SlideShare a Scribd company logo
1 of 13
POLYNOMIAL
CONGRUENCE WITH
PRIME MODULI
Let 𝑓 𝑥 = 𝑎𝑖𝑥𝑖 + 𝑎𝑖−1𝑥𝑖−1 + ⋯ + 𝑎0 = 0 be an integral
polynomial. The largest integer 𝑘 suck that 𝑎𝑘 ≠ 0 is called the
degree of the polynomial, and the corresponding coefficient
called the leading term of the polynomial.
then the expression 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒎 is known as a
polynomial congruence
• if 𝑓 𝑥 = 𝑎𝑖𝑥𝑖 + 𝑎𝑖−1𝑥𝑖−1 + ⋯ + 𝑎0 , 𝑎𝑖 ≡ 𝑏𝑖 𝑚𝑜𝑑 𝑚 and 𝑔 𝑥 = 𝑏𝑖𝑥𝑖 + 𝑏𝑥𝑖−1 + ⋯ + 𝑏0
then clearly 𝒇 𝒙 ≡ 𝒈 𝒙 (𝒎𝒐𝒅 𝒎) for all 𝒙 . Hence, in a congruence 𝒇 𝒙 ≡
𝟎 𝒎𝒐𝒅 𝒎 we may reduce the coefficients modulo 𝒎, and in particular we may delete
terms 𝑎𝑖𝑥𝑖 with 𝑎𝑖 = 0 (mod 𝒎) without changing the solution set.
Example
𝟐𝟎𝒙𝟓
+ 𝟏𝟕𝒙𝟒
+ 12𝒙𝟐
+ 𝟏𝟏 (𝒎𝒐𝒅 𝟒)
is equivalent to the conguence
𝒙𝟒
+ 𝟑 ≡ 0 𝒎𝒐𝒅 𝟒
• And by trying -1, 0, 1, 2, we will find the solution x ≡ ±𝟏 𝒎𝒐𝒅 𝟒
𝑥4
+ 3 ≡ 0 𝑚𝑜𝑑 4
14
+ 3 ≡ 0 𝑚𝑜𝑑 4 −14
+ 3 ≡ 0 𝑚𝑜𝑑 4
1 + 3 ≡ 0 𝑚𝑜𝑑 4 1 + 3 ≡ 0 𝑚𝑜𝑑 4
4 ≡ 0 𝑚𝑜𝑑 4 4 ≡ 0 𝑚𝑜𝑑 4
• THEOREM 9.3
If p is a prime, then every polynomial congruence f(x) ≡ 0 𝑚𝑜𝑑 𝑝 is equivalent to
a polynomial congruence r(x) ≡ 0 𝑚𝑜𝑑 𝑝 , where r(x) is a polynomial with degree less than
p.
*Example
Consider the congruence 𝒙𝟏𝟏 + 𝟐𝒙𝟖 + 𝒙𝟓 + 𝟑𝒙𝟒 + 𝟒𝒙𝟑 + 𝟏 𝒎𝒐𝒅 𝟓
Division by 𝑥5 − 𝑥
𝑥11 + 2𝑥8 + 𝑥5 + 3𝑥4 + 4𝑥3 + 1 = (𝑥6 + 2𝑥3 + 𝑥2 + 1)(𝑥5 − 𝑥) + 5𝑥4 + 5𝑥3 + 𝑥 + 1
The given congruence is equivalent to the congruence 𝟓𝒙𝟒
+ 𝟓𝒙𝟑
+ 𝒙 + 𝟏 ≡ 0 𝑚𝑜𝑑 5
That is 𝑥 + 1 ≡ 0 𝑚𝑜𝑑 5
With sole solution 𝑥 ≡ 4 (mod 5)
• THEOREM 9.4 (LEMMA)
Assume 𝑛 ≥ 𝑝 and 𝑛 ≡ 𝑟 (𝑚𝑜𝑑 𝑝 − 1 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑟 ≤ 𝑝 − 1. 𝑇ℎ𝑒𝑛 𝑥𝑛 ≡
𝑥𝑟 𝑚𝑜𝑑 𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥.
Example:
Consider the congruence 𝒙𝟏𝟏 + 𝟐𝒙𝟖 + 𝒙𝟓 + 𝟑𝒙𝟒 + 𝟒𝒙𝟑 + 𝟏 𝒎𝒐𝒅 𝟓
𝑝 − 1 = 5 − 1 = 4
11 ≡ 3, 8 ≡ 4, 5 ≡ 1 𝑚𝑜𝑑 4
Replace the terms 𝒙𝟏𝟏 , 𝟐𝒙𝟖 + 𝒙𝟓 𝒃𝒚 𝒙𝟑 + 𝟐𝒙𝟒 + 𝒙
This result in the polynomial 𝒙𝟑 + 𝟐𝒙𝟒 + 𝒙 +𝟑𝒙𝟒 + 𝟒𝒙𝟑 + 𝟏 = 𝟓𝒙𝟒 + 𝟓𝒙𝟑 + 𝒙 + 𝟏
𝟓𝒙𝟒 + 𝟓𝒙𝟑 + 𝒙 + 𝟏 ≡ 𝒙 + 𝟏 ≡ 0 𝒎𝒐𝒅 𝟓
A polynomial congruence with a general modulus may have more roots that the degree of the
