Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Merging Computer Log Files for Process Mining:An Artificial Immune System Technique<br />Jan Claes and Geert Poels<br />ht...
Process Mining<br />Processes are supported by IT systems<br />IT systems record actual process data<br />Process data can...
Keynote BPI 2010, Michael Zur Muehlen<br />Process Controlling<br />Business Activity Monitoring<br />Process Intelligence...
Preparation<br />Collect data: find event information<br />Merge data: from different sources<br />Structure data: group p...
Merging log files<br />My research:Merging log files<br />
Merging log files<br />2. Merge chronologically<br />1. Find links<br />3. Add unlinked traces<br />4. Put in new log file...
Find links<br />Required properties of solution<br />Finds traces in both log files that belong to the same process execut...
Find links<br />Proposed solution<br />Take the best possible guess based on assumptions<br />Include multiple indicator f...
Decisions to make<br />Which indicator factors?<br />How to calculate a score for each factor?<br />How to combine factor ...
Indicator factors<br />Same trace identifier<br />Assumption: If both logs contain a trace with the same id, there is a ve...
Indicator factors<br />Equal attribute values<br />Assumption: The more attributes of a trace and its events from both log...
Indicator factors<br />Extra trace & Missing trace<br />Assumption: A trace from one log has more chance to match with onl...
Indicator factors<br />Time difference<br />Assumption: For a certain trace t in one log the trace in the other log that s...
User interaction<br /><ul><li>Step 1	let user adapt parameters & weights
Step 2	give feedback on individual scores:	user can change weights and restart</li></ul>? Step 3	present best solution per...
Test results<br />Simulated data (300-400 msec on standard laptop)<br />Benefit of controllable parameters, known solution...
Further research plans<br />Refining merging technique<br />Quest for optimal indicators and weights is continuous effort ...
Questions<br />Do you agree that combined set of logical assumptions can be strong indicator (stronger than individual ass...
Nächste SlideShare
Wird geladen in …5
×

BPI@BPM2011

1.642 Aufrufe

Veröffentlicht am

Slides of my presentation at BPI workshop at BPM conference, 29 August 2011, Clermont-Ferrand, FR

Veröffentlicht in: Business, Technologie, Bildung
  • ⇒⇒⇒WRITE-MY-PAPER.net ⇐⇐⇐ has really great writers to help you get the grades you need, they are fast and do great research. Support will always contact you if there is any confusion with the requirements of your paper so they can make sure you are getting exactly what you need.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • I pasted a website that might be helpful to you: ⇒ www.HelpWriting.net ⇐ Good luck!
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Did you try ⇒ www.HelpWriting.net ⇐?. They know how to do an amazing essay, research papers or dissertations.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • I have always found it hard to meet the requirements of being a student. Ever since my years of high school, I really have no idea what professors are looking for to give good grades. After some google searching, I found this service ⇒ www.WritePaper.info ⇐ who helped me write my research paper. The final result was amazing, and I highly recommend ⇒ www.WritePaper.info ⇐ to anyone in the same mindset as me.
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Gehören Sie zu den Ersten, denen das gefällt!

