SlideShare ist ein Scribd-Unternehmen logo
1 von 20
ElectroMagnetic Induction
AP Physics B
What is E/M Induction?
Electromagnetic Induction is the
process of using magnetic fields to
produce voltage, and in a
complete circuit, a current.
Michael Faraday first discovered it, using some of the works of Hans
Christian Oersted. His work started at first using different combinations of
wires and magnetic strengths and currents, but it wasn't until he tried moving
the wires that he got any success.
It turns out that electromagnetic induction is created by just that - the moving
of a conductive substance through a magnetic field.
Magnetic Induction
As the magnet moves back and forth a current is said
to be INDUCED in the wire.
Magnetic Flux
The first step to understanding the complex nature of
electromagnetic induction is to understand the idea
of magnetic flux.
Flux is a general term
associated with a FIELD that is
bound by a certain AREA. So
MAGNETIC FLUX is any AREA
that has a MAGNETIC FIELD
passing through it.
A
B
We generally define an AREA vector as one that is perpendicular to the
surface of the material. Therefore, you can see in the figure that the
AREA vector and the Magnetic Field vector are PARALLEL. This then
produces a DOT PRODUCT between the 2 variables that then define
flux.
Magnetic Flux – The DOT product
Wb)or Weber(Tm:Unit
cos
2
θBA
AB
B
B
=Φ
•=Φ
How could we CHANGE the flux over a period of time?
 We could move the magnet away or towards (or the wire)
 We could increase or decrease the area
 We could ROTATE the wire along an axis that is PERPENDICULAR to the
field thus changing the angle between the area and magnetic field vectors.
Faraday’s Law
Faraday learned that if you change any part of the flux over time
you could induce a current in a conductor and thus create a
source of EMF (voltage, potential difference). Since we are
dealing with time here were a talking about the RATE of
CHANGE of FLUX, which is called Faraday’s Law.
wireofturns#
)cos(
=
∆
∆
−=
∆
∆Φ
−=
N
t
BA
N
t
N B θ
ε
Useful Applications
The Forever Flashlight uses the Faraday Principle of
Electromagnetic Energy to eliminate the need for batteries. The
Faraday Principle states that if an electric conductor, like copper
wire, is moved through a magnetic field, electric current will be
generated and flow into the conductor.
Useful Applications
AC Generators use Faraday’s
law to produce rotation and
thus convert electrical and
magnetic energy into
rotational kinetic energy.
This idea can be used to
run all kinds of motors.
Since the current in the coil
is AC, it is turning on and
off thus creating a
CHANGING magnetic field
of its own. Its own
magnetic field interferes
with the shown magnetic
field to produce rotation.
Transformers
Probably one of the greatest inventions of all time is the
transformer. AC Current from the primary coil moves quickly
BACK and FORTH (thus the idea of changing!) across the
secondary coil. The moving magnetic field caused by the
changing field (flux) induces a current in the secondary coil.
If the secondary coil has MORE turns
than the primary you can step up the
voltage and runs devices that would
normally need MORE voltage than
what you have coming in. We call this
a STEP UP transformer.
We can use this idea in reverse as well
to create a STEP DOWN transformer.
Microphones
A microphone works when sound
waves enter the filter of a
microphone. Inside the filter, a
diaphragm is vibrated by the
sound waves which in turn moves
a coil of wire wrapped around a
magnet. The movement of the wire
in the magnetic field induces a
current in the wire. Thus sound
waves can be turned into
electronic signals and then
amplified through a speaker.
Example
A coil with 200 turns of wire is wrapped on an 18.0 cm square frame.
Each turn has the same area, equal to that of the frame, and the
total resistance of the coil is 2.0Ω . A uniform magnetic field is
applied perpendicularly to the plane of the coil. If the field changes
uniformly from 0 to 0.500 T in 0.80 s, find the magnitude of the
induced emf in the coil while the field has changed as well as the
magnitude of the induced current.
=
==
=
−
=
∆
∆
=
∆
∆Φ
=
I
IIR
x
t
BA
N
t
N B
)2(
80.0
90cos)18.018.0)(0500.0(
200
cos
ε
ε
ε
θ
ε
4.05 V
2.03 A
Why did you find the
ABSOLUTE VALUE of the
EMF?
What happened to the “ – “
that was there originally?
Lenz’s Law
Lenz's law gives the direction of the induced emf and current
resulting from electromagnetic induction. The law provides a
physical interpretation of the choice of sign in Faraday's law of
