SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
Fast and efficient
exact synthesis for single qubit unitaries
generated by Clifford and T gates
Yi-Hsin Ma
March 12, 2019
This is a presentation refers to the paper:
”Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates”
Vadym Kliuchnikov, Dmitri Maslov, Michele Mosca.
Outline
Introduction
Formulation
Reducing unitary implementation to state preparation
Sequence for state preparation
Introduction
Unitaries Synthesis Problems.
Single-Qubit Unitary Decomposition
Exact Decomposition
Approximate Decomposition
Solovay-Kitaev Algorithm
Multiple-Qubit Unitary Synthesize
What Solovay-Kitaev Algorithm Do?
Compile an quantum algorithm into an efficient fault-tolerance
form using Hadamard, T(π
8 ), and C-NOT gates.
Produces sequence of gate with length Ologc(1
), and requires
time Ologd (1
), c, d ∈ Z.
It does not guarantee
Finding an exact decomposition if there is one.
Whether the exact decomposition exists.
Introduction
What this Paper Want to Solve?
Show equivalence between the set of unitaries which are
computable by the circuit by Clifford and T gates and the set
of unitaries over Z[ 1√
2
, i].
Report an exact single-qubit circuit synthesis algorithm with H
and T optimality.
Note: T =
1 0
0 ω
, ω = e
2πi
8 .
Formulation
Theorem 2.1
The set of 2 × 2 unitaries over the ring Z[ 1√
2
, i] is equivalent to
the set of those unitaries implementable exactly as single-qubit
circuits constructed using H and T gates only.
Note that ”⊇” is straightforward, since both H and T is over the
ring Z[ 1√
2
, i]. The otherside is more difficult to proof.
Conjecture 2.2
For n > 1, the set of 2n × 2n unitaries over Z[ 1√
2
, i] is equivalent
to the set of unitaries implementable exactly as circuits with
Clifford and T gates built using (n+1) qubits, where the last qubit
is an ancillary qubit which is set to |0 at the beginning and is
required to be |0 at the end.
Reducing unitary implementation to state preparation
Any unitary U can be represented as
U =
z −w∗eiφ
w z∗eiφ ,
where det(U) = eiφ should belong to Z[ 1√
2
, i], which gives that
eiφ = ωk.
Hence we have the general form of the matrix we interested as
U =
z −w∗ωk
w z∗ωk
Reducing unitary implementation to state preparation
Lemma 3.1
Any single-qubit state with entries in the ring Z[ 1√
2
, i] can be
prepared using only H and T gates given the initial state |0 .
Using Lemma 3.1 we can reduce the problem of finding the
implementation of an unitary into state preparation. Suppose we
have a circuit that prepares state z
w ,(of course z, w ∈ Z[ 1√
2
, i]).
There exist k ∈ Z such that the unitaries is equal to
z −w∗ωk
w z∗ωk
Sequence for state preparation
Consider sequence of (HT)n|0 . It is an infinite sequence, since
in the Bloch sphere picture unitary HT corresponds to rotation
over an angle that is an irrational fraction of π.
Observation in Table 1.
Power of
√
2 in the denominator of the entries is the same.
Power of
√
2 in the denominator of |zn|2 increases by 1 after
multiplication by HT.
In general, multiplication by HTk cannot change the power of√
2 in the denominator by more than one.(Lemma 4.3)
Sequence for state preparation
Definitions of Sde and Gde
Notation: Z[ω] := {a + bω + cω2 + dω3, a, b, c, d ∈ Z}.
Divisibility to element of Z[ω]: x divides y if ∃x ∈ Z[ω] such that
xx = y.
Definition 4.1 (smallest denominator exponent)
The smallest denominator exponent, sde(z, x), of base x ∈ Z[ω]
with respect to z ∈ Z[ 1√
2
, i] is the smallest integer value k such
that zxk ∈ Z[ω]. If there is no such k, the smallest denominator
exponent is infinite.
Definitions of Sde and Gde
Notation: Z[ω] := {a + bω + cω2 + dω3, a, b, c, d ∈ Z}.
Divisibility to element of Z[ω]: x divides y if ∃x ∈ Z[ω] such that
xx = y.
Definition 4.1 (smallest denominator exponent)