polynomial
* For example, the congruence 𝑥2 − 1 ≡ 0 𝑚𝑜𝑑 8 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑜𝑢𝑟 𝑟𝑜𝑜𝑡𝑠 1, 3, 5 𝑎𝑛𝑑 7.
However if the modulus is prime, then the number of roots can not exceed the degree unless all
coefficients of the polynomials are divisible by p.
Let p be a prime and let f(x) be an integral polynomial of degree n not all of whose coefficient
are divisible by p. Then the congruence f(x)≡ 0 𝑚𝑜𝑑 𝑝 ℎ𝑎𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑛 𝑟𝑜𝑜𝑡𝑠.
Let p be a prime, and suppose that the polynomial f(x)has degree 𝑛 ≤ 𝑝 and leading coefficient
1. Use the division algorithm to write 𝑥𝑝
− 𝑥 = 𝑞 𝑥 𝑓 𝑥 + 𝑟 𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑑𝑒𝑔 𝑟 𝑥 < 𝑑𝑒𝑔 𝑓 𝑥 .
Then f(x)≡ 0 𝑚𝑜𝑑 𝑝 has exactly 𝑛 roots if and only if every coefficient 𝑟 𝑥 is divisible by p.
Assume p be a prime and that d | (𝑝 − 1). Then the congruence 𝑥𝑑 − 1 ≡ 0 (𝑚𝑜𝑑 𝑝) has exactly d
roots.
POLYNOMIAL
CONGRUENCES WITH
PRIME POWER MODULI
• The general procedure for solving the polynomial
congruence 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒎) when m is a prime power
𝒑𝒌
is to start with a root for the modulus p and use it to
generate a root( or in some cases several roots) modulo 𝒑𝟐
.
Using the same technique, we produce roots 𝒑𝟑
, 𝒑𝟒
, and so
on, until we finally obtain roots for the original modulus
𝒑𝒌
.
• The general procedure for finding all roots of 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒑𝒌):
1. First find all solutions of the congruence 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒑).
2. Select one, say 𝑎1;the there are either 0, 1 or p solutions of 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒑𝟐 congruent to
𝑎1 modulo p; if solution exist, they are found by solving the linear congruence f’(𝑎1)/p (mod
p). If there are no solutions, start again with a different 𝑎1.
3. If there are solutions of 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒑𝟐
, select one, say 𝑎2, and find the corresponding
roots of 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒑𝟑 by solving the congruence f’(𝑎2)t ≡ f’(𝑎2)/ 𝑝2 (mod p). Do this for
each root of f(x) ≡ 0 (𝑚𝑜𝑑 𝑝2).Note that since 𝑎2 ≡ 𝑎1 𝑚𝑜𝑑 𝑝 , f’(𝑎2) ≡ f’(𝑎1) (mod p), so we
do not need to calculate f’(𝑎2).
4. Proceeding in this fashion, we will eventually determine all solutions of 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒑𝒌
)
Example : Solve the congruence 7𝑥6
+ 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 135
 Solution: Since 135 = 33. 5, the congruence is equivalent to the system
 7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 5
7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 33
A. 7𝑥6
+ 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 5 = 𝟐𝒙𝟐
+ 𝟒𝒙 + 𝟐 ≡ 𝟎 𝒎𝒐𝒅 𝟓 = (𝒙 + 𝟏)𝟐
≡ 𝟎 𝒎𝒐𝒅 𝟓
(𝑥 + 2)2
≡ 𝟎
𝒙 + 𝟏 ≡ 0 𝒙 ≡ −1 it has the sole root -1
7𝑥6
+ 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 3 = 𝑥2
+ 𝑥 ≡ 0 (𝑚𝑜𝑑 3)
* roots : 𝒙 ≡ 0 (𝑚𝑜𝑑 3) * 𝒙 ≡ −1 (𝑚𝑜𝑑 3)
7𝑥6
+ 4𝑥 + 12 ≡ 0 7𝑥6
+ 4𝑥 + 12 ≡ 0
7(0)6
+ 4 0 + 12 ≡ 0 (𝑚𝑜𝑑 3) 7(−1)6
+ 4 −1 + 12 ≡ 0 (𝑚𝑜𝑑 3) (𝑚𝑜𝑑 3)
12 ≡ 0 (mod 3) 15 ≡ 0 (𝑚𝑜𝑑 3)
B. We start from 𝑥1 = 0 and solve the linear congruence
* f’(𝑥1) = f’(𝑥1 /p (mod p) f’(0) = −
12
3
(𝑚𝑜𝑑 3) t ≡ −4 ≡ 2 (mod 3)
𝑥2 = 0 + 2 3 = 6 solves f(x) ≡ 0 (mod 𝟑𝟐
)
*f’(𝑥2) = f’(𝑥2 /p (mod p) f’(6) = −
6
9
(𝑚𝑜𝑑 3) t ≡ 2 (mod 3)
𝑥3 = 6 + 2 9 = 6 solves f(x) ≡ 0 (mod 𝟑𝟑
)
C. We start from 𝑦1 = −1 and solve the linear congruence
* f’(𝑦1) = f’(𝑦1 /p (mod p) f’(−1) = −
−15
3
(𝑚𝑜𝑑 3) t ≡ −5 ≡ 1 (mod 3)
𝑦2 = −1 + (1) 3 = 2 solves f(y) ≡ 0 (mod 𝟑𝟐
)
*f’(𝑦2) = f’(𝑦2 /p (mod p) f’(2) = −
2
9
(𝑚𝑜𝑑 3) t ≡ 2 (mod 3)
𝑦3 = 2 + (2) 9 = 20 solves f(y) ≡ 0 (mod 𝟑𝟑
)
D. To find the two solutions of our original congruence, we now use the Chinese
Remainder Theorem to solve the two systems
x ≡ −1 (mod 5) x ≡ −1 (mod 5)
x ≡ 24 (mod 33 ) and x ≡ 20 (mod 33 ).
The solutions are x ≡ 24 (mod 135) and x ≡ 74 (mod 135).
POLYNOMIAL CONGRUENCES WITH PRIME MODULI

