogrammingmath01_primer_20160324_jintaeks(20)

Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
JinTaek Seo205 views
Beginning direct3d gameprogrammingmath03_vectors_20160328_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingmath03_vectors_20160328_jintaeks
JinTaek Seo193 views
History,applications,algebra and mathematical form of plane in mathematics (p... von guesta62dea
History,applications,algebra and mathematical form of plane in mathematics (p...
guesta62dea2.8K views
EMT_2A_cylindrical coordinates.pptx von 5610UmarIqbal
EMT_2A_cylindrical coordinates.pptx
5610UmarIqbal12 views
Coordinate geometry 9 grade von Siddu Lingesh
Siddu Lingesh275 views
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
JinTaek Seo212 views
Computer Graphics & linear Algebra von Xad Kuain
Computer Graphics & linear Algebra
Lecture 07 graphing linear equations von Hazel Joy Chong
Lecture 07 graphing linear equations
Hazel Joy Chong1.1K views
Multiple integral(tripple integral) von jigar sable
Multiple integral(tripple integral)
jigar sable5.3K views
Computer graphics unit 4th von TEJVEER SINGH
Computer graphics unit 4th
TEJVEER SINGH243 views

## Más de JinTaek Seo

Neural network 20161210_jintaekseo von
Neural network 20161210_jintaekseoJinTaek Seo
457 views57 Folien
05 heap 20161110_jintaeks von
05 heap 20161110_jintaeksJinTaek Seo
425 views20 Folien
256 views47 Folien
Hermite spline english_20161201_jintaeks von
Hermite spline english_20161201_jintaeksJinTaek Seo
1.4K views32 Folien
01 stack 20160908_jintaek_seo von
01 stack 20160908_jintaek_seoJinTaek Seo
140 views45 Folien
03 fsm how_toimplementai_state_20161006_jintaeks von
03 fsm how_toimplementai_state_20161006_jintaeksJinTaek Seo
186 views37 Folien

### Más de JinTaek Seo(20)

Neural network 20161210_jintaekseo von JinTaek Seo
Neural network 20161210_jintaekseo
JinTaek Seo457 views
05 heap 20161110_jintaeks von JinTaek Seo
05 heap 20161110_jintaeks
JinTaek Seo425 views
02 linked list_20160217_jintaekseo von JinTaek Seo
JinTaek Seo256 views
Hermite spline english_20161201_jintaeks von JinTaek Seo
Hermite spline english_20161201_jintaeks
JinTaek Seo1.4K views
01 stack 20160908_jintaek_seo von JinTaek Seo
01 stack 20160908_jintaek_seo
JinTaek Seo140 views
03 fsm how_toimplementai_state_20161006_jintaeks von JinTaek Seo
03 fsm how_toimplementai_state_20161006_jintaeks
JinTaek Seo186 views
Beginning direct3d gameprogramming10_shaderdetail_20160506_jintaeks von JinTaek Seo
JinTaek Seo218 views
Beginning direct3d gameprogramming09_shaderprogramming_20160505_jintaeks von JinTaek Seo
JinTaek Seo418 views
Beginning direct3d gameprogramming08_usingtextures_20160428_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming08_usingtextures_20160428_jintaeks
JinTaek Seo236 views
Beginning direct3d gameprogramming07_lightsandmaterials_20161117_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming07_lightsandmaterials_20161117_jintaeks
JinTaek Seo188 views
Beginning direct3d gameprogramming06_firststepstoanimation_20161115_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming06_firststepstoanimation_20161115_jintaeks
JinTaek Seo308 views
Beginning direct3d gameprogramming05_thebasics_20160421_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming05_thebasics_20160421_jintaeks
JinTaek Seo301 views
Beginning direct3d gameprogramming04_3dfundamentals_20160414_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming04_3dfundamentals_20160414_jintaeks
JinTaek Seo153 views
Beginning direct3d gameprogramming02_overviewofhalandcom_20160408_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming02_overviewofhalandcom_20160408_jintaeks
JinTaek Seo181 views
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji... von JinTaek Seo
Beginning direct3d gameprogramming01_thehistoryofdirect3dgraphics_20160407_ji...
JinTaek Seo262 views
Beginning direct3d gameprogramming01_20161102_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming01_20161102_jintaeks
JinTaek Seo251 views
Beginning direct3d gameprogramming03_programmingconventions_20160414_jintaeks von JinTaek Seo
Beginning direct3d gameprogramming03_programmingconventions_20160414_jintaeks
JinTaek Seo272 views
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingmath04_calculus_20160324_jintaeks
JinTaek Seo193 views
Beginning direct3d gameprogrammingcpp02_20160324_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingcpp02_20160324_jintaeks
JinTaek Seo1.2K views
Boost pp 20091102_서진택 von JinTaek Seo
Boost pp 20091102_서진택
JinTaek Seo339 views