The smallest denominator exponent, sde(z, x), of base x ∈ Z[ω]
with respect to z ∈ Z[ 1√
2
, i] is the smallest integer value k such
that zxk ∈ Z[ω]. If there is no such k, the smallest denominator
exponent is infinite.
Definition 4.2 (greatest dividing exponent)
The greatest dividing exponent, gde(z, x), of base x ∈ Z[ω] with
respect to z ∈ Z[ω] is the integer value k such that xk divides z
and x does not divide quotient z
xk . If no such k exists, the
greatest dividing exponent is said to be infinite.
Important Lemmas
Lemma 4.3
Let z
w be a state with entries in Z[ 1√
2
, i] and sde(|z|2) ≥ 4.
Then, for any integer k:
−1 ≤ sde
z + wωk
√
2
2
− sde(|z|2
) ≤ 1
Important Lemmas
Lemma 4.3
Let z
w be a state with entries in Z[ 1√
2
, i] and sde(|z|2) ≥ 4.
Then, for any integer k:
−1 ≤ sde
z + wωk
√
2
2
− sde(|z|2
) ≤ 1
Lemma 4.4
Let z
w be a state with entries in Z[ 1√
2
, i] and sde(|z|2) ≥ 4.
Then, for each number s ∈ {−1, 0, 1} there exits an integer
k ∈ {0, 1, 2, 3} such that:
sde
z + wωk
√
2
2
− sde(|z|2
) = s
Important Lemmas
Lemma 4.5
Let z
w be a state over Z[ 1√
2
, i] such that sde(|z|2) ≥ 1 or
sde(|w|2) ≥ 1,
then sde(|z|2) = sde(|w|2), sde(z) = sde(w).
Also, for x, y ∈ Z[ω], x = z(
√
2)sde(z) and y = w(
√
2)sde(w),
it holds that gde(|x|2) = gde(|y|2) ≤ 1.
Goal: Find the implementation of unitary matrix U using only H
and T gates.
First, we reduce the problem into state preparation.
U =
z −w∗ωk
w z∗ωk ⇒ U|0 =
z
w
Idea of Algorithm 1
Observe that HTk z
w = H z
wωk = 1√
2
z+wωk
z−wωk .
By Lemma 4.3, when we multiply the state with HTk, then
|sde(|
z + wωk
√
2
|2
) − sde(|z|2
)| ≤ 1
Moreover, Lemma 4.4 guarantees ∃k ∈ {0, 1, 2, 3} such that
sde(|
z + wωk
√
2
|2
) = sde(|z|2
) − 1
Hence, each time the state is multiplied by HTk , sde(|z|2) would
decrease by 1.
Idea of Algorithm 1
Lemma 4.5 implies that sde(|z−wωk
√
2
|2) = sde(|w|2) − 1 too.
Both entries of the state have same sde(| · |2) and they decrease by
1 at the same time if conditions of Lemma 4.5 are satisfied.
Iterating such procedure, at the end we can find
k1, ..., kn−3 ∈ {0, 1, 2, 3},
where n = sde(|z|2) such that
HTkn−3
...HTk1
z
w
=
zn−3
wn−3
, sde(|zn−3|2
) = 3
Idea of Algorithm 1
Define sde|·|2
( ˆU) = sde(|u|2) where u is an entry of U.
Since the set S3 := { ˆU ∈ U(2)|sde|·|2
( ˆU) = 3} is finite and small.
It takes little efforts to find ˆU ∈ S3 where its first column equals
zn−3
wn−3
.
Hence,
HTkn−3
...HTk1
z
w
= ˆU|0 ⇒ T−k1
H...T−kn−3
H ˆU|0 = U|0
U = T−k1
H...T−kn−3
H ˆU
Algorithm 1 Decomposition of a unitary matrix over Z[ 1√
2
, i]
Input: Unitary U =
z00 z01
z10 z11
over Z[ 1√
2
, i].
Output: Sequence Sout of H and T gates that implements U.
1: //S3 : set of all unitaries over Z[ 1√
2
, i] such that for all ˆU ∈ S3, sde|·|(ˆ(U))
2: queue Sout ← ∅
3: s ← sde(|z00|2)
4: while s > 3 do
5: state ← unfound
6: for all k ∈ {0, 1, 2, 3} do
7: while state = unfound do
8: z00 = [HT−k U]00
9: if sde(|z00|2) = s − 1 then
10: state ← found
11: add Tk H to Sout
12: s ← sde(|z00|2)
13: U ← HT−k U
14: end if
15: end while
16: end for
17: end while
18: lookup sequence Srem for U in S3
19: add Srem into Sout
20: return Sout
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
(III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
(III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
(IV) gde(yxk, x) = k + gde(y, x)
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
(III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
(IV) gde(yxk, x) = k + gde(y, x)
(V) gde(x) = gde(|x|2, 2)
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
(III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
(IV) gde(yxk, x) = k + gde(y, x)
(V) gde(x) = gde(|x|2, 2)
(VI) 0 ≤ gde(|x|2) − 2gde(x) ≤ 1
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