More Related Content

What's hot

Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fractionAyesha Ch
 
introduction to division algorithm
introduction to division algorithmintroduction to division algorithm
introduction to division algorithmNikhil Sairam
 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methodsmath265
 
Arithmetic and geometric_sequences
Arithmetic and geometric_sequencesArithmetic and geometric_sequences
Arithmetic and geometric_sequencesDreams4school
 
Index Notation
Index NotationIndex Notation
Index Notationalphamaths
 
Rearranging Formulas
Rearranging FormulasRearranging Formulas
Rearranging FormulasPassy World
 
Presentation on Numerical Integration
Presentation on Numerical IntegrationPresentation on Numerical Integration
Presentation on Numerical IntegrationTausif Shahanshah
 
6.4 intercept form
6.4 intercept form6.4 intercept form
6.4 intercept formhisema01
 
A course on integral calculus
A course on integral calculusA course on integral calculus
A course on integral calculusGAURAV SAHA
 
Operations with integers
Operations with integersOperations with integers
Operations with integershisema01
 
7.6 solving logarithmic equations
7.6 solving logarithmic equations7.6 solving logarithmic equations
7.6 solving logarithmic equationsswartzje
 
Rational numbers in the number line
Rational numbers in the number line Rational numbers in the number line
Rational numbers in the number line Grace Robledo
 
Function notation by sadiq
Function notation by sadiqFunction notation by sadiq
Function notation by sadiqSadiq Hussain
 

What's hot (20)

Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
 
introduction to division algorithm
introduction to division algorithmintroduction to division algorithm
introduction to division algorithm
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Determinants
DeterminantsDeterminants
Determinants
 
Linear and non linear equation
Linear and non linear equationLinear and non linear equation
Linear and non linear equation
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methods
 
Arithmetic and geometric_sequences
Arithmetic and geometric_sequencesArithmetic and geometric_sequences
Arithmetic and geometric_sequences
 
Index Notation
Index NotationIndex Notation
Index Notation
 
Rearranging Formulas
Rearranging FormulasRearranging Formulas
Rearranging Formulas
 
Presentation on Numerical Integration
Presentation on Numerical IntegrationPresentation on Numerical Integration
Presentation on Numerical Integration
 
Perfect numbers
Perfect numbersPerfect numbers
Perfect numbers
 
Eulers totient
Eulers totientEulers totient
Eulers totient
 
6.4 intercept form
6.4 intercept form6.4 intercept form
6.4 intercept form
 
Systems of equations
Systems of equationsSystems of equations
Systems of equations
 
Metric space
Metric spaceMetric space
Metric space
 
A course on integral calculus
A course on integral calculusA course on integral calculus
A course on integral calculus
 
Operations with integers
Operations with integersOperations with integers
Operations with integers
 
7.6 solving logarithmic equations
7.6 solving logarithmic equations7.6 solving logarithmic equations
7.6 solving logarithmic equations
 
Rational numbers in the number line
Rational numbers in the number line Rational numbers in the number line
Rational numbers in the number line
 
Function notation by sadiq
Function notation by sadiqFunction notation by sadiq
Function notation by sadiq
 

Similar to POLYNOMIAL CONGRUENCES WITH PRIME MODULI

Linear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxLinear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxKuparala Vidyasagar
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggrisimmochacha
 
Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Nayanmani Sarma
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007Demetrio Ccesa Rayme
 
WEEK 1 QUADRATIC EQUATION.pptx
WEEK 1 QUADRATIC EQUATION.pptxWEEK 1 QUADRATIC EQUATION.pptx
WEEK 1 QUADRATIC EQUATION.pptxJOANNAMARIECAOILE
 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equationssmiller5
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integrationMuhammad Luthfan
 
Cauchy-Euler Equation.pptx
Cauchy-Euler Equation.pptxCauchy-Euler Equation.pptx
Cauchy-Euler Equation.pptxSalarBasheer
 
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Semana 14   ecuacion cuadratica  álgebra-uni ccesa007Semana 14   ecuacion cuadratica  álgebra-uni ccesa007
Semana 14 ecuacion cuadratica álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
 
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical MethodsMCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical MethodsRai University
 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationArijitDhali
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
5.5 Zeros of Polynomial Functions
5.5 Zeros of Polynomial Functions5.5 Zeros of Polynomial Functions
5.5 Zeros of Polynomial Functionssmiller5
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 

Similar to POLYNOMIAL CONGRUENCES WITH PRIME MODULI (20)