## Último

Digital Watermarking Of Audio Signals.pptx von
Digital Watermarking Of Audio Signals.pptxAyushJaiswal781174
8 views25 Folien
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,... von
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...AakashShakya12
57 views115 Folien
Performance of Back-to-Back Mechanically Stabilized Earth Walls Supporting th... von
Performance of Back-to-Back Mechanically Stabilized Earth Walls Supporting th...ahmedmesaiaoun
12 views84 Folien
Stone Masonry and Brick Masonry.pdf von
Stone Masonry and Brick Masonry.pdfMohammed Abdullah Laskar
20 views6 Folien
SNMPx von
SNMPxAmatullahbutt
14 views12 Folien
802.11 Computer Networks von
802.11 Computer NetworksTusharChoudhary72015
9 views33 Folien

### Último(20)

Literature review and Case study on Commercial Complex in Nepal, Durbar mall,... von AakashShakya12
Literature review and Case study on Commercial Complex in Nepal, Durbar mall,...
AakashShakya1257 views
Performance of Back-to-Back Mechanically Stabilized Earth Walls Supporting th... von ahmedmesaiaoun
Performance of Back-to-Back Mechanically Stabilized Earth Walls Supporting th...
ahmedmesaiaoun12 views
DevOps to DevSecOps: Enhancing Software Security Throughout The Development L... von Anowar Hossain
DevOps to DevSecOps: Enhancing Software Security Throughout The Development L...
Anowar Hossain12 views
An approach of ontology and knowledge base for railway maintenance von IJECEIAES
An approach of ontology and knowledge base for railway maintenance
IJECEIAES12 views
Machine Element II Course outline.pdf von odatadese1
Machine Element II Course outline.pdf
MSA Website Slideshow (16).pdf von msaucla
MSA Website Slideshow (16).pdf
msaucla46 views
cloud computing-virtualization.pptx von RajaulKarim20
cloud computing-virtualization.pptx
RajaulKarim2085 views
7_DVD_Combinational_MOS_Logic_Circuits.pdf von Usha Mehta
7_DVD_Combinational_MOS_Logic_Circuits.pdf
Usha Mehta59 views
Thermal aware task assignment for multicore processors using genetic algorithm von IJECEIAES
Thermal aware task assignment for multicore processors using genetic algorithm
IJECEIAES30 views

