SlideShare ist ein Scribd-Unternehmen logo
1 von 118
Downloaden Sie, um offline zu lesen
UNIVERSIDADE ESTADUAL PAULISTA
            UNESP - Campus de Bauru/SP
        FACULDADE DE ENGENHARIA
         Departamento de Engenharia Civil




Disciplina: 2133 - ESTRUTURAS DE CONCRETO III
                NOTAS DE AULA




   SAPATAS DE FUNDAÇÃO




 Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS
              (wwwp.feb.unesp.br/pbastos)




                       Bauru/SP
                     Agosto/2012
APRESENTAÇÃO



       Esta apostila tem o objetivo de servir como notas de aula na disciplina
2133 – Estruturas de Concreto III, do curso de Engenharia Civil da Faculdade de Engenharia, da
Universidade Estadual Paulista - UNESP – Campus de Bauru.
       O texto apresenta o dimensionamento das sapatas de fundação, conforme os
procedimentos contidos na NBR 6118/2003 - “Projeto de estruturas de concreto –
Procedimento”.
       Agradecimentos ao técnico Tiago Duarte de Mattos, pela confecção dos desenhos, e ao
aluno Lucas F. Sciacca, pelo auxílio na digitação do texto.
       Esta é a primeira versão da apostila, e críticas e sugestões serão muito bem-vindas.
SUMÁRIO



1.     DEFINIÇÕES...........................................................................................................................1
  1.1 FUNDAÇÃO SUPERFICIAL............................................................................................1
  1.2 SAPATA DE FUNDAÇÃO ...............................................................................................1
  1.3 TIPOS DE SAPATAS ........................................................................................................1
  1.4 DETALHES CONSTRUTIVOS ........................................................................................3
2. SAPATAS ISOLADAS............................................................................................................3
  2.1    CLASSIFICAÇÃO QUANTO À RIGIDEZ ......................................................................4
  2.2    COMPORTAMENTO ESTRUTURAL.............................................................................5
    2.2.1    Sapatas Rígidas ...........................................................................................................5
    2.2.2    Sapatas Flexíveis .........................................................................................................6
  2.3    DISTRIBUIÇÃO DE TENSÕES NO SOLO.....................................................................6
  2.4    ESTIMATIVA DAS DIMENSÕES DE SAPATAS ISOLADAS COM CARGA
  CENTRADA .................................................................................................................................7
    2.4.1    Sapata com Balanços (abas) Iguais nas Duas Direções ..............................................7
    2.4.2    Balanços não Iguais nas Duas Direções (cA ≠ cB).......................................................8
  2.5    PROJETO CONFORME O CEB-70..................................................................................9
    2.5.1    Dimensionamento da Armadura Inferior ....................................................................9
    2.5.2    Momentos Fletores em Sapatas Isoladas com Carga Centrada.................................10
    2.5.3    Ancoragem da Armadura de Flexão..........................................................................13
    2.5.4    Força Cortante de Referência em Sapatas Isoladas com Carga Centrada.................14
    2.5.5    Força Cortante Limite ...............................................................................................16
  2.6    VERIFICAÇÃO À PUNÇÃO ..........................................................................................16
    2.6.1    Tensão de Cisalhamento Solicitante .........................................................................18
    2.6.2    Verificação de Tensão Resistente de Compressão Diagonal do Concreto na
    Superfície Crítica C..................................................................................................................19
    2.6.3    Tensão Resistente na Superfície Crítica C’ em Elementos Estruturais ou Trechos
    sem Armadura de Punção ........................................................................................................20
  2.7    EXEMPLO 1 – SAPATA ISOLADA RÍGIDA ...............................................................21
  2.8    EXERCÍCIOS PROPOSTOS ...........................................................................................29
  2.9    MÉTODO DAS BIELAS .................................................................................................29
    2.9.1    Exemplo 2 - Sapata Isolada Rígida ...........................................................................33
  2.10     SAPATAS ISOLADAS SOB AÇÕES EXCÊNTRICAS.............................................34
    2.10.1 Excentricidade em Uma Direção...............................................................................34
    2.10.2 Excentricidade nas Duas Direções ............................................................................36
  2.11     EXEMPLO 3 – Sapata Isolada sob Força Normal e um Momento Fletor....................40
  2.12     EXEMPLO 4 – SAPATA ISOLADA SOB FLEXÃO OBLÍQUA ..............................48
  2.13     SAPATA ISOLADA FLEXÍVEL SOB CARGA CENTRADA..................................54
  2.14     VERIFICAÇÃO DE SAPATA FLEXÍVEL À FORÇA CORTANTE QUANDO bW ≥
  5d       56
  2.15     EXEMPLO 5 – Sapata Flexível....................................................................................57
3. SAPATA CORRIDA .............................................................................................................62
     3.1     SAPATA CORRIDA RÍGIDA SOB CARGA UNIFORME ...........................................64
     3.2     SAPATA CORRIDA FLEXÍVEL SOB CARGA LINEAR UNIFORME ......................65
     3.3     EXEMPLO 6 – SAPATA CORRIDA RÍGIDA...............................................................67
     3.4     EXERCÍCIO PROPOSTO ...............................................................................................69
3.5 EXEMPLO 7 – SAPATA CORRIDA FLEXÍVEL..........................................................69
  3.6 EXERCÍCIO PROPOSTO ...............................................................................................73
4. VERIFICAÇÃO DA ESTABILIDADE DAS SAPATAS...................................................74
5.    VERIFICAÇÃO DO ESCORREGAMENTO DA ARMADURA DE FLEXÃO EM
SAPATAS.......................................................................................................................................75
6.    SAPATA NA DIVISA COM VIGA DE EQUILÍBRIO .....................................................76
  6.1 ROTEIRO DE CÁLCULO...............................................................................................78
  6.2 ESFORÇOS SOLICITANTES NA VIGA DE EQUILÍBRIO.........................................78
  6.3 PRÉ-DIMENSIONAMENTO DA VIGA DE EQUILÍBRIO ..........................................81
  6.4 DIMENSIONAMENTO DA SAPATA DA DIVISA ......................................................81
  6.5 EXEMPLO 8 ....................................................................................................................83
  6.6 TAREFA...........................................................................................................................90
  6.7 VIGA ALAVANCA NÃO NORMAL À DIVISA ..........................................................90
  6.8 EXERCÍCIO PROPOSTO ...............................................................................................91
7. SAPATA EXCÊNTRICA DE DIVISA ................................................................................92
8.    SAPATA ASSOCIADA (CONJUNTA, CONJUGADA)....................................................95
  8.1 SAPATA RETANGULAR...............................................................................................95
  8.2 VERIFICAÇÕES E DIMENSIONAMENTO..................................................................98
  8.3 SAPATA DE FORMA TRAPEZOIDAL.......................................................................100
  8.4 SAPATA ASSOCIADA COM VIGA DE RIGIDEZ ....................................................101
  8.5 EXEMPLO 9 ..................................................................................................................102
9. QUESTIONÁRIO ................................................................................................................111
10. RERERÊNCIAS BIBLIOGRÁFICAS ..............................................................................112
UNESP – Bauru/SP – Sapatas de Fundação                                                      1