induction, indicating that the induced emf and the change in flux
have opposite signs.
t
N B
∆
∆Φ
−=εLenz’s Law
In the figure above, we see that the direction of the current changes. Lenz’s
Law helps us determine the DIRECTION of that current.
Lenz’s Law & Faraday’s Law
t
N B
∆
∆Φ
−=ε
Let’s consider a magnet with it’s north pole moving
TOWARDS a conducting loop.
DOES THE FLUX CHANGE?
DOES THE FLUX INCREASE OR DECREASE?
WHAT SIGN DOES THE “∆” GIVE YOU IN
FARADAY’S LAW?
DOES LENZ’S LAW CANCEL OUT?
What does this mean?
Yes!
Increase
Positive
NO
This means that the INDUCED MAGNETIC FIELD around the WIRE caused
by the moving magnet OPPOSES the original magnetic field. Since the
original B field is downward, the induced field is upward! We then use the
curling right hand rule to determine the direction of the current.
Binduced
Lenz’s Law
A magnet is
dropped down a
conducting tube.
The magnet INDUCES a
current above and below the
magnet as it moves.
The INDUCED current creates an INDUCED
magnetic field of its own inside the conductor
that opposes the original magnetic field.
Since the induced
field opposes the
direction of the
original it attracts the
magnet upward
slowing the motion
caused by gravity
downward.
If the motion of the magnet were NOT slowed this would violate conservation of energy!
Lenz’s Law
Let’s consider a magnet with it’s north pole moving
AWAY from a conducting loop.
DOES THE FLUX CHANGE?
DOES THE FLUX INCREASE OR DECREASE?
WHAT SIGN DOES THE “∆” GIVE YOU IN
FARADAY’S LAW?
DOES LENZ’S LAW CANCEL OUT?
What does this mean?
t
N B
∆
∆Φ
−=ε
Yes!
Decreases
negative
yes
In this case, the induced field DOES NOT oppose the original and points in
the same direction. Once again use your curled right hand rule to determine
the DIRECTION of the current.
Binduced
In summary
Faraday’s Law is basically used to find the
MAGNITUDE of the induced EMF. The
magnitude of the current can then be found
using Ohm’s Law provided we know the
conductor’s resistance.
Lenz’s Law is part of Faraday’s Law and can
help you determine the direction of the
current provided you know HOW the flux is
changing
Motional EMF – The Rail Gun
A railgun consists of two parallel metal rails (hence the name) connected to an
electrical power supply. When a conductive projectile is inserted between the rails
(from the end connected to the power supply), it completes the circuit. Electrons flow
from the negative terminal of the power supply up the negative rail, across the
projectile, and down the positive rail, back to the power supply.
In accordance with the right-hand rule,
the magnetic field circulates around
each conductor. Since the current is in
opposite direction along each rail, the
net magnetic field between the rails (B)
is directed vertically. In combination with
the current (I) across the projectile, this
produces a magnetic force which
accelerates the projectile along the rails.
There are also forces acting on the rails
attempting to push them apart, but since
the rails are firmly mounted, they cannot
move. The projectile slides up the rails
away from the end with the power
supply.
Motional Emf
There are many situations where motional EMF can occur that are
different from the rail gun. Suppose a bar of length, L, is pulled to
right at a speed, v, in a magnetic field, B, directed into the page. The
conducting rod itself completes a circuit across a set of parallel
conducting rails with a resistor mounted between them.
R
Blv
I
IR
Blv
t
Blx
t
BA
t
N B
=
=
=→=
∆
∆Φ
−=
ε
εε
ε
;
Motional EMF
In the figure, we are
applying a force this time
to the rod. Due to Lenz’s
Law the magnetic force
opposes the applied
force. Since we know
that the magnetic force
acts to the left and the
magnetic field acts into
the page, we can use the
RHR to determine the
direction of the current
around the loop and the
resistor.
Example
An airplane with a wing span of 30.0 m flies parallel to the Earth’s
surface at a location where the downward component of the
Earth’s magnetic field is 0.60 x10-4
T. Find the difference in
potential between the wing tips is the speed of the plane is 250
m/s.
=
=
=
−
ε
ε
ε
)250)(30(1060.0 4
x
Blv
0.45 V
In 1996, NASA conducted an experiment with a 20,000-meter conducting
tether. When the tether was fully deployed during this test, the orbiting
tether generated a potential of 3,500 volts. This conducting single-line
tether was severed after five hours of deployment. It is believed that the
failure was caused by an electric arc generated by the conductive tether's
movement through the Earth's magnetic field.