Linear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxLinear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptx
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
 
Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015
 
Mt3621702173
Mt3621702173Mt3621702173
Mt3621702173
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
 
WEEK 1 QUADRATIC EQUATION.pptx
WEEK 1 QUADRATIC EQUATION.pptxWEEK 1 QUADRATIC EQUATION.pptx
WEEK 1 QUADRATIC EQUATION.pptx
 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equations
 
MT102 Лекц 10
MT102 Лекц 10MT102 Лекц 10
MT102 Лекц 10
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
 
Cauchy-Euler Equation.pptx
Cauchy-Euler Equation.pptxCauchy-Euler Equation.pptx
Cauchy-Euler Equation.pptx
 
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Semana 14   ecuacion cuadratica  álgebra-uni ccesa007Semana 14   ecuacion cuadratica  álgebra-uni ccesa007
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
 
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical MethodsMCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
 
Lecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdfLecture5_Laplace_ODE.pdf
Lecture5_Laplace_ODE.pdf
 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's Equation
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
5.5 Zeros of Polynomial Functions
5.5 Zeros of Polynomial Functions5.5 Zeros of Polynomial Functions
5.5 Zeros of Polynomial Functions
 
Ch08
Ch08Ch08
Ch08
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Ch7
Ch7Ch7
Ch7
 

More from JaniceBarnaha

REBOLUSYONG AMERIKANO.pptx
REBOLUSYONG AMERIKANO.pptxREBOLUSYONG AMERIKANO.pptx
REBOLUSYONG AMERIKANO.pptxJaniceBarnaha
 
IKALAWANG DIGMAANG PANDAIGDIG.pptx
IKALAWANG DIGMAANG PANDAIGDIG.pptxIKALAWANG DIGMAANG PANDAIGDIG.pptx
IKALAWANG DIGMAANG PANDAIGDIG.pptxJaniceBarnaha
 
ARALING PANLIPUNAN 8.pptx
ARALING PANLIPUNAN 8.pptxARALING PANLIPUNAN 8.pptx
ARALING PANLIPUNAN 8.pptxJaniceBarnaha
 
Sinaunang Kabihasnan.pptx
Sinaunang Kabihasnan.pptxSinaunang Kabihasnan.pptx
Sinaunang Kabihasnan.pptxJaniceBarnaha
 
CO HEOGRAPIYANG PANTAO.pptx
CO HEOGRAPIYANG PANTAO.pptxCO HEOGRAPIYANG PANTAO.pptx
CO HEOGRAPIYANG PANTAO.pptxJaniceBarnaha
 
child development.pptx
child development.pptxchild development.pptx
child development.pptxJaniceBarnaha
 

More from JaniceBarnaha (11)

REBOLUSYONG AMERIKANO.pptx
REBOLUSYONG AMERIKANO.pptxREBOLUSYONG AMERIKANO.pptx
REBOLUSYONG AMERIKANO.pptx
 
ESP.pptx
ESP.pptxESP.pptx
ESP.pptx
 
IKALAWANG DIGMAANG PANDAIGDIG.pptx
IKALAWANG DIGMAANG PANDAIGDIG.pptxIKALAWANG DIGMAANG PANDAIGDIG.pptx
IKALAWANG DIGMAANG PANDAIGDIG.pptx
 
INCIDENCE.pptx
INCIDENCE.pptxINCIDENCE.pptx
INCIDENCE.pptx
 
ARALING PANLIPUNAN 8.pptx
ARALING PANLIPUNAN 8.pptxARALING PANLIPUNAN 8.pptx
ARALING PANLIPUNAN 8.pptx
 
Q2 MODULE1.pptx
Q2 MODULE1.pptxQ2 MODULE1.pptx
Q2 MODULE1.pptx
 
lesson 3 ppt.pptx
lesson 3 ppt.pptxlesson 3 ppt.pptx
lesson 3 ppt.pptx
 
Sinaunang Kabihasnan.pptx
Sinaunang Kabihasnan.pptxSinaunang Kabihasnan.pptx
Sinaunang Kabihasnan.pptx
 