(III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
(IV) gde(yxk, x) = k + gde(y, x)
(V) gde(x) = gde(|x|2, 2)
(VI) 0 ≤ gde(|x|2) − 2gde(x) ≤ 1
(VII) gde(Re(
√
2xy∗)) ≥ 1
2 gde |x|2 + gde |y|2
Some Useful Properties
Here, we introduce some properties which will be used to proof the
following theorems.
(I) sde( z
xk , x) = k − gde(z, x)
(II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
(III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
(IV) gde(yxk, x) = k + gde(y, x)
(V) gde(x) = gde(|x|2, 2)
(VI) 0 ≤ gde(|x|2) − 2gde(x) ≤ 1
(VII) gde(Re(
√
2xy∗)) ≥ 1
2 gde |x|2 + gde |y|2
(VIII) gde(y, x) is invariant with respect to multiplication by ω and
complex conjugate of both x, y.
Lemma 4.5
We state Lemma 4.5 again: if z or w satisfies sde(| · |2) ≥ 1 ⇒
sde(|z|2) = sde(|w|2), sde(|z|) = sde(|w|),
gde(|x|2) = gde(|y|2) ≤ 1, x = z(
√
2)sde(z), y = w(
√
2)sde(w)
Proof.
WLOG. Let sde(z) ≥ sde(w), sde(|z|2) ≥ 1.
x = z(
√
2)sde(z), y = w(
√
2)sde(w).
sde(z) = sde( x
√
2
sde(z) ) = sde(z) − gde(x) ⇒ gde(x) = 0.
By property(VI), 0 ≤ gde(|x|2) ≤ 1.
1 = |z|2 + |w|2 =
√
2
−2sde(z)
|x|2 +
√
2
−2sde(w)
|y|2
⇒
√
2
2sde(z)
− |x|2 =
√
2
2(sde(z)−sde(w))
|y|2
Lemma 4.5
Proof (Cont.)
gde(
√
2
2(sde(z)−sde(w))
|y|2) = gde(|y|2) + 2(sde(z) − sde(w))
= gde(
√
2
2sde(z)
− |x|2) = gde(|x|2)(Since 2sde(z) > gde(|x2|))
Now we have gde(|y|2) + 2(sde(z) − sde(w)) = gde(|x|2).
Consider gde(|x|2) ≤ 1, and sde(z) ≥ sde(w).
⇒ sde(z) = sde(w), gde(|x|2) = gde(|y|2) ≤ 1
sde(|z|2) = sde( |x|2
√
2
2sde(z) ) = 2sde(z) − gde(|x|2)
= 2sde(w) − gde(|y|2) = sde( |y|2
√
2
2sde(w) ) = sde(|w|2)
Lemma 4.6
Lemma 4.6
If x, y ∈ Z[ω] such that |x|2 + |y|2 = (
√
2)m,then
gde(|x + y|2
) ≥ min m, 1 +
1
2
gde |x|2
+ gde |y|2
Lemma 4.6
Lemma 4.6
If x, y ∈ Z[ω] such that |x|2 + |y|2 = (
√
2)m,then
gde(|x + y|2
) ≥ min m, 1 +
1
2
gde |x|2
+ gde |y|2
Proof.
gde(|x + y|2) = gde(|x|2 + |y|2 +
√
2Re(
√
2xy∗))
= gde(
√
2
m
+
√
2Re(
√
2xy∗)) = min{m, gde(
√
2Re(
√
2xy∗))}
≥ min m, 1 + 1
2 gde |x|2 + gde |y|2
, where we use property(VII) at the end.
Lemma 4.3
We state Lemma 4.3 again: for sde(|z|2) ≥ 4, then k ∈ Z ⇒
−1 ≤ sde
z + wωk
√
2
2
− sde(|z|2
) ≤ 1
Proof.
Since sde(|z|2) ≥ 4, by Lemma 4.5 ⇒ sde(|z|2) = sde(|w|2),
sde(z) = sde(w), and gde(|x|2) = gde(|y|2) ≤ 1.
where x = ω−kz
√
2
m
, y = w
√
2
m
, m = sde(z) = sde(w).
sde z+wωk
√
2
2
− sde(|z|2) = sde |xωk +yωk |2
√
2
2m+2 − sde |xωk |2
√
2
2m
= (2m + 2 − gde(|xωk + yωk|2)) − (2m − gde(|xωk|2))
= 2 − gde(|x + y|2) + gde(|x|2).
Lemma 4.3
Proof (Cont.)
We change the inequality which we want to proof into:
1 ≤ gde(|x + y|2
) − gde(|x|2
) ≤ 3
Since |x|2 + |y|2 =
√
2
2m
, x, y ∈ Z[ω]. By Lemma 4.6 ⇒
gde(|x + y|2
) ≥ min 2m, 1 +
1
2
gde(|x|2
) + gde(|y|2
)
Note that gde(|x|2) = gde(|y|2) ≤ 1, and 2m ≥ 4 + gde(|x|2) ⇒
gde(|x + y|2
) ≥ 1 + gde(|x|2
)
Lemma 4.3
Proof (Cont.)
Now we have proven one side of the inequality. Next, we want to
show gde(|x + y|2) − gde(|x|2) ≤ 3.
Consider x + y, x − y ∈ Z[ω],
|x + y|2 + |x − y|2
= |x|2 + |y|2 +
√
2Re(
√
2xy∗) + |x|2 + |y|2 −
√
2Re(
√
2xy∗)
=
√
2
2m+2
.
Lemma 4.3
Proof (Cont.)
|x + y|2 + |x − y|2 =
√
2
2m+2
. By Lemma 4.6⇒
gde(|2x|2
) ≥ min 2m+2, 1+
1
2
gde(|x +y|2
)+gde(|x −y|2
)
If 2m + 2 < 1 + 1
2 gde(|x + y|2) + gde(|x − y|2) ⇒
5 ≥ 4 + gde(|x|2) ≥ 2m + 2 ≥ 6 + gde(|x|2), (contradiction).
⇒ 3 + gde(|x|2) ≥ 1
2 gde(|x + y|2) + gde(|x − y|2)
Claim: gde(|x + y|2) = gde(|x − y|2).
From above ⇒ 7 + 2gde(|x|2) − gde(|x − y|2) ≥ gde(|x + y|2)
Lemma 4.3
Proof (Cont.)
Consider gde(|x − y|2) = gde(
√
2
2m+2
− |x + y|2).
Assume gde(|x + y|2) ≥ 2m + 2 ⇒
7 + 2gde(|x|2) − gde(|x − y|2) ≥ 6 + gde(|x|2) ⇒
1 + gde(|x|2) ≥ gde(|x − y|2) ≥ min{2m + 2, gde(|x + y|2)}
= 2m + 2 ≥ 6 + gde(|x|2), (contradiction)
The Claim gde(|x + y|2) = gde(|x − y|2) is true.
Hence we have: 1 ≤ gde(|x + y|2) − gde(|x|2) ≤ 3

