Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Towards Editorial Transparency in
Computational Journalism
Jennifer A Stark
Nick Diakopoulos
The University of Maryland, C...
What do we
mean by
“Transparency”
?
“the ways in which people both
inside and external to journalism
are given a chance to...
What do we
mean by
“Transparency”
?
Storytelling:
Make the steps / data used to
create your story visible to the
audience....
Why Share Our Work?
Benefits to yourself, fellow journalists,
audience
Accountability
Document Process
Stimulate Alternative
Stories / viewpoints
Double check data, code,
analysis, and conclusi...
Case Study 1: Storytelling
(Uber)
How?
Transparency promotes Accountability,
Documentation, Further Storytelling
Share raw collected data: GitHub, Google Drive
(...
Transparency promotes Accountability,
Documentation, Further Storytelling
Share raw collected data: GitHub, Google Drive
(...
Transparency promotes Accountability,
Documentation, Further Storytelling
Share raw collected data: Google Drive (consider...
How?
Case Study 2: Tool Making
(Twitter Bot)
Twitter Bot: Transparancy promotes
accessibilityOpen Source code sharing platform:
GitHub, Jupyter
Project and Code Docume...
Documentation!
Takes longer than you think
Consider it an investment
Documentation within code
Documentation in GitHub rep...
Licences
Nobody should use your Code
or Data if it is not licenced
Code licences
https://opensource.org/licenses
Data lice...
Why Share Our Work?
Evidence difficult to measure at this time
“IRL”
Sunlight Labs
Policy makers (eg Transport, AARP)
Hobbyists / Individuals
Kate Rabinowitz –
“Civic data scientist”
http://www.datalensdc.com/index2.html
About:
“DataLensDC ...
Final Thoughts
Reinventing the wheel | Reuse code
Stack overflow for sharing code /
solutions?
http://area51.stackexchange...
Thank you!
@_JAStark
starkja@umd.edu
Towards editorial transparency in computational journalism
Towards editorial transparency in computational journalism
Towards editorial transparency in computational journalism
Nächste SlideShare
Wird geladen in …5
×

Towards editorial transparency in computational journalism

167 Aufrufe

Veröffentlicht am

This goes together with a research paper also uploaded here describing practical steps to transparency in computational journalism with two case studies.

Veröffentlicht in: Technologie
  • Have you ever used the help of ⇒ www.HelpWriting.net ⇐? They can help you with any type of writing - from personal statement to research paper. Due to this service you'll save your time and get an essay without plagiarism.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Have u ever tried external professional writing services like ⇒ www.WritePaper.info ⇐ ? I did and I am more than satisfied.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Gehören Sie zu den Ersten, denen das gefällt!

Towards editorial transparency in computational journalism

  1. 1. Towards Editorial Transparency in Computational Journalism Jennifer A Stark Nick Diakopoulos The University of Maryland, College of Journalism, Computational Journalism Lab
  2. 2. What do we mean by “Transparency” ? “the ways in which people both inside and external to journalism are given a chance to monitor, check, criticize and even intervene in the journalistic process.” Deuze, M. 2005. What is journalism?: Professional identity and ideology of journalists reconsidered. Journalism. 6, 4 (2005), 442–464
  3. 3. What do we mean by “Transparency” ? Storytelling: Make the steps / data used to create your story visible to the audience. Tool making: Sharing the code with thorough documentation.
  4. 4. Why Share Our Work? Benefits to yourself, fellow journalists, audience
  5. 5. Accountability Document Process Stimulate Alternative Stories / viewpoints Double check data, code, analysis, and conclusions / interpretation Facilitate future work / future you / fellow journalists / field Novel work, or extensions to your original work.
  6. 6. Case Study 1: Storytelling (Uber) How?
  7. 7. Transparency promotes Accountability, Documentation, Further Storytelling Share raw collected data: GitHub, Google Drive (consider size) Open Source code sharing platform: GitHub, Jupyter
  8. 8. Transparency promotes Accountability, Documentation, Further Storytelling Share raw collected data: GitHub, Google Drive (consider size) Open Source code sharing platform: GitHub, Jupyter Project and Code Documentation: README.md APIs
  9. 9. Transparency promotes Accountability, Documentation, Further Storytelling Share raw collected data: Google Drive (consider size) Open Source code sharing platform: GitHub, Jupyter Project and Code Documentation: README.md Accountability: share data collection / processing / wrangling and analysis Interim processed data: .csv files Replicability: programmatic steps where possible APIs
  10. 10. How? Case Study 2: Tool Making (Twitter Bot)
  11. 11. Twitter Bot: Transparancy promotes accessibilityOpen Source code sharing platform: GitHub, Jupyter Project and Code Documentation: README.md Language / platform agnostic: configuration file • How much to parameterize? • Case-by-case uniqueness? Instructions within code and README documentation Comment APIs
  12. 12. Documentation! Takes longer than you think Consider it an investment Documentation within code Documentation in GitHub repository (README.md) Reciprocal links between news article and GitHub repository Links to reference material (eg APIs, preceding work)
  13. 13. Licences Nobody should use your Code or Data if it is not licenced Code licences https://opensource.org/licenses Data licences http://opendatacommons.org/about/ Multiple licences http://choosealicense.com/non-software/
  14. 14. Why Share Our Work? Evidence difficult to measure at this time “IRL”
  15. 15. Sunlight Labs Policy makers (eg Transport, AARP)
  16. 16. Hobbyists / Individuals Kate Rabinowitz – “Civic data scientist” http://www.datalensdc.com/index2.html About: “DataLensDC has been featured in The Washingtonian, The Atlantic's CityLab, Washington City Paper, WJLA ABC 7 News, and more”
  17. 17. Final Thoughts Reinventing the wheel | Reuse code Stack overflow for sharing code / solutions? http://area51.stackexchange.com/proposals/1 03335/data-journalism/ Data or file repository?: https://quiltdata.com (or something similar?? I have not tried this tool)
  18. 18. Thank you! @_JAStark starkja@umd.edu

×