SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Downloaden Sie, um offline zu lesen
HTWK Leipzig / IMN ; TU Dresden / SMT / Softwaretechnology Group 
Towards RVL: a Declarative Language 
for Visualizing RDFS/OWL Data 
HSWI Workshop at WIMS ‘13, June 14th 2013 
Jan Polowinski (jan dot polowinski at tu-dresden dot de)
Clarification – What do we mean by „Visualizing“? 
• Not: Structuring data into 
textual documents + 
Formatting / Styling 
2/30 
• But: Visual encoding: 
Define what data relations 
correspond to what graphic 
relations 
Source: http://www.w3.org/2005/04/ 
fresnel-info/manual/#foafExample
Overall Goal: Reusable, Shareable Visual Mappings 
3/30 
Visualization authors can 
share and reuse „good“ 
visualization settings and 
take their settings to other 
tools! 
Visualization 
Author 
Author of a domain ontology (just finished modelling) 
Domain ontology authors can 
propose visualization settings!
4/30 
Outline 
• Principle of RVL 
• Analysis: Requirements of RVL (Summary) 
• Main constructs 
• Composition 
• Open Issues 
• (Prototype RVL editors)
The Principle of RVL 
Based on RDFS/OWL 
itself 
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 5/30
Summary of the Analysis Preceeding the 
Design of RVL 
6/30 
Analysis of 
• 3 domains: Life sciences, software requirements, publication 
• 7 ontologies 
• Frequently used concepts
Summary of the Analysis Preceeding the 
Design of RVL 
7/30 
Analysis of Visualisation Literature .. 
• Graphic concepts + relations 
• Formalized as ontology: 
http://purl.org/viso/graphic/
Summary of the Analysis Preceeding the 
Design of RVL 
8/30 
Analysis for ... 
• Common graphic 
representations 
• Identification of 12 
Visualisation Cases (VC)
Summary of the Analysis Preceeding the 
Design of RVL 
9/30 
 
 
 
 
 
 
 
 
 
	 
Examples for Visualization Cases: 
• VC1 - Create a graphic object per resource. 
• VC2 - Map to Graphic Attributes. 
• VC5 - Define simple interactions. 
• VC10 - Draw legends and labeled axes. 
• VC11 - Define styles.
Summary of the Analysis Preceeding the 
Design of RVL 
10/30 
Deduction of 14 Language Requirements (LR) 
• Examples ...
• LR-2: Multiple Visual Structures 
11/30 
Examples of Concrete Language Requirements: 
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
• LR-2: Multiple Visual Structures 
• LR-6: Platform Independence 
12/30 
Examples of Concrete Language Requirements: 
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
• LR-2: Multiple Visual Structures 
• LR-6: Platform Independence 
• LR-12: Composability of Mappings 
13/30 
Examples of Concrete Language Requirements:
+
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
RVL – Main Constructs 
UML-Style Class Diagramm (simplified) 
14/30
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
Property Mappings 
15/30
#
!
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
RVL – Main Constructs 
UML-Style Class Diagramm (simplified) 
16/30
WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
Value Mappings 
• Simple case: 1-to-1 explicit, 
manual mapping of discrete 
values
17/30
#
!
common-­‐shapes: 
Star 
common-­‐shapes: 
Circle 
common-­‐shapes: 
Triangle 
ex:EventClass 
ex:Loca9onClass 
ex:PersonClass 
VALUE MAPPINGS PROPERTY M.
Value Mappings 
• Simple case: 1-to-1 explicit, 
manual mapping of discrete 
values 
• Calculated value mappings 
• Default: map whole range of 
source values to the whole range 
of target values 
• Source and target values can be 
refined ... 

1
00
00
3		
 

*
+(,!!  
(1
%
 

1

#$1
 
 

1,!!	 
	00
1
18/30 

)*
+(,!!  
)*
+(,!!  
	$
'	
(	
%	 
 #$-.	
 

-.
/
$#$-. !!  
 #$0)0)%	
 

0)0)%	 

#$0)!0)!% !!  
	
 
 1	
 

1 
 #$-.	
 

1(60(
,!!  

1	 
 1	
 

1 

1	 
(1
1
+
(1
+
1
7
(	
	 

1


	
 
PROPERTY M.
Value Mappings 
• Simple case: 1-to-1 explicit, 
manual mapping of discrete 
values 
• Calculated value mappings 
• Default: map whole range of 
source values to the whole range 
of target values 
• Source and target values can be 
refined ... 
• Order / Scale of measurement 
can be re(de)fined ... 