1. DEFINIÇÕES

        As definições apresentadas a seguir tomam como base a norma NBR 6122/2010.

1.1   FUNDAÇÃO SUPERFICIAL

      A fundação superficial é também chamada fundação rasa ou direta. É definida como:
“elemento de fundação em que a carga é transmitida ao terreno pelas tensões distribuídas sob a
base da fundação, e a profundidade de assentamento em relação ao terreno adjacente à
fundação é inferior a duas vezes a menor dimensão da fundação.”
      Quanto ao dimensionamento, as fundações superficiais devem ser definidas por meio de
dimensionamento geométrico e de calculo estrutural.

1.2   SAPATA DE FUNDAÇÃO

      Sapata de fundação é um “elemento de fundação superficial, de concreto armado,
dimensionado de modo que as tensões de tração nele resultantes sejam resistidas pelo emprego
de armadura especialmente disposta para esse fim.”

1.3   TIPOS DE SAPATAS

       Sapata Isolada: transmite ações de um único pilar, que pode estar centrado ou
excêntrico; pode ser retangular, quadrada, circular, etc., (Figura 1).




                                              h=cte                   h = var




                                         Figura 1 – Sapata isolada.


        Sapata corrida: “Sapata sujeita à ação de uma carga distribuída linearmente ou de
pilares ao longo de um mesmo alinhamento.”, (Figura 2).



           parede


                                         sapata                         OU


                           Figura 2 – Sapata corrida para apoio de parede.
UNESP – Bauru/SP – Sapatas de Fundação                                                         2

        Sapata associada: é a sapata comum a mais de um pilar, sendo também chamada sapata
combinada ou conjunta (Figura 3). Transmitem ações de dois ou mais pilares e é utilizada como
alternativa quando a distância entre duas ou mais sapatas é pequena.

                                    A



                                  VR
                         P1                      P2



             PLANTA                 A




                                                                                     Viga de
                                                                                     rigidez




             ELEVAÇÃO                                                   CORTE AA


                              Figura 3 – Sapata associada (viga de fundação).


        Viga alavanca ou viga de equilíbrio: “elemento estrutural que recebe as cargas de um
ou dois pilares (ou pontos de carga) e é dimensionado de modo a transmiti-las centradas às
fundações. Da utilização de viga de equilíbrio resultam cargas nas fundações diferentes das
cargas dos pilares nelas atuantes.” É comum em pilar de divisa onde o momento fletor
resultante da excentricidade da ação com a reação da base deve ser resistido pela “viga de
equilíbrio” (VE), Figura 4.

                                    sapata 1                                    sapata 2




                                         VA




                                         Viga alavanca (VA)




                                 Figura 4 – Sapata com viga de equilíbrio.
UNESP – Bauru/SP – Sapatas de Fundação                                                            3

       A configuração das vigas baldrames (VB) em relação à sapata pode variar, conforme
alguns casos indicados na Figura 5.



                                                                                       Viga
                                         VB
                                                                                       baldrame
                                                                                       (VB)




                                         VB




                 Figura 5 – Posicionamento da viga baldrame em relação à sapata.


1.4   DETALHES CONSTRUTIVOS

        “A base de uma fundação deve ser assente a uma profundidade tal que garanta que o
solo de apoio não seja influenciado pelos agentes atmosféricos e fluxos d’água. Nas divisas com
terrenos vizinhos, salvo quando a fundação for assente sobre rocha, tal profundidade não deve
ser inferior a 1,5 m” (NBR 6122/96, item 6.4.2). A Figura 6 mostra alguns detalhes construtivos
sugeridos para as sapatas.
             h / 3
        h0 ≥ 
             20 cm

                                                                  3 a 10 cm
                                    α




                                                                        >3
                                                                              1
                                                                                       h
                                                                                  h0




                                              Lastro de concreto simples
                                              ( ≥ 5cm, fck ≥ σsolo, rocha)

                  Figura 6 – Sugestão para alguns detalhes construtivos da sapata.


