Diese PrÀsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren AktivitÀten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit Àndern.
1.- Dados los siguientes datos,encuentre el trabajo isotĂ©rmico (đ‘€ = ∫ 𝑃𝑑𝑉) Realizado sobreel gas
cuando se comprime de 23L...
2., LA VISCOSIDAD DINÁMICA DEL AGUA u(10^-3N.S/m^2) SE REALCIONA CON
LA TEMPERATUA T(C), DE LA SIGUIENTE MANERA:
a) Grafiq...
if i~=k
I=I*(x-X(i))/(X(k)-X(i));
end
end
P=P+f(k)*I;
end
vpa(subs (P,x,7.5))
pretty (P)
X =
0 5 10 20 30 40
f =
1.7870 1....
1.4068632289341517857142857142857
6529 x (x - 5) (x - 10) (x - 20) (x - 30)
-----------------------------------------
8400...
ans =
1.4068564099042179949929734811461
3. RESUELVA EL SIGUIENTE SISTEMA DE ECUACIONES
4X-Y+Z-2=0
-X+6Y-3Z-11=0
X-4Y+5Z+5=...
end
MIA=M(:,4:6)
X=MIA*B
n =
3
m =
3
I =
0
I =
1
I =
1 0
I =
1 0 0
I =
1 0 0
0 0 0
I =
1 0 0
0 0 0
I =
1 0 0
0 1 0
I =
1 0 0
0 1 0
I =
1 0 0
0 1 0
0 0 0
I =
1 0 0
0 1 0
0 0 0
I =
1 0 0
0 1 0
0 0 0
I =
1 0 0
0 1 0
0 0 1
M =
4 -1 1 1 0 0
-...
1.0000 -0.2500 0.2500 0.2500 0 0
0 5.7500 -2.7500 0.2500 1.0000 0
1.0000 -4.0000 5.0000 0 0 1.0000
M =
1.0000 -0.2500 0.25...
MIA =
0.2647 0.0147 -0.0441
0.0294 0.2794 0.1618
-0.0294 0.2206 0.3382
X =
0.9118
2.3235
0.6765
X=0.9118
Y= 2.3235
Z= 0.67...
hold on
fplot(char(P),[0 1],'r')
h =
0.1000
x =
Columns 1 through 7
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
Columns 8 ...
[ y1, y2, y3, y4, y5, y6, y7]
y =
[ y1, y2, y3, y4, y5, y6, y7, y8]
y =
[ y1, y2, y3, y4, y5, y6, y7, y8, y9]
y =
[ y1, y2...
100*y3 - 200*y2 -
2778046668940015/4503599627370496
(115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 -
553896575...
f =
100*y3 - 200*y2 -
2778046668940015/4503599627370496
(115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 -
55389...
y3
y4
y5
y6
y7
y8
y9
y10
R =
[1x1 sym]
[1x1 sym]
[1x1 sym]
[1x1 sym]
[1x1 sym]
[1x1 sym]
[1x1 sym]
[1x1 sym]
[1x1 sym]
R =...
8213329008784313205769099536721554452947617/95069620038343689908937033991630194573270401
756744400216057680864500070349739...
I =
1
I =
1
I =
1
I =
1
P =
0.000008377446453390598345464870661955*X^10 - 0.000069602164145921450316337671428029*X^9
- 0.0...
NĂ€chste SlideShare
Wird geladen in 
5
×

Examen final

226 Aufrufe

Veröffentlicht am

Examen final

Veröffentlicht in: Automobil
  • Login to see the comments

  • Gehören Sie zu den Ersten, denen das gefĂ€llt!