1
00
00
3		
 

*
+(,!!  
(1
%
 

1

#$1
 
 

1,!!	 
	00
1
19/30 

)*
+(,!!  
)*
+(,!!  
	$

Weitere ähnliche Inhalte

Ähnlich wie RVL language for visualizing RDFS/OWL data

Validating and Describing Linked Data Portals using RDF Shape Expressions
Validating and Describing Linked Data Portals using RDF Shape ExpressionsValidating and Describing Linked Data Portals using RDF Shape Expressions
Validating and Describing Linked Data Portals using RDF Shape ExpressionsJose Emilio Labra Gayo
 
Stream processors texture generation model for 3d virtual worlds learning too...
Stream processors texture generation model for 3d virtual worlds learning too...Stream processors texture generation model for 3d virtual worlds learning too...
Stream processors texture generation model for 3d virtual worlds learning too...Mikhail Fominykh
 
R & CDK: A Sturdy Platform in the Oceans of Chemical Data}
R & CDK: A Sturdy Platform in the Oceans of Chemical Data}R & CDK: A Sturdy Platform in the Oceans of Chemical Data}
R & CDK: A Sturdy Platform in the Oceans of Chemical Data}Rajarshi Guha
 
aRangodb, un package per l'utilizzo di ArangoDB con R
aRangodb, un package per l'utilizzo di ArangoDB con RaRangodb, un package per l'utilizzo di ArangoDB con R
aRangodb, un package per l'utilizzo di ArangoDB con RGraphRM
 
LPEs in KATANA and Maya
LPEs in KATANA and MayaLPEs in KATANA and Maya
LPEs in KATANA and Mayakedar nath
 
Connecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebConnecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebJean-Paul Calbimonte
 
New Adventures in RDF2vec
New Adventures in RDF2vecNew Adventures in RDF2vec
New Adventures in RDF2vecHeiko Paulheim
 
RSP-QL*: Querying Data-Level Annotations in RDF Streams
RSP-QL*: Querying Data-Level Annotations in RDF StreamsRSP-QL*: Querying Data-Level Annotations in RDF Streams
RSP-QL*: Querying Data-Level Annotations in RDF Streamskeski
 
Graph analysis over relational database
Graph analysis over relational databaseGraph analysis over relational database
Graph analysis over relational databaseGraphRM
 
Large-Scale Machine Learning with Apache Spark
Large-Scale Machine Learning with Apache SparkLarge-Scale Machine Learning with Apache Spark
Large-Scale Machine Learning with Apache SparkDB Tsai
 
Explicit Semantics in Graph DBs Driving Digital Transformation With Neo4j
Explicit Semantics in Graph DBs Driving Digital Transformation With Neo4jExplicit Semantics in Graph DBs Driving Digital Transformation With Neo4j
Explicit Semantics in Graph DBs Driving Digital Transformation With Neo4jConnected Data World
 
Apdm 101 Arc Gis Pipeline Data Model (1)
Apdm 101 Arc Gis Pipeline Data Model  (1)Apdm 101 Arc Gis Pipeline Data Model  (1)
Apdm 101 Arc Gis Pipeline Data Model (1)David Nichter, GISP
 
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMDH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMFrederic Kaplan
 
On correctness in RDF stream processor benchmarking
On correctness in RDF stream processor benchmarkingOn correctness in RDF stream processor benchmarking
On correctness in RDF stream processor benchmarkingDaniele Dell'Aglio
 
Opening up audiovisual archives for media professionals and researchers
Opening up audiovisual archives for media professionals and researchersOpening up audiovisual archives for media professionals and researchers
Opening up audiovisual archives for media professionals and researchersMediaMixerCommunity
 
UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.
UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.
UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.tomasknap
 
Towards Virtual Knowledge Graphs over Web APIs
Towards Virtual Knowledge Graphs over Web APIsTowards Virtual Knowledge Graphs over Web APIs
Towards Virtual Knowledge Graphs over Web APIsSpeck&Tech
 

Ähnlich wie RVL language for visualizing RDFS/OWL data (20)

Validating and Describing Linked Data Portals using RDF Shape Expressions
Validating and Describing Linked Data Portals using RDF Shape ExpressionsValidating and Describing Linked Data Portals using RDF Shape Expressions
Validating and Describing Linked Data Portals using RDF Shape Expressions
 
Stream processors texture generation model for 3d virtual worlds learning too...
Stream processors texture generation model for 3d virtual worlds learning too...Stream processors texture generation model for 3d virtual worlds learning too...
Stream processors texture generation model for 3d virtual worlds learning too...
 