        α ≤ 30° (ângulo do talude natural do concreto fresco – não é obrigatório).


2. SAPATAS ISOLADAS

       Nas sapatas isoladas, o centro de gravidade da sapata deve coincidir com o centro de
aplicação da ação do pilar; a menor dimensão deve ser ≥ 60 cm (NBR 6122/96, 6.4.1); a relação
UNESP – Bauru/SP – Sapatas de Fundação                                                            4

entre os lados deve ser A/B ≤ 2,5. Regularmente, os lados A e B devem ser escolhidos de modo
que cA ≈ cB , mostrados na Figura 7.

        Se cA = cB :

        A – ap = B – bp

        A – B = ap – bp           ⇒          Asx ≈ Asy (ou AsA ≈ AsB)


                                                         A




                                                                           CB
                                                                           bp
                             B




                                                                           CB
                                              CA         ap        CA

                                Figura 7 – Notação para a sapata isolada.


2.1   CLASSIFICAÇÃO QUANTO À RIGIDEZ

        Conforme a NBR 6118/03 (item 22.4.1), a classificação das sapatas quanto à rigidez é:


                                                                           ap       Pilar
                                (A - a p )
        Sapata rígida:     h≥
                                    3

                                (A - a p )
                                                                                            h




        Sapata flexível: h <
                                    3
                                                                           A

                                                                 Figura 8 – Altura h da sapata.


com: h = altura da sapata (Figura 8);
     A = dimensão (lado) da sapata numa determinada direção;
     ap = dimensão do pilar na direção do lado A.

Nota: a classificação acima deve ser verificada segundo as duas direções da sapata, ou seja,
segundo as direções dos lados A e B de sapatas retangulares.
UNESP – Bauru/SP – Sapatas de Fundação                                                                5




                                                                               ap       Pilar

        Pelo CEB-70, a sapata é rígida quando:

        0,5 ≤ tg β ≤ 1,5 (26,6º ≤ β ≤ 56,3º)




                                                                                                h
                                                                           β
        tg β = h / c
                                                                        C
                                                                     Balanço

                                                                   Figura 9 – Ângulo β e balanço c.


        A sapata será considerada flexível se:

        tg β < 0,5

        tg β > 1,5 ⇒ bloco de fundação - dispensa-se a armadura de flexão porque o concreto
                      resiste a σt .


2.2   COMPORTAMENTO ESTRUTURAL
      (NBR 6118/03, 22.4.2)

2.2.1 Sapatas Rígidas

        São aquelas com alturas “grandes” e tem a preferência no projeto de fundações.

a) há flexão nas duas direções (A e B), com a tração na flexão sendo uniformemente distribuída
na largura da sapata. As armaduras de flexão AsA e AsB são distribuídas uniformemente nas
larguras A e B da sapata (Figura 10).




                                                                      Sapata
                                                                      rígida
                                                     As B




                                                 A          As A

                       Figura 10 – Armadura positiva de flexão de sapata isolada.


b) há atuação de força cortante nas duas direções (A e B), não apresentando ruptura por tração
diagonal, e sim por compressão diagonal, a ser verificada conforme o item 19.5.3.1 (Figura 11).
Não há possibilidade de punção, porque a sapata fica inteiramente dentro do cone de punção.
UNESP – Bauru/SP – Sapatas de Fundação                                                          6



                                                     Seção a ter compressão
                                                     verificada (item 19.5.3.1
                                                     da NBR6118)
                                  σI

                                   σII



                          Figura 11 – Tensões principais na sapata isolada.


2.2.2 Sapatas Flexíveis

        São aquelas com alturas “pequenas”. “Embora de uso mais raro, as sapatas flexíveis são
utilizadas para fundação de cargas pequenas e solos relativamente fracos.” (NBR 6118/03).

a) há flexão nas duas direções, mas a tração na flexão não é uniforme na largura (Figura 12);
b) há a necessidade da verificação à punção.

                                                 N




                                                                p



                                                                 M
                                                             (variável)



                            Figura 12 – Momento fletor na sapata flexível.


2.3   DISTRIBUIÇÃO DE TENSÕES NO SOLO

        As principais variáveis que afetam a distribuição de tensões são: características das
cargas aplicadas, rigidez relativa fundação-solo, propriedades do solo e intensidade das cargas.
(ver Velloso e Lopes – Fundações, v.1, ed. Oficina de Textos).
        A distribuição real não é uniforme, mas por simplicidade, na maioria dos casos, admite-se
a distribuição uniforme, o que geralmente resulta esforços solicitantes maiores (Figura 13). A
NBR 6122 (6.3.2) admite a distribuição uniforme, exceto no caso de fundações apoiadas sobre
rocha.
UNESP – Bauru/SP – Sapatas de Fundação                                                      7




                                  Rígida                                     Flexível



                                                              distribuiçao
                                  Areia                       admitida        Areia


                                                     distribuição
                                                     real


                                   Figura 13 – Distribuição de tensões no solo.


        A NBR 6118/03 (item 22.4.1) declara: “Para sapata rígida pode-se admitir plana a
distribuição de tensões normais no contato sapata-terreno, caso não se disponha de informações
mais detalhadas a respeito.”