Examen final

  1. 1. 1.- Dados los siguientes datos,encuentre el trabajo isotĂ©rmico (đ‘€ = ∫ 𝑃𝑑𝑉) Realizado sobreel gas cuando se comprime de 23L a3l. clear clc syms x Y c1 c2 c3 c4 c5 D X=[3 8 13 18 23] % V,l f=[12.5 3.5 1.8 1.4 1.2] % P,atm plot(X, f, 'p') C=[c1, c2, c3, c4, c5] y=Y*ones(5,5) for i=1:5 for j=1:5 s(i, j)=sum(X.^(i-1).*X.^(j-1)) end end p=inv(s) d=D*ones(1,5) for i=1:5 D(i)=sum(f.*X.^(i-1)) end c=p*D' f1=c(1,1)+c(2,1)*x+c(3,1)*x^2+c(4,1)*x^3+c(5,1)*x^4 hold on fplot(char(f1), [23 3], 'r') F=f1 syms x Funcion=vpa(int(F, x, [23, 3])) POLINOMIO f1 = F=(132511742741563028118449706779*x^4)/405648192073033408478945025720320 - (137666855188831736408209924901*x^3)/6338253001141147007483516026880 + (21140978790370187092321969137*x^2)/39614081257132168796771975168 - (576967209289482091394341575591*x)/99035203142830421991929937920 + 2548627377380721607314386298391/99035203142830421991929937920 EVALUANDO EN EL RANGO DE [23 A 3] F, x, [23 3]= - 60.955555383300052355524086801562 EVALUANDO EN EL RANGO DE [3 A 23] F, x, [3 23]= 60.955555383300052355524086801562
  2. 2. 2., LA VISCOSIDAD DINÁMICA DEL AGUA u(10^-3N.S/m^2) SE REALCIONA CON LA TEMPERATUA T(C), DE LA SIGUIENTE MANERA: a) Grafique los datos B)CALCULE LA VISCOSIDAD DINÁMICA POR INTERPOLACIÓN A LA TEMPERATURA T=7.5 C u= 1.4068632289341517857142857142857 clear; clc; syms x X=[0 5 10 20 30 40]%volumen f=[1.787 1.519 1.307 1.002 0.7975 0.6529] plot(X, f, 'p') n=numel (X)-1; P=0 for k=1:n+1 I=1 for i=1:n+1
  3. 3. if i~=k I=I*(x-X(i))/(X(k)-X(i)); end end P=P+f(k)*I; end vpa(subs (P,x,7.5)) pretty (P) X = 0 5 10 20 30 40 f = 1.7870 1.5190 1.3070 1.0020 0.7975 0.6529 P = 0 I = 1 I = 1 I = 1 I = 1 I = 1 I = 1 ans =
  4. 4. 1.4068632289341517857142857142857 6529 x (x - 5) (x - 10) (x - 20) (x - 30) ----------------------------------------- 84000000000 319 x (x - 5) (x - 10) (x - 20) (x - 40) - ---------------------------------------- 600000000 167 x (x - 5) (x - 10) (x - 30) (x - 40) + ---------------------------------------- 100000000 1307 x (x - 5) (x - 20) (x - 30) (x - 40) - ----------------------------------------- 300000000 217 x (x - 10) (x - 20) (x - 30) (x - 40) + ----------------------------------------- 46875000 / x | - - 1 | (x - 10) (x - 20) (x - 30) (x - 40) 1787 5 / - -------------------------------------------------- 240000000 Published withMATLABŸ R2015b C)USE EL AJUSTE DE CURVAS PARA HACER EL CÁLCULO ANTERIOR clear clc syms x Y c1 c2 c3 c4 c5 D X=[0 5 10 20 30 40]%volumen f=[1.787 1.519 1.307 1.002 0.7975 0.6529] plot(X, f, 'p') C=[c1, c2, c3, c4, c5] y=Y*ones(5,5) for i=1:5 for j=1:5 s(i, j)=sum(X.^(i-1).*X.^(j-1)) end end p=inv(s) d=D*ones(1,5) for i=1:5 D(i)=sum(f.*X.^(i-1)) end c=p*D' f1=c(1,1)+c(2,1)*x+c(3,1)*x^2+c(4,1)*x^3+c(5,1)*x^4 hold on F=f1 syms x vpa(subs (F,x,7.5))