Weitere ähnliche Inhalte

Was ist angesagt?

Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsolziich
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equationSpringer
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averagesVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Tetsunao Matsuta
Tetsunao MatsutaTetsunao Matsuta
Tetsunao MatsutaSuurist
 
Hideitsu Hino
Hideitsu HinoHideitsu Hino
Hideitsu HinoSuurist
 
Minimum spanning tree algorithms by ibrahim_alfayoumi
Minimum spanning tree algorithms by ibrahim_alfayoumiMinimum spanning tree algorithms by ibrahim_alfayoumi
Minimum spanning tree algorithms by ibrahim_alfayoumiIbrahim Alfayoumi
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...Alexander Decker
 
Hiroaki Shiokawa
Hiroaki ShiokawaHiroaki Shiokawa
Hiroaki ShiokawaSuurist
 
Vector calculus
Vector calculusVector calculus
Vector calculussujathavvv
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki SatoSuurist
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 

Was ist angesagt? (20)

Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equation
 
Norm-variation of bilinear averages
Norm-variation of bilinear averagesNorm-variation of bilinear averages
Norm-variation of bilinear averages
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Tetsunao Matsuta
Tetsunao MatsutaTetsunao Matsuta
Tetsunao Matsuta
 
Hideitsu Hino
Hideitsu HinoHideitsu Hino
Hideitsu Hino
 
Minimum spanning tree algorithms by ibrahim_alfayoumi
Minimum spanning tree algorithms by ibrahim_alfayoumiMinimum spanning tree algorithms by ibrahim_alfayoumi
Minimum spanning tree algorithms by ibrahim_alfayoumi
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
Hiroaki Shiokawa
Hiroaki ShiokawaHiroaki Shiokawa
Hiroaki Shiokawa
 
Gamma function
Gamma functionGamma function
Gamma function
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 

Ähnlich wie Fast and efficient exact synthesis of single qubit unitaries generated by clifford and t gates

Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...Ali Ajouz
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for fourAlexander Decker
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Alexander Decker
 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slideasyrafjpk
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential goodgenntmbr
 
Fixed point and common fixed point theorems in vector metric spaces
Fixed point and common fixed point theorems in vector metric spacesFixed point and common fixed point theorems in vector metric spaces
Fixed point and common fixed point theorems in vector metric spacesAlexander Decker
 
sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiesFujimoto Keisuke
 
Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motionJa-Keoung Koo
 
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication AlgebrasSome Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication Algebrasijceronline
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutionsPatrickMumba7
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2Laurie Smith
 
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Alexander Decker
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 

Ähnlich wie Fast and efficient exact synthesis of single qubit unitaries generated by clifford and t gates (20)

Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
Hecke Operators on Jacobi Forms of Lattice Index and the Relation to Elliptic...
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
 
Lecture5
Lecture5Lecture5
Lecture5
 
digital control Chapter 2 slide
digital control Chapter 2 slidedigital control Chapter 2 slide
digital control Chapter 2 slide
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential good
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
Fixed point and common fixed point theorems in vector metric spaces
Fixed point and common fixed point theorems in vector metric spacesFixed point and common fixed point theorems in vector metric spaces
Fixed point and common fixed point theorems in vector metric spaces
 
sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energies
 
Journey to structure from motion
Journey to structure from motionJourney to structure from motion
Journey to structure from motion
 