Weitere ähnliche Inhalte

Was ist angesagt?

Magnetic effect of electric current
Magnetic effect of electric currentMagnetic effect of electric current
Magnetic effect of electric currentKanishkBainsla
 
MAGNETISM,EARTH MAGNETIC FIELD
MAGNETISM,EARTH MAGNETIC FIELDMAGNETISM,EARTH MAGNETIC FIELD
MAGNETISM,EARTH MAGNETIC FIELDKrishna Raj
 
Magnetic effect of_current_1
Magnetic effect of_current_1Magnetic effect of_current_1
Magnetic effect of_current_1Shivam Dhawal
 
Lenz's law by taqdeer hussain
Lenz's law by taqdeer hussainLenz's law by taqdeer hussain
Lenz's law by taqdeer hussainTaqdeer Hussain
 
Magnetism and electromagnetism
Magnetism and electromagnetismMagnetism and electromagnetism
Magnetism and electromagnetismKudafaree School
 
Class 12th Biot savart law
  Class 12th Biot savart law  Class 12th Biot savart law
Class 12th Biot savart lawPriyanka Jakhar
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equationKumar
 
Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)Shubham Mohindru
 
Ch37 electromagnetic induction
Ch37 electromagnetic inductionCh37 electromagnetic induction
Ch37 electromagnetic inductionDenisiu
 
Maxwell's equation
Maxwell's equationMaxwell's equation
Maxwell's equationAL- AMIN
 
Electromagnetic induction
Electromagnetic induction Electromagnetic induction
Electromagnetic induction Olaug S
 
electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )Priyanka Jakhar
 
Biot savart law & amperes law
Biot savart law & amperes lawBiot savart law & amperes law
Biot savart law & amperes lawAbbas Najam
 

Was ist angesagt? (20)

Magnetic effect of electric current
Magnetic effect of electric currentMagnetic effect of electric current
Magnetic effect of electric current
 
Galvanometer
GalvanometerGalvanometer
Galvanometer
 
MAGNETISM,EARTH MAGNETIC FIELD
MAGNETISM,EARTH MAGNETIC FIELDMAGNETISM,EARTH MAGNETIC FIELD
MAGNETISM,EARTH MAGNETIC FIELD
 
electromagnetic induction
electromagnetic inductionelectromagnetic induction
electromagnetic induction
 
Magnetic effect of_current_1
Magnetic effect of_current_1Magnetic effect of_current_1
Magnetic effect of_current_1
 
Lenz's law by taqdeer hussain
Lenz's law by taqdeer hussainLenz's law by taqdeer hussain
Lenz's law by taqdeer hussain
 
Magnetism and electromagnetism
Magnetism and electromagnetismMagnetism and electromagnetism
Magnetism and electromagnetism
 
Class 12th Biot savart law
  Class 12th Biot savart law  Class 12th Biot savart law
Class 12th Biot savart law
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equation
 
Electromagnetism..
Electromagnetism..Electromagnetism..
Electromagnetism..
 
Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)
 
Ch37 electromagnetic induction
Ch37 electromagnetic inductionCh37 electromagnetic induction
Ch37 electromagnetic induction
 
gauss law.ppt
gauss law.pptgauss law.ppt
gauss law.ppt
 
Maxwell's equation
Maxwell's equationMaxwell's equation
Maxwell's equation
 
Electromagnetic induction
Electromagnetic induction Electromagnetic induction
Electromagnetic induction
 
electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )
 
Biot savart law & amperes law
Biot savart law & amperes lawBiot savart law & amperes law
Biot savart law & amperes law
 
Hysteresis Loop
Hysteresis LoopHysteresis Loop
Hysteresis Loop
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 

Andere mochten auch

Faraday's law 333
Faraday's law 333Faraday's law 333
Faraday's law 333zonesid
 
12.1 - Lenz's law
12.1  - Lenz's law12.1  - Lenz's law
12.1 - Lenz's lawsimonandisa
 
Powerpoint presentation about lenz's law
Powerpoint presentation about lenz's lawPowerpoint presentation about lenz's law
Powerpoint presentation about lenz's lawrdelizoneyou
 
Grade 11, U5 L4-Electromagnetic Induction
Grade 11, U5 L4-Electromagnetic InductionGrade 11, U5 L4-Electromagnetic Induction
Grade 11, U5 L4-Electromagnetic Inductiongruszecki1
 
Ch 22 Electromagnetic Induction
Ch 22 Electromagnetic InductionCh 22 Electromagnetic Induction
Ch 22 Electromagnetic InductionScott Thomas
 
3.2.1 electomagnetic induction
3.2.1   electomagnetic induction3.2.1   electomagnetic induction
3.2.1 electomagnetic inductionJohnPaul Kennedy
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic inductionBahdah Shin
 
Magnetic fields and electromagnetic induction
Magnetic fields and electromagnetic inductionMagnetic fields and electromagnetic induction
Magnetic fields and electromagnetic inductionmrmeredith
 
Electromagnetic induction and transformer
Electromagnetic induction and transformer Electromagnetic induction and transformer
Electromagnetic induction and transformer Nitish Prajapati
 
Electromagnetic Induction
Electromagnetic InductionElectromagnetic Induction
Electromagnetic Inductionlboehmer
 
Chapter 22 - Electromagnetic Induction
Chapter 22 - Electromagnetic InductionChapter 22 - Electromagnetic Induction
Chapter 22 - Electromagnetic Inductionkwokwei78
 
ELECTROMAGNETIC INDUCTION
ELECTROMAGNETIC INDUCTIONELECTROMAGNETIC INDUCTION
ELECTROMAGNETIC INDUCTIONKANNAN
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic inductionNishkam Dhiman
 
Electromagnetic Induction
Electromagnetic InductionElectromagnetic Induction
Electromagnetic InductionShafie Sofian
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic inductionAKRAM HABIB
 
faradays law and its applications ppt
faradays law and its applications pptfaradays law and its applications ppt
faradays law and its applications pptIndira Kundu
 

Andere mochten auch (20)

Faraday's law 333
Faraday's law 333Faraday's law 333
Faraday's law 333
 
12.1 - Lenz's law
12.1  - Lenz's law12.1  - Lenz's law
12.1 - Lenz's law
 
Powerpoint presentation about lenz's law
Powerpoint presentation about lenz's lawPowerpoint presentation about lenz's law
Powerpoint presentation about lenz's law
 