2.4   ESTIMATIVA DAS DIMENSÕES DE SAPATAS ISOLADAS COM CARGA
      CENTRADA

      A area de apoio da sapata pode ser estimada como:

                1,05 N                               1,1N
       Ssap =                ou             Ssap =
                 σsolo                               σsolo

onde os fatores 1,05 e 1,1 estimam o peso próprio da sapata e do solo sobre a sapata.
2.4.1 Sapata com Balanços (abas) Iguais nas Duas Direções

        Conforme as dimensões mostradas na Figura 14, tem-se:

        A = 2cA + ap

        B = 2cB + bp

        Com cA = cB , fica:

        A – B = ap – bp

                                            Ssap
        Ssap = A ⋅ B → A =
                                             B

         Ssap
                − B = a p − bp
          B

        Multiplicando por B:

                         (
        Ssap − B 2 = a p − b p B    )
                1            1
        B=
                2
                 (bp − a p + )
                             4
                               bp − a p (            )2 + Ssap
UNESP – Bauru/SP – Sapatas de Fundação                                                     8

       A e B devem ser múltiplos de 5 cm. É indicado que a dimensão seja no mínimo 80 cm no
caso de sapata de edifícios, e 60 cm para sapatas de residências térreas e de dois pavimentos
(sobrado).
                                                   A




                                                                CB
                                                                bp
                             B




                                                                CB
                                            CA     ap     CA


                Figura 14 – Sapata isolada com balanços iguais nas duas direções.


2.4.2 Balanços não Iguais nas Duas Direções (cA ≠ cB)

        Neste caso recomenda-se obedecer a seguinte relação:
        A
          ≤ 3,0
        B

        Sendo R a relação entre as dimensões (Figura 15), tem-se:

         A
           =R       → A = B⋅ R
         B

        Ssap = A . B     ⇒         Ssap = R . B2

               Ssap
        B=               , com A e B múltiplos de 5 cm.
                R
                                                   A
                                                                 CB
                                                                 bp
                               B




                                                                 CB




                                           CA      ap      CA


              Figura 15 – Sapata isolada com balanços não iguais nas duas direções.
UNESP – Bauru/SP – Sapatas de Fundação                                                                                   9

2.5   PROJETO CONFORME O CEB-70

        O método proposto pelo CEB-70 pode ser aplicado a sapatas com:

                                             h
        c ≤ 2h           e            c≥
                                             2
         h
ou seja:   ≤ c ≤ 2h
         2
               h
        Se c <           →          bloco de fundação.
               2


                                                    C                                         C




                                                                h

                                 Figura 16 – Balanço c na sapata isolada.


       Admite-se que o solo tem comportamento elástico, e daí que as reações do solo sobre a
superfície de apoio da sapata seguem uma linha plana (Figura 17).


                                  M("pequeno")                                                            M("grande")

                                                 (LN fora da
                             N                     seção)                                         N

                                                               Distribuição admitida para
                                                               quando existirem tensões de
                                                               tração na base da sapata               x
                             Superfície
                             plana

                              Figura 17 – Reação do solo na base da sapata.

2.5.1 Dimensionamento da Armadura Inferior

       Os momentos fletores são calculados, para cada direção, em relação a uma seção de
referência (S1A e S1B), que dista 0,15 vezes a dimensão do pilar normal à seção de referência, e se
encontra internamente ao pilar (Figura 18).

       d1 = d ≤ 1,5cA                                                                         ap                   CA
                                                                                                               0,15 ap
                                                                                             d1




                                                                                                      S1A
                                                                                                  A

                                                                            Figura 18 – Seção de referência S1 .
UNESP – Bauru/SP – Sapatas de Fundação                                                     10

       O momento fletor é calculado levando-se em conta o diagrama de tensões no solo, entre a
seção S1 e a extremidade da sapata, como indicado na Figura 19.




                                                         S1

                                        σ2
                                                                          σ1



        Figura 19 – Diagrama para cálculo do momento fletor na seção de referência S1 .


       No cálculo da armadura de flexão que atravessa a seção S1 consideram-se as
características geométricas da seção de referência S1.
       O menor momento fletor deve ser pelo menos 1/5 do maior momento fletor, isto é, a
relação entre as armaduras de flexão ortogonais deve ser ≥ 1/5.

2.5.2 Momentos Fletores em Sapatas Isoladas com Carga Centrada

       Os momentos fletores são calculados nas seções de referência S1 , conforme indicados na
Figura 20. Supondo balanços iguais, cA = cb :

              A − ap            B − bp
       cA =            = cB =
                2                   2
                                                    ap
                                                              0,15 bp
                                        xB




                                             S1B
                                                                           bp
                                B




                                                                 0,15ap
                                        CB




                                                   S1A

                                             CA                     xA

                                                    A




                                                    N

                                                          S1A


                                                                           p


                            Figura 20 – Notações e seção de referência S1 .
UNESP – Bauru/SP – Sapatas de Fundação                                                          11

        Pressão da sapata no solo:

             1,05 N
        p=
              A.B

onde o fator 1,05 considera o peso próprio e do solo sobre a sapata. Outros valores podem ser
adotados.

        As distâncias xA e xB são:

        xA = cA + 0,15ap

        xB = cB + 0,15bp

        Áreas de referência nas duas direções (Figura 21):
        A1A = xA B

        A1B = xB A
                                                       xA
                                         A1B

                                                             xB
                                   B




                                                                  A1A
                                                  A

                                    Figura 21 – Áreas de referência.