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication AlgebrasSome Other Properties of Fuzzy Filters on Lattice Implication Algebras
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2
 
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
 
A05330107
A05330107A05330107
A05330107
 
Levy processes in the energy markets
Levy processes in the energy marketsLevy processes in the energy markets
Levy processes in the energy markets
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 

Mehr von JamesMa54

Foodie 餐廳推薦系統
Foodie 餐廳推薦系統Foodie 餐廳推薦系統
Foodie 餐廳推薦系統JamesMa54
 
The shannon channel coding theorem
The shannon channel coding theoremThe shannon channel coding theorem
The shannon channel coding theoremJamesMa54
 
Classical communication over quantum channel
Classical communication over quantum channelClassical communication over quantum channel
Classical communication over quantum channelJamesMa54
 
Exact synthesis of unitaries generated by Clifford and T gates
Exact synthesis of unitaries generated by Clifford and T gatesExact synthesis of unitaries generated by Clifford and T gates
Exact synthesis of unitaries generated by Clifford and T gatesJamesMa54
 
Visual cryptography using pixels partition
Visual cryptography using pixels partition Visual cryptography using pixels partition
Visual cryptography using pixels partition JamesMa54
 
Solving ode problem using the Galerkin's method
Solving ode problem using the Galerkin's methodSolving ode problem using the Galerkin's method
Solving ode problem using the Galerkin's methodJamesMa54
 

Mehr von JamesMa54 (6)

Foodie 餐廳推薦系統
Foodie 餐廳推薦系統Foodie 餐廳推薦系統
Foodie 餐廳推薦系統
 
The shannon channel coding theorem
The shannon channel coding theoremThe shannon channel coding theorem
The shannon channel coding theorem
 
Classical communication over quantum channel
Classical communication over quantum channelClassical communication over quantum channel
Classical communication over quantum channel
 
Exact synthesis of unitaries generated by Clifford and T gates
Exact synthesis of unitaries generated by Clifford and T gatesExact synthesis of unitaries generated by Clifford and T gates
Exact synthesis of unitaries generated by Clifford and T gates
 
Visual cryptography using pixels partition
Visual cryptography using pixels partition Visual cryptography using pixels partition
Visual cryptography using pixels partition
 
Solving ode problem using the Galerkin's method
Solving ode problem using the Galerkin's methodSolving ode problem using the Galerkin's method
Solving ode problem using the Galerkin's method
 

Kürzlich hochgeladen

well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxzaydmeerab121
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
Ai in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxAi in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxsubscribeus100
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsCharlene Llagas
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 

Kürzlich hochgeladen (20)

well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptx
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
Ai in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxAi in communication electronicss[1].pptx
Ai in communication electronicss[1].pptx
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and Functions
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 

Fast and efficient exact synthesis of single qubit unitaries generated by clifford and t gates