Grade 11, U5 L4-Electromagnetic Induction
Grade 11, U5 L4-Electromagnetic InductionGrade 11, U5 L4-Electromagnetic Induction
Grade 11, U5 L4-Electromagnetic Induction
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
Solenoids
Solenoids  Solenoids
Solenoids
 
Ch 22 Electromagnetic Induction
Ch 22 Electromagnetic InductionCh 22 Electromagnetic Induction
Ch 22 Electromagnetic Induction
 
3.2.1 electomagnetic induction
3.2.1   electomagnetic induction3.2.1   electomagnetic induction
3.2.1 electomagnetic induction
 
AP Physics B Electromagnetic Induction
AP Physics B   Electromagnetic InductionAP Physics B   Electromagnetic Induction
AP Physics B Electromagnetic Induction
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
Magnetic fields and electromagnetic induction
Magnetic fields and electromagnetic inductionMagnetic fields and electromagnetic induction
Magnetic fields and electromagnetic induction
 
Electromagnetic induction and transformer
Electromagnetic induction and transformer Electromagnetic induction and transformer
Electromagnetic induction and transformer
 
Electromagnetic Induction
Electromagnetic InductionElectromagnetic Induction
Electromagnetic Induction
 
Chapter 22 - Electromagnetic Induction
Chapter 22 - Electromagnetic InductionChapter 22 - Electromagnetic Induction
Chapter 22 - Electromagnetic Induction
 
ELECTROMAGNETIC INDUCTION
ELECTROMAGNETIC INDUCTIONELECTROMAGNETIC INDUCTION
ELECTROMAGNETIC INDUCTION
 
Lecture 25 induction. faradays law. lenz law
Lecture 25   induction. faradays law. lenz lawLecture 25   induction. faradays law. lenz law
Lecture 25 induction. faradays law. lenz law
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
Electromagnetic Induction
Electromagnetic InductionElectromagnetic Induction
Electromagnetic Induction
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
faradays law and its applications ppt
faradays law and its applications pptfaradays law and its applications ppt
faradays law and its applications ppt
 

Ähnlich wie Ap physics b_-_electromagnetic_induction

AP_Physic0_Electromagnetic_Induction.ppt
AP_Physic0_Electromagnetic_Induction.pptAP_Physic0_Electromagnetic_Induction.ppt
AP_Physic0_Electromagnetic_Induction.pptJonalyn34
 
Emft final pppts
Emft final ppptsEmft final pppts
Emft final ppptsPriya Hada
 
PHYSICS PROJECT.pdf
PHYSICS PROJECT.pdfPHYSICS PROJECT.pdf
PHYSICS PROJECT.pdfrinesh2
 
Physics_Investigatory_Project_Abhishek_c (1).pdf
Physics_Investigatory_Project_Abhishek_c (1).pdfPhysics_Investigatory_Project_Abhishek_c (1).pdf
Physics_Investigatory_Project_Abhishek_c (1).pdfShankararaman2
 
electromagnetic_induction.pdf
electromagnetic_induction.pdfelectromagnetic_induction.pdf
electromagnetic_induction.pdfMONISH93591
 
Faradays law of EMI.pptx
Faradays law of EMI.pptxFaradays law of EMI.pptx
Faradays law of EMI.pptxnivi55
 
Basic Laws of Electrostatics
Basic Laws of ElectrostaticsBasic Laws of Electrostatics
Basic Laws of ElectrostaticsMateen Shahid
 
5.4 magnetic effects of currents
5.4 magnetic effects of currents5.4 magnetic effects of currents
5.4 magnetic effects of currentsPaula Mills
 
5.4 magnetic effects of currents
5.4 magnetic effects of currents5.4 magnetic effects of currents
5.4 magnetic effects of currentsPaula Mills
 
PHYSICS II - Supplemental Guide
PHYSICS II - Supplemental GuidePHYSICS II - Supplemental Guide
PHYSICS II - Supplemental GuidePritam Karmokar
 
Electromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptxElectromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptxnysa tutorial
 
Faraday’s Law of Induction.pdf
Faraday’s Law of Induction.pdfFaraday’s Law of Induction.pdf
Faraday’s Law of Induction.pdfDiegoBetancourt32
 

Ähnlich wie Ap physics b_-_electromagnetic_induction (20)

AP_Physic0_Electromagnetic_Induction.ppt
AP_Physic0_Electromagnetic_Induction.pptAP_Physic0_Electromagnetic_Induction.ppt
AP_Physic0_Electromagnetic_Induction.ppt
 
11.1
11.111.1
11.1
 
Emft final pppts
Emft final ppptsEmft final pppts
Emft final pppts
 
emftpppts.pdf
emftpppts.pdfemftpppts.pdf
emftpppts.pdf
 
5-induction.pdf
5-induction.pdf5-induction.pdf
5-induction.pdf
 
PHYSICS PROJECT.pdf
PHYSICS PROJECT.pdfPHYSICS PROJECT.pdf
PHYSICS PROJECT.pdf
 
Physics_Investigatory_Project_Abhishek_c (1).pdf
Physics_Investigatory_Project_Abhishek_c (1).pdfPhysics_Investigatory_Project_Abhishek_c (1).pdf
Physics_Investigatory_Project_Abhishek_c (1).pdf
 
Physics project abhishek
Physics project abhishekPhysics project abhishek
Physics project abhishek
 
electromagnetic_induction.pdf
electromagnetic_induction.pdfelectromagnetic_induction.pdf
electromagnetic_induction.pdf
 
Faradays law of EMI.pptx
Faradays law of EMI.pptxFaradays law of EMI.pptx
Faradays law of EMI.pptx
 
Magentostatics for bsc
Magentostatics for bscMagentostatics for bsc
Magentostatics for bsc
 
Faraday’s Law.pdf
Faraday’s Law.pdfFaraday’s Law.pdf
Faraday’s Law.pdf
 
Basic Laws of Electrostatics
Basic Laws of ElectrostaticsBasic Laws of Electrostatics
Basic Laws of Electrostatics
 
5.4 magnetic effects of currents
5.4 magnetic effects of currents5.4 magnetic effects of currents
5.4 magnetic effects of currents
 
5.4 magnetic effects of currents
5.4 magnetic effects of currents5.4 magnetic effects of currents
5.4 magnetic effects of currents
 
Physics is Phun
Physics is PhunPhysics is Phun
Physics is Phun
 
PHYSICS II - Supplemental Guide
PHYSICS II - Supplemental GuidePHYSICS II - Supplemental Guide
PHYSICS II - Supplemental Guide
 
Electromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptxElectromagnetic induction class 10 ICSE.pptx
Electromagnetic induction class 10 ICSE.pptx
 
6 faradays law
6 faradays law6 faradays law
6 faradays law
 
Faraday’s Law of Induction.pdf
Faraday’s Law of Induction.pdfFaraday’s Law of Induction.pdf
Faraday’s Law of Induction.pdf
 

Kürzlich hochgeladen

Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesThousandEyes
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...panagenda
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentPim van der Noll
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 

Kürzlich hochgeladen (20)

Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 

Ap physics b_-_electromagnetic_induction

  • 2. What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first discovered it, using some of the works of Hans Christian Oersted. His work started at first using different combinations of wires and magnetic strengths and currents, but it wasn't until he tried moving the wires that he got any success. It turns out that electromagnetic induction is created by just that - the moving of a conductive substance through a magnetic field.
  • 3. Magnetic Induction As the magnet moves back and forth a current is said to be INDUCED in the wire.
  • 4. Magnetic Flux The first step to understanding the complex nature of electromagnetic induction is to understand the idea of magnetic flux. Flux is a general term associated with a FIELD that is bound by a certain AREA. So MAGNETIC FLUX is any AREA that has a MAGNETIC FIELD passing through it. A B We generally define an AREA vector as one that is perpendicular to the surface of the material. Therefore, you can see in the figure that the AREA vector and the Magnetic Field vector are PARALLEL. This then produces a DOT PRODUCT between the 2 variables that then define flux.
  • 5. Magnetic Flux – The DOT product Wb)or Weber(Tm:Unit cos 2 θBA AB B B =Φ •=Φ How could we CHANGE the flux over a period of time?  We could move the magnet away or towards (or the wire)  We could increase or decrease the area  We could ROTATE the wire along an axis that is PERPENDICULAR to the field thus changing the angle between the area and magnetic field vectors.
  • 6. Faraday’s Law Faraday learned that if you change any part of the flux over time you could induce a current in a conductor and thus create a source of EMF (voltage, potential difference). Since we are dealing with time here were a talking about the RATE of CHANGE of FLUX, which is called Faraday’s Law. wireofturns# )cos( = ∆ ∆ −= ∆ ∆Φ −= N t BA N t N B θ ε
  • 7. Useful Applications The Forever Flashlight uses the Faraday Principle of Electromagnetic Energy to eliminate the need for batteries. The Faraday Principle states that if an electric conductor, like copper wire, is moved through a magnetic field, electric current will be generated and flow into the conductor.
  • 8. Useful Applications AC Generators use Faraday’s law to produce rotation and thus convert electrical and magnetic energy into rotational kinetic energy. This idea can be used to run all kinds of motors. Since the current in the coil is AC, it is turning on and off thus creating a CHANGING magnetic field of its own. Its own magnetic field interferes with the shown magnetic field to produce rotation.
  • 9. Transformers Probably one of the greatest inventions of all time is the transformer. AC Current from the primary coil moves quickly BACK and FORTH (thus the idea of changing!) across the secondary coil. The moving magnetic field caused by the changing field (flux) induces a current in the secondary coil. If the secondary coil has MORE turns than the primary you can step up the voltage and runs devices that would normally need MORE voltage than what you have coming in. We call this a STEP UP transformer. We can use this idea in reverse as well to create a STEP DOWN transformer.
  • 10. Microphones A microphone works when sound waves enter the filter of a microphone. Inside the filter, a diaphragm is vibrated by the sound waves which in turn moves a coil of wire wrapped around a magnet. The movement of the wire in the magnetic field induces a current in the wire. Thus sound waves can be turned into electronic signals and then amplified through a speaker.
  • 11. Example A coil with 200 turns of wire is wrapped on an 18.0 cm square frame. Each turn has the same area, equal to that of the frame, and the total resistance of the coil is 2.0Ω . A uniform magnetic field is applied perpendicularly to the plane of the coil. If the field changes uniformly from 0 to 0.500 T in 0.80 s, find the magnitude of the induced emf in the coil while the field has changed as well as the magnitude of the induced current. = == = − = ∆ ∆ = ∆ ∆Φ = I IIR x t BA N t N B )2( 80.0 90cos)18.018.0)(0500.0( 200 cos ε ε ε θ ε 4.05 V 2.03 A Why did you find the ABSOLUTE VALUE of the EMF? What happened to the “ – “ that was there originally?
  • 12. Lenz’s Law Lenz's law gives the direction of the induced emf and current resulting from electromagnetic induction. The law provides a physical interpretation of the choice of sign in Faraday's law of induction, indicating that the induced emf and the change in flux have opposite signs. t N B ∆ ∆Φ −=εLenz’s Law In the figure above, we see that the direction of the current changes. Lenz’s Law helps us determine the DIRECTION of that current.