CO HEOGRAPIYANG PANTAO.pptx
CO HEOGRAPIYANG PANTAO.pptxCO HEOGRAPIYANG PANTAO.pptx
CO HEOGRAPIYANG PANTAO.pptx
 
Hypothesis .pptx
Hypothesis .pptxHypothesis .pptx
Hypothesis .pptx
 
child development.pptx
child development.pptxchild development.pptx
child development.pptx
 

Recently uploaded

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 

Recently uploaded (20)

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 

POLYNOMIAL CONGRUENCES WITH PRIME MODULI

  • 2. Let 𝑓 𝑥 = 𝑎𝑖𝑥𝑖 + 𝑎𝑖−1𝑥𝑖−1 + ⋯ + 𝑎0 = 0 be an integral polynomial. The largest integer 𝑘 suck that 𝑎𝑘 ≠ 0 is called the degree of the polynomial, and the corresponding coefficient called the leading term of the polynomial. then the expression 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒎 is known as a polynomial congruence
  • 3. • if 𝑓 𝑥 = 𝑎𝑖𝑥𝑖 + 𝑎𝑖−1𝑥𝑖−1 + ⋯ + 𝑎0 , 𝑎𝑖 ≡ 𝑏𝑖 𝑚𝑜𝑑 𝑚 and 𝑔 𝑥 = 𝑏𝑖𝑥𝑖 + 𝑏𝑥𝑖−1 + ⋯ + 𝑏0 then clearly 𝒇 𝒙 ≡ 𝒈 𝒙 (𝒎𝒐𝒅 𝒎) for all 𝒙 . Hence, in a congruence 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒎 we may reduce the coefficients modulo 𝒎, and in particular we may delete terms 𝑎𝑖𝑥𝑖 with 𝑎𝑖 = 0 (mod 𝒎) without changing the solution set. Example 𝟐𝟎𝒙𝟓 + 𝟏𝟕𝒙𝟒 + 12𝒙𝟐 + 𝟏𝟏 (𝒎𝒐𝒅 𝟒) is equivalent to the conguence 𝒙𝟒 + 𝟑 ≡ 0 𝒎𝒐𝒅 𝟒 • And by trying -1, 0, 1, 2, we will find the solution x ≡ ±𝟏 𝒎𝒐𝒅 𝟒 𝑥4 + 3 ≡ 0 𝑚𝑜𝑑 4 14 + 3 ≡ 0 𝑚𝑜𝑑 4 −14 + 3 ≡ 0 𝑚𝑜𝑑 4 1 + 3 ≡ 0 𝑚𝑜𝑑 4 1 + 3 ≡ 0 𝑚𝑜𝑑 4 4 ≡ 0 𝑚𝑜𝑑 4 4 ≡ 0 𝑚𝑜𝑑 4
  • 4. • THEOREM 9.3 If p is a prime, then every polynomial congruence f(x) ≡ 0 𝑚𝑜𝑑 𝑝 is equivalent to a polynomial congruence r(x) ≡ 0 𝑚𝑜𝑑 𝑝 , where r(x) is a polynomial with degree less than p. *Example Consider the congruence 𝒙𝟏𝟏 + 𝟐𝒙𝟖 + 𝒙𝟓 + 𝟑𝒙𝟒 + 𝟒𝒙𝟑 + 𝟏 𝒎𝒐𝒅 𝟓 Division by 𝑥5 − 𝑥 𝑥11 + 2𝑥8 + 𝑥5 + 3𝑥4 + 4𝑥3 + 1 = (𝑥6 + 2𝑥3 + 𝑥2 + 1)(𝑥5 − 𝑥) + 5𝑥4 + 5𝑥3 + 𝑥 + 1 The given congruence is equivalent to the congruence 𝟓𝒙𝟒 + 𝟓𝒙𝟑 + 𝒙 + 𝟏 ≡ 0 𝑚𝑜𝑑 5 That is 𝑥 + 1 ≡ 0 𝑚𝑜𝑑 5 With sole solution 𝑥 ≡ 4 (mod 5)