R & CDK: A Sturdy Platform in the Oceans of Chemical Data}
R & CDK: A Sturdy Platform in the Oceans of Chemical Data}R & CDK: A Sturdy Platform in the Oceans of Chemical Data}
R & CDK: A Sturdy Platform in the Oceans of Chemical Data}
 
aRangodb, un package per l'utilizzo di ArangoDB con R
aRangodb, un package per l'utilizzo di ArangoDB con RaRangodb, un package per l'utilizzo di ArangoDB con R
aRangodb, un package per l'utilizzo di ArangoDB con R
 
LPEs in KATANA and Maya
LPEs in KATANA and MayaLPEs in KATANA and Maya
LPEs in KATANA and Maya
 
Connecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebConnecting Stream Reasoners on the Web
Connecting Stream Reasoners on the Web
 
New Adventures in RDF2vec
New Adventures in RDF2vecNew Adventures in RDF2vec
New Adventures in RDF2vec
 
RSP-QL*: Querying Data-Level Annotations in RDF Streams
RSP-QL*: Querying Data-Level Annotations in RDF StreamsRSP-QL*: Querying Data-Level Annotations in RDF Streams
RSP-QL*: Querying Data-Level Annotations in RDF Streams
 
Graph analysis over relational database
Graph analysis over relational databaseGraph analysis over relational database
Graph analysis over relational database
 
Large-Scale Machine Learning with Apache Spark
Large-Scale Machine Learning with Apache SparkLarge-Scale Machine Learning with Apache Spark
Large-Scale Machine Learning with Apache Spark
 
Metadata crosswalks
Metadata crosswalksMetadata crosswalks
Metadata crosswalks
 
Explicit Semantics in Graph DBs Driving Digital Transformation With Neo4j
Explicit Semantics in Graph DBs Driving Digital Transformation With Neo4jExplicit Semantics in Graph DBs Driving Digital Transformation With Neo4j
Explicit Semantics in Graph DBs Driving Digital Transformation With Neo4j
 
Apdm 101 Arc Gis Pipeline Data Model (1)
Apdm 101 Arc Gis Pipeline Data Model  (1)Apdm 101 Arc Gis Pipeline Data Model  (1)
Apdm 101 Arc Gis Pipeline Data Model (1)
 
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMDH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
 
On correctness in RDF stream processor benchmarking
On correctness in RDF stream processor benchmarkingOn correctness in RDF stream processor benchmarking
On correctness in RDF stream processor benchmarking
 
Expo de digitales (2)
Expo de digitales (2)Expo de digitales (2)
Expo de digitales (2)
 
Opening up audiovisual archives for media professionals and researchers
Opening up audiovisual archives for media professionals and researchersOpening up audiovisual archives for media professionals and researchers
Opening up audiovisual archives for media professionals and researchers
 
UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.
UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.
UnifiedViews: Towards ETL Tool for Simple yet Powerful RDF Data Management.
 
Big data
Big dataBig data
Big data
 
Towards Virtual Knowledge Graphs over Web APIs
Towards Virtual Knowledge Graphs over Web APIsTowards Virtual Knowledge Graphs over Web APIs
Towards Virtual Knowledge Graphs over Web APIs
 

Kürzlich hochgeladen

Visualising and forecasting stocks using Dash
Visualising and forecasting stocks using DashVisualising and forecasting stocks using Dash
Visualising and forecasting stocks using Dashnarutouzumaki53779
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...AliaaTarek5
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 

Kürzlich hochgeladen (20)

Visualising and forecasting stocks using Dash
Visualising and forecasting stocks using DashVisualising and forecasting stocks using Dash
Visualising and forecasting stocks using Dash
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate AgentsRyan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
Ryan Mahoney - Will Artificial Intelligence Replace Real Estate Agents
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 