### Beginning direct3d gameprogrammingmath01_primer_20160324_jintaeks

• 1. Beginning Direct3D Game Programming: Mathematics Primer jintaeks@gmail.com Division of Digital Contents, DongSeo University. March 2016
• 2. 2D Rotation Goal: We want to get the rotated point of (x,y) about theta(θ), (x',y'). 2 Assumption: We just know the four fundamental rules of arithmetic.
• 3. Domain and codomain  In mathematics, the codomain or target set of a function is the set Y into which all of the output of the function is constrained to fall. It is the set Y in the notation y＝f(x).  A function f from X to Y. The large blue oval is Y which is the codomain of f . The smaller oval inside Y is the image of f 3
• 4. Exponentiation  Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent n.  When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: 4
• 5. Factorial  In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. 5
• 6. Square Root  In mathematics, a square root of a number a is a number y such that y2 = a, in other words, a number y whose square(the result of multiplying the number by itself, or y × y) is a.  For example, 4 and −4 are square roots of 16 because 42 = (−4)2 = 16. 6 16 = 4 2
• 7. Cubic Root  A Root is a general notation for all degrees.  In case of square root, we can omit superscript 2. 7 27 = 3 3 16 = 4 2
• 8. Inverse function  In mathematics, an inverse function is a function that "reverses" another function. That is, if f is a function mapping x to y, then the inverse function of f maps y back to x. 8
• 9. 9
• 10. Pythagoras' theorem  In mathematics, the Pythagorean theorem, also known as Pythagoras' theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. a2+b2=c2 10
• 12. a2+b2=c2  If the length of both a and b are known, then c can be calculated as: 12
• 13. Summation Notation: Sigma(∑)  In mathematics, summation (symbol: ∑) is the addition of a sequence of numbers; the result is their sum or total. 13
• 14. 14
• 15. Practice  Write a function that calculate below equation. 15
• 16. Cartesian coordinate system  A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular directed lines, measured in the same unit of length. 16 • The invention of Cartesian coordinates in the 17th century by René Descartes (Latinized name: Cartesius) revolutionized mathematics.
• 17. Cartesian coordinate system  Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair (0, 0).  The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. 17
• 18.  Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. 18  Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x− a)2 + (y − b)2 = r2 where a and b are the coordinates of the center (a, b) and r is the radius.
• 19. Three dimensions  Choosing a Cartesian coordinate system for a three-dimensional space means choosing an ordered triplet of lines (axes) that are pair-wise perpendicular, have a single unit of length for all three axes and have an orientation for each axis. 19
• 20. Notations and conventions  The Cartesian coordinates of a point are usually written in parentheses and separated by commas, as in (10, 5) or(3, 5, 7).  The origin is often labelled with the capital letter O.  In analytic geometry, unknown or generic coordinates are often denoted by the letters (x, y) in the plane, and (x, y, z) in three-dimensional space. 20
• 21. Quadrants  The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes.  These are often numbered from 1st to 4th and denoted by Roman numerals: I (where the signs of the two coordinates are +,+), II (−,+), III (−,−), and IV (+,−). 21
• 22. Cartesian formulae for the plane: distance  The Euclidean distance between two points of the plane with Cartesian coordinates (x1,y1) and (x2,y2) is like below:  In three-dimensional space, the distance between points (x1,y1,z1) and (x2,y2,z2) is 22
• 23. Translation and Rotation  Translating a set of points of the plane, preserving the distances and directions between them, is equivalent to adding a fixed pair of numbers (a, b) to the Cartesian coordinates of every point in the set.  To rotate a figure counterclockwise around the origin by some angle is equivalent to replacing every point with coordinates (x,y) by the point with coordinates (x',y'), where 23
• 24. Affine Transformation  Another way to represent coordinate transformations in Cartesian coordinates is through affine transformations.  In affine transformations an extra dimension is added and all points are given a value of 1 for this extra dimension.  The advantage of doing this is that point translations can be specified in the final column of matrix A. In this way, all of the euclidean transformations become transactable as matrix point multiplications.  The affine transformation is given by: 24
• 25. Orientation and handedness  Once the x- and y-axes are specified, they determine the line along which the z-axis should lie, but there are two possible directions on this line.  The two possible coordinate systems which result are called 'right-handed' and 'left-handed'. 25 • The left-handed orientation is shown on the left, and the right-handed on the right.
• 26. 26  The right-handed Cartesian coordinate system indicating the coordinate planes. • Unity 3D game engine uses LHS.
• 27. Write a program that draws f(x)=x2 void OnDraw( HDC hdc ) { SelectObject( hdc, GetStockObject( DC_PEN ) ); SetDCPenColor( hdc, RGB( 255, 0, 0 ) ); MoveToEx( hdc, 0, 0, NULL ); LineTo( hdc, 100, 50 ); } 27  Use Win32 Gdi application on Windows7.  We assume origin is located at (200,200) in the screen coordinates.  Draw the x-axis with a red line.  Draw the y-axis with a blue line.  20 pixel corresponds to 1 unit(real number).
• 28. 28
• 29. Pi(π)  The number π is a mathematical constant, the ratio of a circle's circumference to its diameter, commonly approximated as 3.14159.  It has been represented by the Greek letter "π" since the mid- 18th century, though it is also sometimes spelled out as "pi" (/paɪ/). 29
• 30.  π is commonly defined as the ratio of a circle's circumference C to its diameter d: 30
• 31. Radian  The radian is the standard unit of angular measure, used in many areas of mathematics. An angle's measurement in radians is numerically equal to the length of a corresponding arc of a unit circle; one radian is just under 57.3 degrees. 31
• 32. Computing Pi  Monte Carlo methods, which evaluate the results of multiple random trials, can be used to create approximations of π.  Draw a circle inscribed in a square, and randomly place dots in the square. The ratio of dots inside the circle to the total number of dots will approximately equal π/4. 32
• 33. Practice  Write a program that approximately calculate the Pi. 33
• 34. Trigonometric functions  In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle.  They relate the angles of a triangle to the lengths of its sides. 34
• 35. Tangent line, secant line and chord 35
• 36. 36 Do you know the difference between angle, degree and radian?
• 37. 37
• 38. 38
• 39. 39
• 40. 40
• 41. 41
• 43. How to implement trigonometric functions?  Taylor polynomial 43
• 44.  The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full cycle centered on the origin. 44
• 45. Practice  Write a my own Sine function. Use Taylor series formula.  Use for-loop to implement Taylor series and tune proper iteration count. 45
• 46. sum and difference formula 46
• 47. proof: Let's watch the video. 47
• 48. Inverse of trigonometric functions 48
• 49. 2D Rotation: Do you remember the first question? 49
• 50. Practice  Write a function gets a rotated position of (x,y) about theta. 50
• 51. References  https://en.wikipedia.org/wiki/Pythagorean_theorem  https://en.wikipedia.org/wiki/Trigonometric_functions  https://www.youtube.com/watch?v=zcEMKv5yIYs – The derivation of the Sum Identities for Cosine. 51
Aktuelle SpracheEnglish
Español
Portugues
Français
Deutsche