  5. 5. ans = 1.4068564099042179949929734811461 3. RESUELVA EL SIGUIENTE SISTEMA DE ECUACIONES 4X-Y+Z-2=0 -X+6Y-3Z-11=0 X-4Y+5Z+5=0 clear;clc; A=[4 -1 1;-1 6 -3;1 -4 5];%INGRESO LAS TRES ECUACIONES B(:,1)=[2 11 -5]; [n m]=size(A) for i=1:n for j=1:n I(i,j)=0 if i==j I(i,j)=1 end end end M=[A,I] for i=1:n M(i,:)=M(i,:)/M(i,i) for j=1:n if j~=i M(j,:)=M(j,:)-M(j,i)*M(i,:) end end
  6. 6. end MIA=M(:,4:6) X=MIA*B n = 3 m = 3 I = 0 I = 1 I = 1 0 I = 1 0 0 I = 1 0 0 0 0 0 I = 1 0 0 0 0 0 I = 1 0 0 0 1 0
  7. 7. I = 1 0 0 0 1 0 I = 1 0 0 0 1 0 0 0 0 I = 1 0 0 0 1 0 0 0 0 I = 1 0 0 0 1 0 0 0 0 I = 1 0 0 0 1 0 0 0 1 M = 4 -1 1 1 0 0 -1 6 -3 0 1 0 1 -4 5 0 0 1 M = 1.0000 -0.2500 0.2500 0.2500 0 0 -1.0000 6.0000 -3.0000 0 1.0000 0 1.0000 -4.0000 5.0000 0 0 1.0000 M =
  8. 8. 1.0000 -0.2500 0.2500 0.2500 0 0 0 5.7500 -2.7500 0.2500 1.0000 0 1.0000 -4.0000 5.0000 0 0 1.0000 M = 1.0000 -0.2500 0.2500 0.2500 0 0 0 5.7500 -2.7500 0.2500 1.0000 0 0 -3.7500 4.7500 -0.2500 0 1.0000 M = 1.0000 -0.2500 0.2500 0.2500 0 0 0 1.0000 -0.4783 0.0435 0.1739 0 0 -3.7500 4.7500 -0.2500 0 1.0000 M = 1.0000 0 0.1304 0.2609 0.0435 0 0 1.0000 -0.4783 0.0435 0.1739 0 0 -3.7500 4.7500 -0.2500 0 1.0000 M = 1.0000 0 0.1304 0.2609 0.0435 0 0 1.0000 -0.4783 0.0435 0.1739 0 0 0 2.9565 -0.0870 0.6522 1.0000 M = 1.0000 0 0.1304 0.2609 0.0435 0 0 1.0000 -0.4783 0.0435 0.1739 0 0 0 1.0000 -0.0294 0.2206 0.3382 M = 1.0000 0 0 0.2647 0.0147 -0.0441 0 1.0000 -0.4783 0.0435 0.1739 0 0 0 1.0000 -0.0294 0.2206 0.3382 M = 1.0000 0 0 0.2647 0.0147 -0.0441 0 1.0000 0 0.0294 0.2794 0.1618 0 0 1.0000 -0.0294 0.2206 0.3382
  9. 9. MIA = 0.2647 0.0147 -0.0441 0.0294 0.2794 0.1618 -0.0294 0.2206 0.3382 X = 0.9118 2.3235 0.6765 X=0.9118 Y= 2.3235 Z= 0.6765 4. ENCUENTRE LA SOLUCIÓNAPROXIMADA DE LA SIGUIENTEECUACIÓNDIFERENCIAL clear;clc; h=0.1 x=0:h:1 syms X n=numel(x) for i=1:n y(i)=sym(['y',num2str(i)])%[genera ya lamtriz y1 y2 y3....yn] end y(1)=0 y(end)=0% lo que cambia for i=1:n-2 f(i,1)=((y(i+2)-2*y(i+1)+y(i))/h^2)+pi^2/4*y(i)-pi^2/16*cos(pi*x(i)/4) end R=solve(f)%resuelve el sistema de ecuaciones V(:,1)=sort(symvar(f))%ordenq los vectores R=struct2cell(R) R=cell2num(R) y=vpa(subs(y,V,R)) plot(x,y) n=numel (x); P=0 for k=1:n I=1 for i=1:n if i~=k I=I*(X-x(i))/(x(k)-x(i)); end end P=P+y(k)*I; end P=expand(P)
  10. 10. hold on fplot(char(P),[0 1],'r') h = 0.1000 x = Columns 1 through 7 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 Columns 8 through 11 0.7000 0.8000 0.9000 1.0000 n = 11 y = y1 y = [ y1, y2] y = [ y1, y2, y3] y = [ y1, y2, y3, y4] y = [ y1, y2, y3, y4, y5] y = [ y1, y2, y3, y4, y5, y6] y =
  11. 11. [ y1, y2, y3, y4, y5, y6, y7] y = [ y1, y2, y3, y4, y5, y6, y7, y8] y = [ y1, y2, y3, y4, y5, y6, y7, y8, y9] y = [ y1, y2, y3, y4, y5, y6, y7, y8, y9, y10] y = [ y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11] y = [ 0, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11] y = [ 0, y2, y3, y4, y5, y6, y7, y8, y9, y10, 0] f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 f =