RVL language for visualizing RDFS/OWL data

  • 1. HTWK Leipzig / IMN ; TU Dresden / SMT / Softwaretechnology Group Towards RVL: a Declarative Language for Visualizing RDFS/OWL Data HSWI Workshop at WIMS ‘13, June 14th 2013 Jan Polowinski (jan dot polowinski at tu-dresden dot de)
  • 2. Clarification – What do we mean by „Visualizing“? • Not: Structuring data into textual documents + Formatting / Styling 2/30 • But: Visual encoding: Define what data relations correspond to what graphic relations Source: http://www.w3.org/2005/04/ fresnel-info/manual/#foafExample
  • 3. Overall Goal: Reusable, Shareable Visual Mappings 3/30 Visualization authors can share and reuse „good“ visualization settings and take their settings to other tools! Visualization Author Author of a domain ontology (just finished modelling) Domain ontology authors can propose visualization settings!
  • 4. 4/30 Outline • Principle of RVL • Analysis: Requirements of RVL (Summary) • Main constructs • Composition • Open Issues • (Prototype RVL editors)
  • 5. The Principle of RVL Based on RDFS/OWL itself WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 5/30
  • 6. Summary of the Analysis Preceeding the Design of RVL 6/30 Analysis of • 3 domains: Life sciences, software requirements, publication • 7 ontologies • Frequently used concepts
  • 7. Summary of the Analysis Preceeding the Design of RVL 7/30 Analysis of Visualisation Literature .. • Graphic concepts + relations • Formalized as ontology: http://purl.org/viso/graphic/
  • 8. Summary of the Analysis Preceeding the Design of RVL 8/30 Analysis for ... • Common graphic representations • Identification of 12 Visualisation Cases (VC)
  • 9. Summary of the Analysis Preceeding the Design of RVL 9/30 Examples for Visualization Cases: • VC1 - Create a graphic object per resource. • VC2 - Map to Graphic Attributes. • VC5 - Define simple interactions. • VC10 - Draw legends and labeled axes. • VC11 - Define styles.
  • 10. Summary of the Analysis Preceeding the Design of RVL 10/30 Deduction of 14 Language Requirements (LR) • Examples ...
  • 11. • LR-2: Multiple Visual Structures 11/30 Examples of Concrete Language Requirements: WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 12. • LR-2: Multiple Visual Structures • LR-6: Platform Independence 12/30 Examples of Concrete Language Requirements: WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 13. • LR-2: Multiple Visual Structures • LR-6: Platform Independence • LR-12: Composability of Mappings 13/30 Examples of Concrete Language Requirements:
  • 14. +
  • 15. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 16. RVL – Main Constructs UML-Style Class Diagramm (simplified) 14/30
  • 17. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 19. #
  • 20. !
  • 21. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 22. RVL – Main Constructs UML-Style Class Diagramm (simplified) 16/30
  • 23. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 24. Value Mappings • Simple case: 1-to-1 explicit, manual mapping of discrete values
  • 25. 17/30
  • 26. #
  • 27. !
  • 28. common-­‐shapes: Star common-­‐shapes: Circle common-­‐shapes: Triangle ex:EventClass ex:Loca9onClass ex:PersonClass VALUE MAPPINGS PROPERTY M.
  • 29. Value Mappings • Simple case: 1-to-1 explicit, manual mapping of discrete values • Calculated value mappings • Default: map whole range of source values to the whole range of target values • Source and target values can be refined ... 1 00
  • 30. 00
  • 31. 3 * +(,!! (1
  • 32. % 1 #$1 1,!! 00
  • 33. 1
  • 34. 18/30 )* +(,!! )* +(,!! $
  • 35. ' ( % #$-. -. / $#$-. !! #$0)0)% 0)0)% #$0)!0)!% !! 1 1 #$-. 1(60(
  • 36. ,!! 1 1 1 1 (1
  • 37. 1
  • 38. +
  • 39. (1
  • 40. +
  • 41. 1
  • 42. 7
  • 44. Value Mappings • Simple case: 1-to-1 explicit, manual mapping of discrete values • Calculated value mappings • Default: map whole range of source values to the whole range of target values • Source and target values can be refined ... • Order / Scale of measurement can be re(de)fined ... 1 00
  • 45. 00
  • 46. 3 * +(,!! (1
  • 47. % 1 #$1 1,!! 00
  • 48. 1
  • 49. 19/30 )* +(,!! )* +(,!! $
  • 50. ' ( % #$-. -. / $#$-. !! #$0)0)% 0)0)% #$0)!0)!% !! 1 1 #$-. 1(60(
  • 51. ,!! 1 1 1 1 (1
  • 52. 1
  • 53. +
  • 54. (1
  • 55. +
  • 56. 1
  • 57. 7
  • 59. RVL – Main Constructs UML-Style Class Diagramm (simplified) 20/30