        Resultantes da pressão (tensão) no solo (Figura 22):

        R1A = p . xA . B

        R1B = p . xB . A




                                                                                            p

                                                                                     R1A
                                                                        S1A
                                                                                   xA


                                                       Figura 22 – Resultante da pressão no solo.


        Momento fletor em cada direção:
UNESP – Bauru/SP – Sapatas de Fundação                                                              12

                                                  2
                        xA                   xA
        M1A = R 1A           ⇒ M1A = p . B
                         2                    2

                                                  2
                     xB                      xB
        M1B = R 1B           ⇒ M1B = p . A
                      2                       2

       No cálculo da armadura de flexão, embora a seção comprimida A’c seja um trapézio, o
cálculo pode ser feito simplificadamente considerando-se a seção retangular (Figura 23). Se
considerar-se o trapézio deve-se fazer σcd = 0,8 fcd .



                                                                  A'c

                                                                        LN



                                                             As

                     Figura 23 – Área de concreto comprimida pela flexão (A’c).


        Como na flexão simples, com auxílio dos coeficientes K tabelados:

                        2
               b w d1
        Kc =                 ⇒    na tabela de valores de Kc e Ks encontra-se βx , o domínio e Ks
                 Md

com bw = A ou B.

                   Md
        As = Ks       ≥ As,mín
                   d1

        Simplificadamente também pode-se fazer:

                   Md
        As =                 ≥ As,mín
               0,85d1 . f yd

       Nas sapatas de base quadrada, a armadura de flexão pode ser uniformemente distribuída
na largura da sapata.
       A armadura deve se estender de face à face e terminar com gancho nas duas
extremidades.

        Nas sapatas de base retangular, a armadura paralela ao lado menor (B) deve-se obedecer:

a) quando B ≥ ap + 2h (Figura 24):

                                                       2B
        A armadura é calculada como sendo: A s
                                                      A+B
UNESP – Bauru/SP – Sapatas de Fundação                                                        13

                                               B                      Armadura




                                               ap




                                         bp
                      B


                                               A


                          Figura 24 – Distribuição de As quando B ≥ ap + 2h.


b) no caso de B < ap + 2h (Figura 25):


        A armadura é calculada como sendo: A s
                                                         (
                                                     2 a p + 2h   )
                                                    A + a p + 2h
                                                ap + 2h




                                                    ap                Armadura
                                          bp
                     B




                                                    A

                          Figura 25 – Distribuição de As quando B < ap + 2h.


2.5.3 Ancoragem da Armadura de Flexão

1ºcaso: se a aba de comprimento c superar a altura h, a armadura deve ser ancorada a partir da
seção distante h da face do pilar, e deve se estender até as bordas da sapata (Figura 26). lb é o
comprimento de ancoragem básico, considerado sem gancho.


                                                             C>h
                             h




                                                                        lb

                                                             h

                          Figura 26 – Ancoragem da armadura quando c > h.
UNESP – Bauru/SP – Sapatas de Fundação                                                        14

2ºcaso: se o comprimento c da aba for inferior a h, a armadura deve ser totalmente ancorada na
vizinhança imediata da borda da sapata, sendo o comprimento de ancoragem medido a partir da
extremidade retilínea da barra (Figura 27).



                                               C<h


                                                              lb




                                                                   h
                         Figura 27 – Ancoragem da armadura quando c < h.


2.5.4 Força Cortante de Referência em Sapatas Isoladas com Carga Centrada

       No dimensionamento, a força cortante a ser considerada é calculada numa seção de
referencia S2 , em cada direção da sapata, perpendicular à base de apoio da sapata e distante d/2
da face do pilar em cada direção, como indicado na Figura 28.
                                                A

                                                              S2A      C2B


                                  S2B
                                                                       2
                                                                       d
                                                                       bp
                             B




                                         45°




                                                      d
                                                ap        2    C2A




                                                N
                                                                             d
                           h




                                                                       d2A
                                 h0




                                                                       p


                                                               C2A
                                                A


         Figura 28 – Seções de referência S2A e S2B relativas as duas direções da sapata.
UNESP – Bauru/SP – Sapatas de Fundação                                                      15

com:
                   h − h0 
        d 2 A = d 1 −      < 1,5c 2A
                   A −ap 
                          

                   h − h0 
        d 2 B = d 1 −      < 1,5c 2 B
                   B − bp 
                          

        No caso de sapata alongada (c > 1,5B) a seção S2 é considerada na face do pilar (Figura
29).
                                                                   C
                              B




                                                      S 2A na face do pilar



                 Figura 29 – Seção de referência S2 em sapata alongada (c > 1,5B).


        A largura b2A da seção de referência S2A é tomada conforme indicado na Figura 30.