  12. 12. 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 (115368037353202415*y4)/1125899906842624 - 200*y5 + 100*y6 - 2701289018338233/4503599627370496 f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 (115368037353202415*y4)/1125899906842624 - 200*y5 + 100*y6 - 2701289018338233/4503599627370496 (115368037353202415*y5)/1125899906842624 - 200*y6 + 100*y7 - 5284158774134893/9007199254740992 f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 (115368037353202415*y4)/1125899906842624 - 200*y5 + 100*y6 - 2701289018338233/4503599627370496 (115368037353202415*y5)/1125899906842624 - 200*y6 + 100*y7 - 5284158774134893/9007199254740992 (115368037353202415*y6)/1125899906842624 - 200*y7 + 100*y8 - 5133160915589677/9007199254740992 f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 (115368037353202415*y4)/1125899906842624 - 200*y5 + 100*y6 - 2701289018338233/4503599627370496 (115368037353202415*y5)/1125899906842624 - 200*y6 + 100*y7 - 5284158774134893/9007199254740992 (115368037353202415*y6)/1125899906842624 - 200*y7 + 100*y8 - 5133160915589677/9007199254740992 (115368037353202415*y7)/1125899906842624 - 200*y8 + 100*y9 - 4950515413050633/9007199254740992
  13. 13. f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 (115368037353202415*y4)/1125899906842624 - 200*y5 + 100*y6 - 2701289018338233/4503599627370496 (115368037353202415*y5)/1125899906842624 - 200*y6 + 100*y7 - 5284158774134893/9007199254740992 (115368037353202415*y6)/1125899906842624 - 200*y7 + 100*y8 - 5133160915589677/9007199254740992 (115368037353202415*y7)/1125899906842624 - 200*y8 + 100*y9 - 4950515413050633/9007199254740992 (115368037353202415*y8)/1125899906842624 - 200*y9 + 100*y10 - 2368674168388353/4503599627370496 f = 100*y3 - 200*y2 - 2778046668940015/4503599627370496 (115368037353202415*y2)/1125899906842624 - 200*y3 + 100*y4 - 5538965756371755/9007199254740992 (115368037353202415*y3)/1125899906842624 - 200*y4 + 100*y5 - 5487688609082427/9007199254740992 (115368037353202415*y4)/1125899906842624 - 200*y5 + 100*y6 - 2701289018338233/4503599627370496 (115368037353202415*y5)/1125899906842624 - 200*y6 + 100*y7 - 5284158774134893/9007199254740992 (115368037353202415*y6)/1125899906842624 - 200*y7 + 100*y8 - 5133160915589677/9007199254740992 (115368037353202415*y7)/1125899906842624 - 200*y8 + 100*y9 - 4950515413050633/9007199254740992 (115368037353202415*y8)/1125899906842624 - 200*y9 + 100*y10 - 2368674168388353/4503599627370496 (115368037353202415*y9)/1125899906842624 - 200*y10 - 4494973932678371/9007199254740992 R = y2: [1x1 sym] y3: [1x1 sym] y4: [1x1 sym] y5: [1x1 sym] y6: [1x1 sym] y7: [1x1 sym] y8: [1x1 sym] y9: [1x1 sym] y10: [1x1 sym] V = y2