  • 60. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 61. Composition of Visual Mappings 21/30 • Simultaneous Composition • Mappings all applied independently • Trivial, except perceptional constraints (!) • Context Composition • Mapping only applies for a specific context • Created by another mapping WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 62. Context Composition of Visual Mappings +
  • 63. Mapping to „Color“ 22/30 Mapping to „Linking“
  • 64. !
  • 65. Mapping to „Linking“ + # Mapping to „Color“ on the „Connector“
  • 66. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 23/30
  • 67. RVL – Main Constructs UML-Style Class Diagramm (simplified) 24/30
  • 68. WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation
  • 69. Complete Example – Composed Mapping WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 25/30
  • 70. Complete Example – Composed Mapping 26/30
  • 71. Complete Example – Composed Mapping WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 27/30
  • 72. Complete Example – Composed Mapping 28/30
  • 73. Complete Example – Composed Mapping 29/30
  • 74. !
  • 75. !!#
  • 76. Complete Example – Composed Mapping WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 30/30
  • 77. Complete Example – Composed Mapping 31/30
  • 78. Complete Example – Composed Mapping WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 32/30
  • 79. Complete Example – Composed Mapping 33/30
  • 80. Which Visualisation Cases are Covered?  Most, except: • Interaction  Ideas exist • Complex „Standard“ Graphics • Example: How to describe a TreeMap and the associated algorithms? • Reference a concept „TreeMap“? • Keep flexibility of composition  Current focus • Integration of Formatting and Styling  Fresnel + CSS WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 34/30
  • 81. Summary • We introduced a novel Language for visualizing RDFS/OWL data • Rich capabilities to describe visual encodings • Itself based on Semantic web standards à Mappings have URIs • Defaults allow for quickly handling common situations • Design driven by concrete mapping situations • Many mapping situations already covered • Multitude of domains suggests some universality WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 35/30
  • 82. Future Work • Further evaluate RVL  Tooling WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 36/30
  • 83. Two Prototypes for RVL Editing ... WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 37/30
  • 85. OntoWiki-based Prototype WIMS '13, Madrid, 28.06.13 RVL: A Language for RDFS/OWL Visualisation 39/30
  • 86. Future Work • Further evaluate RVL  Tooling • Cover remaining visualisation cases 40/30
  • 87. Thank you for your attention!  http://purl.org/rvl/ jan dot polowinski at tu-dresden dot de PLEASE DISCUSS HERE OR OFFLINE: Schema of RVL Relation to Fresnel Advanced mapping compositions 41/30 BACKUP SLIDES à
  • 88. Acknowledgements • This research has been co-funded by the European Social Fond / Free State of Saxony, contract no. 80937064 and 1330674013 (eScience – network). 42/26 BACKUP SLIDES à
  • 91. Graphic Attributes and Graphic-Object-to-Object- Relations Graphic Attributes (GA) • Lightness, Shape, Size, Named Colors Graphic-Object-to-Object- Relations (GOTOR) • Linking Undirected • Relative Position • Separation by a Separator à Formalised as VISO Ontology http://purl.org/viso/ 45/30
  • 92. B0#-!)E.;(=( I'-*!***(DJ( How to visualise beyond node-link diagrams? Types B0#-!)E.;( F( B0#-!)E.;( G( B0#-!)E.;( H( B0#-!)E.;(D( B0#-!)E.;( C( B0#-!)E.;(=( A builds on B … B0#-!)E.;(D( B0#-!)E.;(C( I!.;K%+*(=L( !%-EM*(DJ( can be seen as an area connector 46/30 C#)**( D../(=( D../(=(
  • 93. Use interaction 47/30 sharesAuthorWith - Interaction B0#-!)E.;(D( N!1+-'$( B.#.O-;*/-( P.1);;*( B0#-!)E.;(D( D)!1( B.#.O-;*/-( P.1);;*( B0#-!)E.;(D( .-Q$( B.#.O-;*/-( B0#-!)E.;(D( D)!1( B.#.O-;*/-( R)++%( Selecting multiple authors
  • 94. RVL – Main Constructs
  • 95. !! #$% #$%! !! (
  • 97. ' ( % #$-. -. / $#$-. !! #$0)0)% 0)0)% #$0)!0)!% !! % 1 !! #$% !! 1 !! $
  • 98. ,!!2
  • 100. 00
  • 101. 3 1 1(60(
  • 102. ,!! 1 * +(,!! 1
  • 103. #$-. 4 4 5 5
  • 104. 1 (1
  • 105. % 1 1 #$1 1 1,!! 00
  • 106. 1
  • 107. (1
  • 108. 1
  • 109. +
  • 110. (1
  • 111. +
  • 112. 1
  • 113. ( 1 1 ,!! 1 ,!! 7
  • 114. 48/30
  • 115. RVL Schema • What is a valid Mapping in RVL? • SPIN Constraints used to describe Attributes, Defaults, ... • Cardinality CS • Type CS • What is an effective mapping? • Consistent handling of constraints which are based on VISO/facts is possible 49/30