                                                A


                                                     45°

                                               ap
                                                                       b p+ d
                                                                          b2A
                            B




                                          bp




                                                             S2A




                                               N
                                                                                       d
                                                                       d2A ≤ 1,5 C2A




                                                     d
                                                         2    C2A




                        Figura 30 – Dimensão b2A da seção de referência S2A .
UNESP – Bauru/SP – Sapatas de Fundação                                                      16

        Com relação às dimensões A e B da sapata:

        b2A = bp + d

        b2B = ap + d

2.5.5 Força Cortante Limite

       Na seção de referência S2, a força cortante de cálculo não deve ultrapassar os valores
seguintes:

                    1,5
        Vd,lim =        b 2 ⋅ d 2 ρ ⋅ f ck       , para fck em kN/cm2;
                    γC

                     0,474
        Vd ,lim =          b 2 ⋅ d 2 ρ ⋅ f ck    , para fck em MPa.
                      γC

com: Vd,lim em kN;
     γc = coeficiente de segurança do concreto;
     b2 e d2 em cm;
     ρ = taxa de armadura longitudinal da seção de referência S2 :

              AS
        ρ=           ≤ 0,01         (não se dispõe de resultados de ensaios com ρ > 1 %);
             b2 ⋅ d2

        As = área da armadura longitudinal disposta na largura b2 da seção S2 .

        Vd,lim pode ser aumentada com o acréscimo de armadura transversal.

       Se Vd ≤ Vd,lim não é necessário colocar armadura transversal. Se essa condição não
ocorrer, deve-se aumentar a altura da sapata, de modo a evitar a armadura transversal.

NOTA: se a força cortante atuante for maior que a força cortante limite, uma possibilidade para
resolver o problema é adotar uma nova altura útil para a sapata, tal que:

                          Vd
        d novo = d
                         Vd ,lim

2.6   VERIFICAÇÃO À PUNÇÃO

      A verificação das sapatas à punção se faz conforme o item 19.5 da NBR 6118/03 -
“Dimensionamento de lajes à punção”.
      A superfície de ruptura por punção está indicada na Figura 31.

                 d
        tg α =               , fazendo α = 27°
                 x

                     d                   d
        tg 27 º =             →    x=        ≅ 2d
                     x                  0,51
UNESP – Bauru/SP – Sapatas de Fundação                                                               17


                                                         pilar
                                                                      superfície de ruptura de
                                                                      uma laje por efeito de
                                     As-                              punção




                                                                        d
             α = 25º a 30º                                 x
                                                                          laje

                Figura 31 – Superfície de ruptura de uma laje por efeito de punção.



       “O modelo de cálculo corresponde à verificação do cisalhamento em duas ou mais
superfícies críticas definidas no entorno de forças concentradas. Na primeira superfície crítica
(contorno C), do pilar ou da carga concentrada, deve ser verificada indiretamente a tensão de
compressão diagonal do concreto, através da tensão de cisalhamento.” A Figura 32 ilustra as
superfícies críticas C e C’.

                                            2d                   2d                        2d



                                     C                     C                           C
                                                                         Borda livre




                     C'


                                                                                                C'
                                                           C'
                                     B. livre


                                C
                                           2d
                     B. livre




                                C'


                                      Figura 32 – Superfícies críticas C e C’.



        “Na segunda superfície crítica (contorno C’) afastada 2d do pilar ou da carga
concentrada, deve ser verificada a capacidade da ligação à punção, associada à resistência à
tração diagonal. Essa verificação também se faz através de uma seção de cisalhamento, no
entorno C’. Caso haja necessidade, a ligação deve ser reforçada por armadura transversal. A
terceira superfície crítica (contorno C”) apenas deve ser verificada quando for necessário
colocar armadura transversal.”
        No estudo aqui apresentado de punção aplicado às sapatas serão apresentados somente os
itens relacionados à dispensa da armadura transversal.
        A verificação é feita comparando a tensão de cisalhamento solicitante (τsd) nas superfícies
críticas, com a tensão de cisalhamento resistente (τRd2), dada pela NBR 6118/03 para cada
superfície crítica. Dispensa-se a armadura transversal para a punção quando τSd ≤ τRd2 .
UNESP – Bauru/SP – Sapatas de Fundação                                                         18

2.6.1 Tensão de Cisalhamento Solicitante


2.6.1.1 Pilar Interno com Carregamento Simétrico

         A tensão de cisalhamento solicitante é:

                 FSd
         τSd =
                 u ⋅d

onde:

         d=
              (d x + d y ) = altura útil da laje ao longo do contorno crítico C’;
                     2

         dx e dy são as alturas úteis nas duas direções ortogonais;
         u = perímetro do contorno crítico C’;
         u . d = área da superfície crítica;
         FSd = força ou reação concentrada, valor de cálculo.

       No caso da superfície crítica C, u deve ser trocado por u0 (perímetro do contorno C). A
força de punção FSd pode ser reduzida da força distribuída aplicada na face oposta da laje, dentro
do contorno considerado na verificação, C ou C’ (isso será mostrado no Exemplo 5).


2.6.1.2 Pilar Interno com Momento Fletor Aplicado

        Neste caso, o efeito da assimetria deve ser considerado, e a tensão de cisalhamento
solicitante é:

                 FSd K ⋅ M Sd
         τSd =        +
                 u ⋅ d Wp ⋅ d

sendo:
        K = coeficiente que representa a parcela do momento fletor MSd que é transmitida ao pilar
por cisalhamento, dependente da relação C1/C2 (ver Tabela 1);
        C1 = dimensão do pilar paralela à excentricidade da força, indicado na Figura 33;
        C2 = dimensão do pilar perpendicular à excentricidade da força.

                            Tabela 1 - Valores de K em função de C1 e C2 .
            C1/C2               0,5               1,0             2,0                3,0
             K                 0,45              0,60            0,70               0,80

Notas: - é permitida interpolação para valores intermediários da Tabela 1;
       - quando C1/C2 > 3,0 considera-se K = 0,8.