  • 13. Lenz’s Law & Faraday’s Law t N B ∆ ∆Φ −=ε Let’s consider a magnet with it’s north pole moving TOWARDS a conducting loop. DOES THE FLUX CHANGE? DOES THE FLUX INCREASE OR DECREASE? WHAT SIGN DOES THE “∆” GIVE YOU IN FARADAY’S LAW? DOES LENZ’S LAW CANCEL OUT? What does this mean? Yes! Increase Positive NO This means that the INDUCED MAGNETIC FIELD around the WIRE caused by the moving magnet OPPOSES the original magnetic field. Since the original B field is downward, the induced field is upward! We then use the curling right hand rule to determine the direction of the current. Binduced
  • 14. Lenz’s Law A magnet is dropped down a conducting tube. The magnet INDUCES a current above and below the magnet as it moves. The INDUCED current creates an INDUCED magnetic field of its own inside the conductor that opposes the original magnetic field. Since the induced field opposes the direction of the original it attracts the magnet upward slowing the motion caused by gravity downward. If the motion of the magnet were NOT slowed this would violate conservation of energy!
  • 15. Lenz’s Law Let’s consider a magnet with it’s north pole moving AWAY from a conducting loop. DOES THE FLUX CHANGE? DOES THE FLUX INCREASE OR DECREASE? WHAT SIGN DOES THE “∆” GIVE YOU IN FARADAY’S LAW? DOES LENZ’S LAW CANCEL OUT? What does this mean? t N B ∆ ∆Φ −=ε Yes! Decreases negative yes In this case, the induced field DOES NOT oppose the original and points in the same direction. Once again use your curled right hand rule to determine the DIRECTION of the current. Binduced
  • 16. In summary Faraday’s Law is basically used to find the MAGNITUDE of the induced EMF. The magnitude of the current can then be found using Ohm’s Law provided we know the conductor’s resistance. Lenz’s Law is part of Faraday’s Law and can help you determine the direction of the current provided you know HOW the flux is changing
  • 17. Motional EMF – The Rail Gun A railgun consists of two parallel metal rails (hence the name) connected to an electrical power supply. When a conductive projectile is inserted between the rails (from the end connected to the power supply), it completes the circuit. Electrons flow from the negative terminal of the power supply up the negative rail, across the projectile, and down the positive rail, back to the power supply. In accordance with the right-hand rule, the magnetic field circulates around each conductor. Since the current is in opposite direction along each rail, the net magnetic field between the rails (B) is directed vertically. In combination with the current (I) across the projectile, this produces a magnetic force which accelerates the projectile along the rails. There are also forces acting on the rails attempting to push them apart, but since the rails are firmly mounted, they cannot move. The projectile slides up the rails away from the end with the power supply.
  • 18. Motional Emf There are many situations where motional EMF can occur that are different from the rail gun. Suppose a bar of length, L, is pulled to right at a speed, v, in a magnetic field, B, directed into the page. The conducting rod itself completes a circuit across a set of parallel conducting rails with a resistor mounted between them. R Blv I IR Blv t Blx t BA t N B = = =→= ∆ ∆Φ −= ε εε ε ;
  • 19. Motional EMF In the figure, we are applying a force this time to the rod. Due to Lenz’s Law the magnetic force opposes the applied force. Since we know that the magnetic force acts to the left and the magnetic field acts into the page, we can use the RHR to determine the direction of the current around the loop and the resistor.
  • 20. Example An airplane with a wing span of 30.0 m flies parallel to the Earth’s surface at a location where the downward component of the Earth’s magnetic field is 0.60 x10-4 T. Find the difference in potential between the wing tips is the speed of the plane is 250 m/s. = = = − ε ε ε )250)(30(1060.0 4 x Blv 0.45 V In 1996, NASA conducted an experiment with a 20,000-meter conducting tether. When the tether was fully deployed during this test, the orbiting tether generated a potential of 3,500 volts. This conducting single-line tether was severed after five hours of deployment. It is believed that the failure was caused by an electric arc generated by the conductive tether's movement through the Earth's magnetic field.