  • 5. • THEOREM 9.4 (LEMMA) Assume 𝑛 ≥ 𝑝 and 𝑛 ≡ 𝑟 (𝑚𝑜𝑑 𝑝 − 1 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑟 ≤ 𝑝 − 1. 𝑇ℎ𝑒𝑛 𝑥𝑛 ≡ 𝑥𝑟 𝑚𝑜𝑑 𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. Example: Consider the congruence 𝒙𝟏𝟏 + 𝟐𝒙𝟖 + 𝒙𝟓 + 𝟑𝒙𝟒 + 𝟒𝒙𝟑 + 𝟏 𝒎𝒐𝒅 𝟓 𝑝 − 1 = 5 − 1 = 4 11 ≡ 3, 8 ≡ 4, 5 ≡ 1 𝑚𝑜𝑑 4 Replace the terms 𝒙𝟏𝟏 , 𝟐𝒙𝟖 + 𝒙𝟓 𝒃𝒚 𝒙𝟑 + 𝟐𝒙𝟒 + 𝒙 This result in the polynomial 𝒙𝟑 + 𝟐𝒙𝟒 + 𝒙 +𝟑𝒙𝟒 + 𝟒𝒙𝟑 + 𝟏 = 𝟓𝒙𝟒 + 𝟓𝒙𝟑 + 𝒙 + 𝟏 𝟓𝒙𝟒 + 𝟓𝒙𝟑 + 𝒙 + 𝟏 ≡ 𝒙 + 𝟏 ≡ 0 𝒎𝒐𝒅 𝟓
  • 6. A polynomial congruence with a general modulus may have more roots that the degree of the polynomial * For example, the congruence 𝑥2 − 1 ≡ 0 𝑚𝑜𝑑 8 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑓𝑜𝑢𝑟 𝑟𝑜𝑜𝑡𝑠 1, 3, 5 𝑎𝑛𝑑 7. However if the modulus is prime, then the number of roots can not exceed the degree unless all coefficients of the polynomials are divisible by p. Let p be a prime and let f(x) be an integral polynomial of degree n not all of whose coefficient are divisible by p. Then the congruence f(x)≡ 0 𝑚𝑜𝑑 𝑝 ℎ𝑎𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑛 𝑟𝑜𝑜𝑡𝑠. Let p be a prime, and suppose that the polynomial f(x)has degree 𝑛 ≤ 𝑝 and leading coefficient 1. Use the division algorithm to write 𝑥𝑝 − 𝑥 = 𝑞 𝑥 𝑓 𝑥 + 𝑟 𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑑𝑒𝑔 𝑟 𝑥 < 𝑑𝑒𝑔 𝑓 𝑥 . Then f(x)≡ 0 𝑚𝑜𝑑 𝑝 has exactly 𝑛 roots if and only if every coefficient 𝑟 𝑥 is divisible by p. Assume p be a prime and that d | (𝑝 − 1). Then the congruence 𝑥𝑑 − 1 ≡ 0 (𝑚𝑜𝑑 𝑝) has exactly d roots.
  • 8. • The general procedure for solving the polynomial congruence 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒎) when m is a prime power 𝒑𝒌 is to start with a root for the modulus p and use it to generate a root( or in some cases several roots) modulo 𝒑𝟐 . Using the same technique, we produce roots 𝒑𝟑 , 𝒑𝟒 , and so on, until we finally obtain roots for the original modulus 𝒑𝒌 .
  • 9. • The general procedure for finding all roots of 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒑𝒌): 1. First find all solutions of the congruence 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒑). 