  • 1. Fast and efficient exact synthesis for single qubit unitaries generated by Clifford and T gates Yi-Hsin Ma March 12, 2019 This is a presentation refers to the paper: ”Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates” Vadym Kliuchnikov, Dmitri Maslov, Michele Mosca.
  • 2. Outline Introduction Formulation Reducing unitary implementation to state preparation Sequence for state preparation
  • 3. Introduction Unitaries Synthesis Problems. Single-Qubit Unitary Decomposition Exact Decomposition Approximate Decomposition Solovay-Kitaev Algorithm Multiple-Qubit Unitary Synthesize What Solovay-Kitaev Algorithm Do? Compile an quantum algorithm into an efficient fault-tolerance form using Hadamard, T(π 8 ), and C-NOT gates. Produces sequence of gate with length Ologc(1 ), and requires time Ologd (1 ), c, d ∈ Z. It does not guarantee Finding an exact decomposition if there is one. Whether the exact decomposition exists.
  • 4. Introduction What this Paper Want to Solve? Show equivalence between the set of unitaries which are computable by the circuit by Clifford and T gates and the set of unitaries over Z[ 1√ 2 , i]. Report an exact single-qubit circuit synthesis algorithm with H and T optimality. Note: T = 1 0 0 ω , ω = e 2πi 8 .
  • 5. Formulation Theorem 2.1 The set of 2 × 2 unitaries over the ring Z[ 1√ 2 , i] is equivalent to the set of those unitaries implementable exactly as single-qubit circuits constructed using H and T gates only. Note that ”⊇” is straightforward, since both H and T is over the ring Z[ 1√ 2 , i]. The otherside is more difficult to proof. Conjecture 2.2 For n > 1, the set of 2n × 2n unitaries over Z[ 1√ 2 , i] is equivalent to the set of unitaries implementable exactly as circuits with Clifford and T gates built using (n+1) qubits, where the last qubit is an ancillary qubit which is set to |0 at the beginning and is required to be |0 at the end.
  • 6. Reducing unitary implementation to state preparation Any unitary U can be represented as U = z −w∗eiφ w z∗eiφ , where det(U) = eiφ should belong to Z[ 1√ 2 , i], which gives that eiφ = ωk. Hence we have the general form of the matrix we interested as U = z −w∗ωk w z∗ωk
  • 7. Reducing unitary implementation to state preparation Lemma 3.1 Any single-qubit state with entries in the ring Z[ 1√ 2 , i] can be prepared using only H and T gates given the initial state |0 . Using Lemma 3.1 we can reduce the problem of finding the implementation of an unitary into state preparation. Suppose we have a circuit that prepares state z w ,(of course z, w ∈ Z[ 1√ 2 , i]). There exist k ∈ Z such that the unitaries is equal to z −w∗ωk w z∗ωk
  • 8. Sequence for state preparation Consider sequence of (HT)n|0 . It is an infinite sequence, since in the Bloch sphere picture unitary HT corresponds to rotation over an angle that is an irrational fraction of π. Observation in Table 1. Power of √ 2 in the denominator of the entries is the same. Power of √ 2 in the denominator of |zn|2 increases by 1 after multiplication by HT. In general, multiplication by HTk cannot change the power of√ 2 in the denominator by more than one.(Lemma 4.3)
  • 9. Sequence for state preparation
  • 10. Definitions of Sde and Gde Notation: Z[ω] := {a + bω + cω2 + dω3, a, b, c, d ∈ Z}. Divisibility to element of Z[ω]: x divides y if ∃x ∈ Z[ω] such that xx = y. Definition 4.1 (smallest denominator exponent) The smallest denominator exponent, sde(z, x), of base x ∈ Z[ω] with respect to z ∈ Z[ 1√ 2 , i] is the smallest integer value k such that zxk ∈ Z[ω]. If there is no such k, the smallest denominator exponent is infinite.