BPI@BPM2011

  1. 1. Merging Computer Log Files for Process Mining:An Artificial Immune System Technique<br />Jan Claes and Geert Poels<br />http://processmining.ugent.be<br />
  2. 2. Process Mining<br />Processes are supported by IT systems<br />IT systems record actual process data<br />Process data can be used to<br />Discover process model<br />Check conformance with existing process info<br />Improve or extend existing process model<br />Attention<br />Only As-Is<br />Only (correctly) recorded information<br />Process Mining<br />
  3. 3. Keynote BPI 2010, Michael Zur Muehlen<br />Process Controlling<br />Business Activity Monitoring<br />Process Intelligence<br />Event Detection & Correlation<br />Decision Making<br />Main focus point of current BPI research<br />Deserves more focus in BPI research<br />BPI 2010, Keynote Michael Zur Muehlen http://www.slideshare.net/mzurmuehlen/bu-5236080<br />
  4. 4. Preparation<br />Collect data: find event information<br />Merge data: from different sources<br />Structure data: group per instance<br />Convert data: to tool specific format<br />Process mining<br />Make decisions, take action<br />Process Mining steps<br />M<br />M<br />M<br />A<br />M<br />A<br />A<br />M<br />M<br />Manual task Analysts needed in most cases<br />A<br />Automated task Less human involvement needed<br />
  5. 5. Merging log files<br />My research:Merging log files<br />
  6. 6. Merging log files<br />2. Merge chronologically<br />1. Find links<br />3. Add unlinked traces<br />4. Put in new log file<br />
  7. 7. Find links<br />Required properties of solution<br />Finds traces in both log files that belong to the same process execution<br />Without prior knowledge about the provided log files (as generic as possible)<br />But with maximal possibilities for the (expert) user to include his knowledge about the log files<br />
  8. 8. Find links<br />Proposed solution<br />Take the best possible guess based on assumptions<br />Include multiple indicator factors in analysis<br />Calculate factor scores for each analysed solution<br />Combine factor scores into global score per solution<br />‘Best guess’ is solution with highest combined score,because based on assumed indicators, most indicator value points to this solution<br />Provide user interaction possibilities<br />
  9. 9. Decisions to make<br />Which indicator factors?<br />How to calculate a score for each factor?<br />How to combine factor scores to global score?<br />Which solutions to analyse?(analyse = calculate & compare scores)<br />Which user interactions to include (expert) user knowledge?<br />See paper for more details<br />
  10. 10. Indicator factors<br />Same trace identifier<br />Assumption: If both logs contain a trace with the same id, there is a very high chance they match<br />Not always though (e.g. customer id vs. order id)<br />16<br />10<br />17<br />12<br />18<br />14<br />19<br />16<br />20<br />18<br />21<br />20<br />
  11. 11. Indicator factors<br />Equal attribute values<br />Assumption: The more attributes of a trace and its events from both logs are equal, the higher the chance they match<br />16<br />JAN 12:00<br />JC 14 14:00<br />17<br />17<br />JAN 12:10<br />JC 15 14:10<br />18<br />18<br />JAN 12:20<br />JC 16 14:20<br />19<br />19<br />JAN 12:30<br />JC 17 14:30<br />1A<br />20<br />JAN 12:40<br />JC 18 14:40<br />1B<br />21<br />JAN 12:50<br />JC 19 14:50<br />1C<br />
  12. 12. Indicator factors<br />Extra trace & Missing trace<br />Assumption: A trace from one log has more chance to match with only one trace from the other log<br />Extra trace: Negative if trace is linked with multiple traces in other log<br />Missing trace: Negative if trace is not linked<br />
  13. 13. Indicator factors<br />Time difference<br />Assumption: For a certain trace t in one log the trace in the other log that starts sooner after t has a higher chance to match<br />More difficult when traces overlap<br />16<br />17<br />17<br />JAN 12:00<br />JC 10 11:45<br />18<br />18<br />JAN 12:10<br />JC 11 11:55<br />19<br />19<br />JAN 12:20<br />JC 12 12:05<br />1A<br />20<br />JAN 12:30<br />JC 13 12:15<br />1B<br />JAN 12:40<br />JC 14 12:25<br />21<br />1C<br />JAN 12:50<br />JC 15 12:35<br />
  14. 14. User interaction<br /><ul><li>Step 1 let user adapt parameters & weights
  15. 15. Step 2 give feedback on individual scores: user can change weights and restart</li></ul>? Step 3 present best solution per factor: let user choose which factor dominates based on factor score feedback<br />? Step 4 provide other ways for user to feed algorithm with his insights<br />
  16. 16. Test results<br />Simulated data (300-400 msec on standard laptop)<br />Benefit of controllable parameters, known solution<br />Correct number of linked traces in all tests<br />Perfect results for same trace id and up to 50% noise, worse results for higher overlap of traces<br /><ul><li>Real data (6-10 min on standard laptop)</li></ul>Correct number of linked traces in all tests<br />Almost perfect results for same trace id and up to 50% noise, worse results for higher overlap<br />
  17. 17. Further research plans<br />Refining merging technique<br />Quest for optimal indicators and weights is continuous effort (based on experiences from case studies)<br />Implementation optimisation (speed, memory usage, scalability) is continuous effort<br />Validation (case studies)<br />
  18. 18. Questions<br />Do you agree that combined set of logical assumptions can be strong indicator (stronger than individual assumptions)?<br />Any feedback on the used factors?<br />Any other factors that should be included?<br />Any concerns about performance and scalability?<br />
  19. 19. Contact information<br />Jan Claes<br />jan.claes@ugent.be<br />http://processmining.ugent.be<br />Twitter: @janclaesbelgium<br />

×