2. Select one, say 𝑎1;the there are either 0, 1 or p solutions of 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒑𝟐 congruent to 𝑎1 modulo p; if solution exist, they are found by solving the linear congruence f’(𝑎1)/p (mod p). If there are no solutions, start again with a different 𝑎1. 3. If there are solutions of 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒑𝟐 , select one, say 𝑎2, and find the corresponding roots of 𝒇 𝒙 ≡ 𝟎 𝒎𝒐𝒅 𝒑𝟑 by solving the congruence f’(𝑎2)t ≡ f’(𝑎2)/ 𝑝2 (mod p). Do this for each root of f(x) ≡ 0 (𝑚𝑜𝑑 𝑝2).Note that since 𝑎2 ≡ 𝑎1 𝑚𝑜𝑑 𝑝 , f’(𝑎2) ≡ f’(𝑎1) (mod p), so we do not need to calculate f’(𝑎2). 4. Proceeding in this fashion, we will eventually determine all solutions of 𝒇 𝒙 ≡ 𝟎 (𝒎𝒐𝒅 𝒑𝒌 )
  • 10. Example : Solve the congruence 7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 135  Solution: Since 135 = 33. 5, the congruence is equivalent to the system  7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 5 7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 33 A. 7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 5 = 𝟐𝒙𝟐 + 𝟒𝒙 + 𝟐 ≡ 𝟎 𝒎𝒐𝒅 𝟓 = (𝒙 + 𝟏)𝟐 ≡ 𝟎 𝒎𝒐𝒅 𝟓 (𝑥 + 2)2 ≡ 𝟎 𝒙 + 𝟏 ≡ 0 𝒙 ≡ −1 it has the sole root -1 7𝑥6 + 4𝑥 + 12 ≡ 0 𝑚𝑜𝑑 3 = 𝑥2 + 𝑥 ≡ 0 (𝑚𝑜𝑑 3) * roots : 𝒙 ≡ 0 (𝑚𝑜𝑑 3) * 𝒙 ≡ −1 (𝑚𝑜𝑑 3) 7𝑥6 + 4𝑥 + 12 ≡ 0 7𝑥6 + 4𝑥 + 12 ≡ 0 7(0)6 + 4 0 + 12 ≡ 0 (𝑚𝑜𝑑 3) 7(−1)6 + 4 −1 + 12 ≡ 0 (𝑚𝑜𝑑 3) (𝑚𝑜𝑑 3) 12 ≡ 0 (mod 3) 15 ≡ 0 (𝑚𝑜𝑑 3)
  • 11. B. We start from 𝑥1 = 0 and solve the linear congruence * f’(𝑥1) = f’(𝑥1 /p (mod p) f’(0) = − 12 3 (𝑚𝑜𝑑 3) t ≡ −4 ≡ 2 (mod 3) 𝑥2 = 0 + 2 3 = 6 solves f(x) ≡ 0 (mod 𝟑𝟐 ) *f’(𝑥2) = f’(𝑥2 /p (mod p) f’(6) = − 6 9 (𝑚𝑜𝑑 3) t ≡ 2 (mod 3) 𝑥3 = 6 + 2 9 = 6 solves f(x) ≡ 0 (mod 𝟑𝟑 ) C. We start from 𝑦1 = −1 and solve the linear congruence * f’(𝑦1) = f’(𝑦1 /p (mod p) f’(−1) = − −15 3 (𝑚𝑜𝑑 3) t ≡ −5 ≡ 1 (mod 3) 𝑦2 = −1 + (1) 3 = 2 solves f(y) ≡ 0 (mod 𝟑𝟐 ) *f’(𝑦2) = f’(𝑦2 /p (mod p) f’(2) = − 2 9 (𝑚𝑜𝑑 3) t ≡ 2 (mod 3) 𝑦3 = 2 + (2) 9 = 20 solves f(y) ≡ 0 (mod 𝟑𝟑 )
  • 12. D. To find the two solutions of our original congruence, we now use the Chinese Remainder Theorem to solve the two systems x ≡ −1 (mod 5) x ≡ −1 (mod 5) x ≡ 24 (mod 33 ) and x ≡ 20 (mod 33 ). The solutions are x ≡ 24 (mod 135) and x ≡ 74 (mod 135).