  • 11. Definitions of Sde and Gde Notation: Z[ω] := {a + bω + cω2 + dω3, a, b, c, d ∈ Z}. Divisibility to element of Z[ω]: x divides y if ∃x ∈ Z[ω] such that xx = y. Definition 4.1 (smallest denominator exponent) The smallest denominator exponent, sde(z, x), of base x ∈ Z[ω] with respect to z ∈ Z[ 1√ 2 , i] is the smallest integer value k such that zxk ∈ Z[ω]. If there is no such k, the smallest denominator exponent is infinite. Definition 4.2 (greatest dividing exponent) The greatest dividing exponent, gde(z, x), of base x ∈ Z[ω] with respect to z ∈ Z[ω] is the integer value k such that xk divides z and x does not divide quotient z xk . If no such k exists, the greatest dividing exponent is said to be infinite.
  • 12. Important Lemmas Lemma 4.3 Let z w be a state with entries in Z[ 1√ 2 , i] and sde(|z|2) ≥ 4. Then, for any integer k: −1 ≤ sde z + wωk √ 2 2 − sde(|z|2 ) ≤ 1
  • 13. Important Lemmas Lemma 4.3 Let z w be a state with entries in Z[ 1√ 2 , i] and sde(|z|2) ≥ 4. Then, for any integer k: −1 ≤ sde z + wωk √ 2 2 − sde(|z|2 ) ≤ 1 Lemma 4.4 Let z w be a state with entries in Z[ 1√ 2 , i] and sde(|z|2) ≥ 4. Then, for each number s ∈ {−1, 0, 1} there exits an integer k ∈ {0, 1, 2, 3} such that: sde z + wωk √ 2 2 − sde(|z|2 ) = s
  • 14. Important Lemmas Lemma 4.5 Let z w be a state over Z[ 1√ 2 , i] such that sde(|z|2) ≥ 1 or sde(|w|2) ≥ 1, then sde(|z|2) = sde(|w|2), sde(z) = sde(w). Also, for x, y ∈ Z[ω], x = z( √ 2)sde(z) and y = w( √ 2)sde(w), it holds that gde(|x|2) = gde(|y|2) ≤ 1. Goal: Find the implementation of unitary matrix U using only H and T gates. First, we reduce the problem into state preparation. U = z −w∗ωk w z∗ωk ⇒ U|0 = z w
  • 15. Idea of Algorithm 1 Observe that HTk z w = H z wωk = 1√ 2 z+wωk z−wωk . By Lemma 4.3, when we multiply the state with HTk, then |sde(| z + wωk √ 2 |2 ) − sde(|z|2 )| ≤ 1 Moreover, Lemma 4.4 guarantees ∃k ∈ {0, 1, 2, 3} such that sde(| z + wωk √ 2 |2 ) = sde(|z|2 ) − 1 Hence, each time the state is multiplied by HTk , sde(|z|2) would decrease by 1.
  • 16. Idea of Algorithm 1 Lemma 4.5 implies that sde(|z−wωk √ 2 |2) = sde(|w|2) − 1 too. Both entries of the state have same sde(| · |2) and they decrease by 1 at the same time if conditions of Lemma 4.5 are satisfied. Iterating such procedure, at the end we can find k1, ..., kn−3 ∈ {0, 1, 2, 3}, where n = sde(|z|2) such that HTkn−3 ...HTk1 z w = zn−3 wn−3 , sde(|zn−3|2 ) = 3
  • 17. Idea of Algorithm 1 Define sde|·|2 ( ˆU) = sde(|u|2) where u is an entry of U. Since the set S3 := { ˆU ∈ U(2)|sde|·|2 ( ˆU) = 3} is finite and small. It takes little efforts to find ˆU ∈ S3 where its first column equals zn−3 wn−3 . Hence, HTkn−3 ...HTk1 z w = ˆU|0 ⇒ T−k1 H...T−kn−3 H ˆU|0 = U|0 U = T−k1 H...T−kn−3 H ˆU
  • 18. Algorithm 1 Decomposition of a unitary matrix over Z[ 1√ 2 , i] Input: Unitary U = z00 z01 z10 z11 over Z[ 1√ 2 , i]. Output: Sequence Sout of H and T gates that implements U. 1: //S3 : set of all unitaries over Z[ 1√ 2 , i] such that for all ˆU ∈ S3, sde|·|(ˆ(U)) 2: queue Sout ← ∅ 3: s ← sde(|z00|2) 4: while s > 3 do 5: state ← unfound 6: for all k ∈ {0, 1, 2, 3} do 7: while state = unfound do 8: z00 = [HT−k U]00 9: if sde(|z00|2) = s − 1 then 10: state ← found 11: add Tk H to Sout 12: s ← sde(|z00|2) 13: U ← HT−k U 14: end if 15: end while 16: end for 17: end while 18: lookup sequence Srem for U in S3 19: add Srem into Sout 20: return Sout
  • 19. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x)
  • 20. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)}
  • 21. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)} (III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x)
  • 22. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)} (III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x) (IV) gde(yxk, x) = k + gde(y, x)
  • 23. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)} (III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x) (IV) gde(yxk, x) = k + gde(y, x) (V) gde(x) = gde(|x|2, 2)
  • 24. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)} (III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x) (IV) gde(yxk, x) = k + gde(y, x) (V) gde(x) = gde(|x|2, 2) (VI) 0 ≤ gde(|x|2) − 2gde(x) ≤ 1