  14. 14. y3 y4 y5 y6 y7 y8 y9 y10 R = [1x1 sym] [1x1 sym] [1x1 sym] [1x1 sym] [1x1 sym] [1x1 sym] [1x1 sym] [1x1 sym] [1x1 sym] R = - 5479480335076111974454307016617118247814794623629915525398060954655645196105908691/16652 6140704593586610215588894933189801576823372031615697621472639563198192890675200 - 1241467964144459044791372777739847138082774634969182699644925920740032345062669869/20815 767588074198326276948611866648725197102921503951962202684079945399774111334400 - 2977950296898445163316325462680505042561611028785621032278639896313331451171197419703592 88312689767/3749835326123272314354241130007724453017593764194257367200298172281167449757 485627800856869994496000 - 1717914066534286339595969631322530063972912951137326276150630377474180181505278807593138 54193803979/1874917663061636157177120565003862226508796882097128683600149086140583724878 742813900428434997248000 - 3358608839805541139339632072712832617955056225963513807996684510102544420976820691/35029 604586466190446559122324188521566881025673128934216139862552944888114053120000 - 1942193839611116471941432436481786875894521394144609085871122170184276894456977429136656 726456353715918054836756181/211096962217868644249156937479372940942901952247599873171552 25575615611421862296161608936531431632430698090987520000 - 1522365289391611371765580911012770391270863579825783193029347838455554598899908602047449 87992545704891079147923071205088455366106463/1901392400766873798178740679832603891465408 0351348880043211536172900014069947851641627966312302727628008464002010210714710441984000 00 - 5738449853945654575928682306930829044283860604295000928808751179860006665896084138502514
  15. 15. 8213329008784313205769099536721554452947617/95069620038343689908937033991630194573270401 7567444002160576808645000703497392582081398315615136381400423200100510535735522099200000 - 1430901260164460489703022676664353189263928871836348349027461869752071363788993545179389 758378177603551089097496915468760056056995714488495148659011/428155505378939281517418673 9876936007478810260904326163166428642542960608981333008777322299933586233171221230378136 8051925062480552449940652032000000 y = [ 0, -0.03290462573558555858768644316681, -0.05964074872049026843018229875493, - 0.079415495292620427042006826597999, -0.091626107128834037134502402588291, - 0.095879153631758416843133586417488, -0.092004821822429632713408409267006, - 0.080065813283865425589841603532548, -0.060360500564020454268710267968903, - 0.03342012988710820123494764952464, 0] P = 0 I = 1 I = 1 I = 1 I = 1 I = 1 I = 1 I = 1
  16. 16. I = 1 I = 1 I = 1 I = 1 P = 0.000008377446453390598345464870661955*X^10 - 0.000069602164145921450316337671428029*X^9 - 0.00011698363573581745189686669582295*X^8 + 0.001533299032018222700433745025631*X^7 + 0.0040930901028205732145231521862629*X^6 - 0.024128925374348760378954901216781*X^5 - 0.058257941125119981073034651845014*X^4 + 0.17271940874980220128830367905092*X^3 + 0.26103566669973466448955614575887*X^2 - 0.3568163897314785719369594294633*X

×