  • 25. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)} (III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x) (IV) gde(yxk, x) = k + gde(y, x) (V) gde(x) = gde(|x|2, 2) (VI) 0 ≤ gde(|x|2) − 2gde(x) ≤ 1 (VII) gde(Re( √ 2xy∗)) ≥ 1 2 gde |x|2 + gde |y|2
  • 26. Some Useful Properties Here, we introduce some properties which will be used to proof the following theorems. (I) sde( z xk , x) = k − gde(z, x) (II) gde(y + y , x) ≥ min{gde(y, x), gde(y , x)} (III) gde(y, x) < gde(y , x) =⇒ gde(y + y , x) = gde(y, x) (IV) gde(yxk, x) = k + gde(y, x) (V) gde(x) = gde(|x|2, 2) (VI) 0 ≤ gde(|x|2) − 2gde(x) ≤ 1 (VII) gde(Re( √ 2xy∗)) ≥ 1 2 gde |x|2 + gde |y|2 (VIII) gde(y, x) is invariant with respect to multiplication by ω and complex conjugate of both x, y.
  • 27. Lemma 4.5 We state Lemma 4.5 again: if z or w satisfies sde(| · |2) ≥ 1 ⇒ sde(|z|2) = sde(|w|2), sde(|z|) = sde(|w|), gde(|x|2) = gde(|y|2) ≤ 1, x = z( √ 2)sde(z), y = w( √ 2)sde(w) Proof. WLOG. Let sde(z) ≥ sde(w), sde(|z|2) ≥ 1. x = z( √ 2)sde(z), y = w( √ 2)sde(w). sde(z) = sde( x √ 2 sde(z) ) = sde(z) − gde(x) ⇒ gde(x) = 0. By property(VI), 0 ≤ gde(|x|2) ≤ 1. 1 = |z|2 + |w|2 = √ 2 −2sde(z) |x|2 + √ 2 −2sde(w) |y|2 ⇒ √ 2 2sde(z) − |x|2 = √ 2 2(sde(z)−sde(w)) |y|2
  • 28. Lemma 4.5 Proof (Cont.) gde( √ 2 2(sde(z)−sde(w)) |y|2) = gde(|y|2) + 2(sde(z) − sde(w)) = gde( √ 2 2sde(z) − |x|2) = gde(|x|2)(Since 2sde(z) > gde(|x2|)) Now we have gde(|y|2) + 2(sde(z) − sde(w)) = gde(|x|2). Consider gde(|x|2) ≤ 1, and sde(z) ≥ sde(w). ⇒ sde(z) = sde(w), gde(|x|2) = gde(|y|2) ≤ 1 sde(|z|2) = sde( |x|2 √ 2 2sde(z) ) = 2sde(z) − gde(|x|2) = 2sde(w) − gde(|y|2) = sde( |y|2 √ 2 2sde(w) ) = sde(|w|2)
  • 29. Lemma 4.6 Lemma 4.6 If x, y ∈ Z[ω] such that |x|2 + |y|2 = ( √ 2)m,then gde(|x + y|2 ) ≥ min m, 1 + 1 2 gde |x|2 + gde |y|2
  • 30. Lemma 4.6 Lemma 4.6 If x, y ∈ Z[ω] such that |x|2 + |y|2 = ( √ 2)m,then gde(|x + y|2 ) ≥ min m, 1 + 1 2 gde |x|2 + gde |y|2 Proof. gde(|x + y|2) = gde(|x|2 + |y|2 + √ 2Re( √ 2xy∗)) = gde( √ 2 m + √ 2Re( √ 2xy∗)) = min{m, gde( √ 2Re( √ 2xy∗))} ≥ min m, 1 + 1 2 gde |x|2 + gde |y|2 , where we use property(VII) at the end.
  • 31. Lemma 4.3 We state Lemma 4.3 again: for sde(|z|2) ≥ 4, then k ∈ Z ⇒ −1 ≤ sde z + wωk √ 2 2 − sde(|z|2 ) ≤ 1 Proof. Since sde(|z|2) ≥ 4, by Lemma 4.5 ⇒ sde(|z|2) = sde(|w|2), sde(z) = sde(w), and gde(|x|2) = gde(|y|2) ≤ 1. where x = ω−kz √ 2 m , y = w √ 2 m , m = sde(z) = sde(w). sde z+wωk √ 2 2 − sde(|z|2) = sde |xωk +yωk |2 √ 2 2m+2 − sde |xωk |2 √ 2 2m = (2m + 2 − gde(|xωk + yωk|2)) − (2m − gde(|xωk|2)) = 2 − gde(|x + y|2) + gde(|x|2).
  • 32. Lemma 4.3 Proof (Cont.) We change the inequality which we want to proof into: 1 ≤ gde(|x + y|2 ) − gde(|x|2 ) ≤ 3 Since |x|2 + |y|2 = √ 2 2m , x, y ∈ Z[ω]. By Lemma 4.6 ⇒ gde(|x + y|2 ) ≥ min 2m, 1 + 1 2 gde(|x|2 ) + gde(|y|2 ) Note that gde(|x|2) = gde(|y|2) ≤ 1, and 2m ≥ 4 + gde(|x|2) ⇒ gde(|x + y|2 ) ≥ 1 + gde(|x|2 )
  • 33. Lemma 4.3 Proof (Cont.) Now we have proven one side of the inequality. Next, we want to show gde(|x + y|2) − gde(|x|2) ≤ 3. Consider x + y, x − y ∈ Z[ω], |x + y|2 + |x − y|2 = |x|2 + |y|2 + √ 2Re( √ 2xy∗) + |x|2 + |y|2 − √ 2Re( √ 2xy∗) = √ 2 2m+2 .
  • 34. Lemma 4.3 Proof (Cont.) |x + y|2 + |x − y|2 = √ 2 2m+2 . By Lemma 4.6⇒ gde(|2x|2 ) ≥ min 2m+2, 1+ 1 2 gde(|x +y|2 )+gde(|x −y|2 ) If 2m + 2 < 1 + 1 2 gde(|x + y|2) + gde(|x − y|2) ⇒ 5 ≥ 4 + gde(|x|2) ≥ 2m + 2 ≥ 6 + gde(|x|2), (contradiction). ⇒ 3 + gde(|x|2) ≥ 1 2 gde(|x + y|2) + gde(|x − y|2) Claim: gde(|x + y|2) = gde(|x − y|2). From above ⇒ 7 + 2gde(|x|2) − gde(|x − y|2) ≥ gde(|x + y|2)
  • 35. Lemma 4.3 Proof (Cont.) Consider gde(|x − y|2) = gde( √ 2 2m+2 − |x + y|2). Assume gde(|x + y|2) ≥ 2m + 2 ⇒ 7 + 2gde(|x|2) − gde(|x − y|2) ≥ 6 + gde(|x|2) ⇒ 1 + gde(|x|2) ≥ gde(|x − y|2) ≥ min{2m + 2, gde(|x + y|2)} = 2m + 2 ≥ 6 + gde(|x|2), (contradiction) The Claim gde(|x + y|2) = gde(|x − y|2) is true. Hence we have: 1 ≤ gde(|x + y|2) − gde(|x|2) ≤ 3