       Wp = módulo de resistência plástica do contorno C’. Pode ser calculado desprezando a
curvatura dos cantos do perímetro crítico por:
                 u
         Wp = ∫ e dl
                 0
         dl = comprimento infinitesimal no perímetro crítico u;
UNESP – Bauru/SP – Sapatas de Fundação                                                       19

        e = distância de dl ao eixo que passa pelo centro do pilar e sobre o qual atua o momento
            fletor MSd .

                  2
               C1
        Wp =      + C1 C 2 + 4C 2 d + 16d 2 + 2π d C1      (pilar retangular)
                2

        Wp = 4r 2 + 16r d + 16d 2                          (pilar circular; r = raio)
ou
                          2
        Wp = (D + 4d )             (D = diâmetro)

Nota: para pilares de borda e de canto, ver a NBR 6118/03 (item 19.5).

                                         Msd                               e1
                                                                Msd
                                   e1
                                                          Fsd                   Fsd
                  C'

                                                                  ≡
                                                c2




                              e           Fsd
                     dl
                                  c1      2d



                   Figura 33 – Sapata submetida à força normal e momento fletor.


2.6.2 Verificação de Tensão Resistente de Compressão Diagonal do Concreto na
      Superfície Crítica C
        (NBR 6118, 19.5.3.1)

      “Esta verificação deve ser feita no contorno C, em lajes submetidas à punção, com ou
sem armadura”.

        τSd ≤ τRd2

        τRd2 = 0,27αv fcd

               f 
onde α v = 1 − ck  , com fck em MPa.
            250 

        A superfície crítica C, corresponde ao contorno do pilar ou da carga concentrada, deve
ser verificada indiretamente a tensão de compressão diagonal do concreto, por meio da tensão de
cisalhamento (Figura 34).
        A tensão de cisalhamento solicitante é:
               F
        τSd = Sd
              uo d

com: FSd = força solicitante de cálculo;
UNESP – Bauru/SP – Sapatas de Fundação                                                        20

        uo = perímetro de contorno crítico C;
        uo = 2 (ap + bp)
        uo d = área da superfície crítica C;
        d = altura útil ao longo do contorno crítico C.



                                                     ap
                                                            C




                                             bp
                                                      Fsd




                                                                  d
                                                            τsd



                            Figura 34 – Tensão de cisalhamento na sapata.


2.6.3 Tensão Resistente na Superfície Crítica C’ em Elementos Estruturais ou Trechos
      sem Armadura de Punção
        (NBR 6118, 19.5.3.2)

        A tensão de cisalhamento resistente na superfície crítica C’deve ser calculada por:

                         20                1
        τ Rd1 = 0,13 1 +
                     
                              (100ρ ⋅ f ck )3
                         d 
onde:
        ρ = ρx . ρy ;


        d=
             (d x + d y ) = altura útil em C’(cm);
                 2
        ρ = taxa geométrica de armadura de flexão aderente;
        ρx e ρy = taxas de armadura nas duas direções ortogonais;

        fck em MPa.

        No caso de sapatas de fundação, a tensão de cisalhamento resistente é:

                         20  3          2d
        τ Rd1 = 0,13 1 +
                     
                              100 ρ f ck
                                            ≤ 0,5f cd 2
                         d              a*

        fcd2 = resistência de cálculo do concreto à compressão para regiões não fissuradas.

        a* ≤ 2d
UNESP – Bauru/SP – Sapatas de Fundação                                                     21

                         f 
        f cd 2 = 0,6 1 − ck  f cd      (MPa )
                      250 

        u* = 2ap + 2bp + 2πa*
                                                             Superfície C'
                                                           (perímetro = u*)




                                              a*
                                                  A


                                                  ap




                                                               d

                                         Figura 35 – Distância a*.


        Para pilares com momento fletor solicitante, τSd é:

                 FSd                   
        τ Sd =          1 + K M Sd u * 
                 u*d         W p FSd 
                                       


2.7   EXEMPLO 1 – SAPATA ISOLADA RÍGIDA
(Exemplo extraído do curso de Lauro Modesto dos Santos - “Edifícios de Concreto Armado”, 1988,
p.11-31 – Escola Politécnica da USP)

       Dimensionar uma sapata direta de fundação para um pilar com seção 20 x 75cm, sendo a
taxa admissível do solo ( σsolo ) de 2,5 kgf/cm2 (0,25 MPa), sendo também conhecidos:

        Nk = 1.303 kN                       momentos fletores Mx = My = 0
        materiais: concreto C25 , aço CA-50
        φl,pil = 20 mm (pilar interno)      γc = 1,4


Resolução

       Dimensões da sapata (Figura 36), considerando um fator de 1,1 para considerar o peso
próprio da sapata e o solo sobre a sapata:

                 1,1N k 1,1 ⋅ 1303
        Ssap =          =          = 57.332 cm 2 = 5,7332 m2
                  σsolo   0,025
UNESP – Bauru/SP – Sapatas de Fundação                                                    22

       Fazendo a sapata com balanços iguais (cA = cB = c), a dimensão do menor lado da sapata
em planta é:

              1                1
        B=      (b p − a p ) +   (b p − a p ) 2 + Ssap
              2                4

              1             1
        B=      (20 − 75) +   (20 − 75) 2 + 57332 = 213,5 cm
              2             4

como as dimensões devem ser preferencialmente valores múltiplos de 5 cm, adota-se B como o
múltiplo superior, B = 215 cm. O lado maior da sapata é:

              Ssap       57332
        A=           =         = 266,7 cm (adota-se A = 270 cm), e
                B         215

        Ssap = 270 . 215 = 58.050 cm 2

        Os balanços resultam:

                           A − ap         270 − 75
        cA = cB = c =                 =            = 97,5 cm
                              2              2

        A altura da sapata, fazendo como sapata rígida, é:

                        A − a p  270 − 75
        NBR 6118 → h ≥ 
                        3 ≥              ≥ 65 cm
                                    3

                                                                   h   h
        Pelo CEB-70: 0,5 ≤ tg β ≤ 1,5                 com tg β =     =
                                                                   c 97,5

                 h
        0,5 ≤        ≤ 1,5        →       48,8 ≤ h ≤ 146,3 cm
                97,5

        Para possibilitar a ancoragem da armadura longitudinal do pilar dentro do volume da
sapata, a altura deve ser superior ao comprimento de ancoragem da armadura do pilar:

        h ≥ l b,φ,pil

        l b,φ,pil = 53 cm (com gancho, região de boa aderência, C25, φ l ,pil = 20 mm)

        Adotando h = 90 cm ≥ l bφ,pil = 53 cm, a sapata é rígida.
UNESP – Bauru/SP – Sapatas de Fundação                                                  23


                                                               A
                                                             270cm
                                                                         xA
                                                                      108,75




                                                                                 97,5
                                                                                  CB
                              215cm




                                                                                 bp
                                                                                 20
                                B




                                                                                 97,5
                                                                                  CB
                                                    CA          ap       CA
                                                   97,5        75       97,5

                                                            0,15 ap = 11,25
                              h = 90 ≥ 30




                                                                               d = 85
                                                                               p



                  Figura 36 – Dimensões (cm) da sapata e seção de referência S1 .


        Para a altura útil pode-se considerar:

        d = h – 5 cm →                      d = 85 cm

        Pressão no solo:

             1,1N k 1,1 ⋅1303
        p=         =          = 0,0247 kN/cm2
              A ⋅ B 270 ⋅ 215

        Para aplicar o processo do CEB-70 deve-se verificar:

         h                   90
           ≤ c ≤ 2h    →        ≤ c ≤ 2 ⋅ 90
         2                    2

        45 ≤ c = 97,5 cm ≤ 180 cm                   → ok!

        Cálculo dos momentos fletores nas seções de referência S1A e S1B :

                     x2A                               x2
        M1A = p ⋅ B              ;         M1B = p ⋅ A B
                      2                                 2
        x A = c A + 0,15a p = 97,5 + 0,15 ⋅ 75 = 108,75 cm
UNESP – Bauru/SP – Sapatas de Fundação                                                24

        x B = c B + 0,15b p = 97,5 + 0,15 ⋅ 20 = 100,5 cm

                                     108,75 2
        M1A = 0,0247 . 215                    = 31.402 kN.cm
                                        2

                                     100,5 2
        M1B = 0,0247 . 270                   = 33.679 kN.cm
                                       2

        O menor momento fletor deve ser ao menos 20 % do maior:

         M1A 31402          1
            =      = 0,93 >                    → ok!
         M1B 33679          5

        A Figura 37 ilustra os momentos fletores solicitantes na sapata.
                                              A = 270
                                               31402
                           B = 215




                                                       MB
                                               MA




                                                       33679



                                                            S1A
                                                                         MB = 33679



                                                                  MA = 31402

                               Figura 37 – Momentos fletores atuantes na sapata.


        Armadura segundo a dimensão A da sapata:

        M1A,d = 1,4 . 31402 = 43.963 kN.cm

               b d 2 215 . 85 2
        kc =        =           = 35,3
               Md     43963

observe que M1A,d atua segundo a dimensão menor da sapata (lado B).

        Na tabela de kc e ks resulta: βx = 0,03 (domínio 2) e ks = 0,023.

                     M1A ,d                43963
        A sA = k s               = 0,023
                       d                    85

        AsA = 11,90 cm2

        Armadura segundo a dimensão B da sapata:
UNESP – Bauru/SP – Sapatas de Fundação                                                         25

        M1B,d = 1,4 . 33679 = 47.151 kN.cm

               270 . 85 2
        kc =              = 41,4           ⇒ β x = 0,02, dom. 2, k s = 0,023
                47151

                     M1B,d            47151
        A sB = k s            0,023
                       d               85

        AsB = 12,76 cm2

        Como opção para o cálculo da armadura tem-se a fórmula simplificada:

                     M1A ,d             43963
        A sA =                  =                    = 14,00 cm 2
                 0,85d . f yd       085 . 85 . 43,48
                     M1B,d              47151
        A sB =                  =                     = 15,00 cm 2
                 0,85d . f yd       0,85 . 85 . 43,48

      A escolha das armaduras pode ser feita com auxílio de uma tabela de armadura em laje
(cm /m). É necessário tranformar a armadura em cm2/m:
    2



                                14,00
        Na dimensão A:                = 6,51 cm2/m            (φ 10 mm c/12 cm – 6,67 cm2/m)
                                 2,15

                                15,00
        Na dimensão B:                = 5,56 cm2/m            (φ 10 mm c/14 cm – 5,71 cm2/m)
                                 2,70

        O detalhamento das armaduras está mostrado adiante.

      Verificação das forças cortantes nas seções de referência S2A e S2B, conforme as
dimensões indicadas na Figura 38.
      As forças cortantes nas seções de referência S2A e S2B são:

        VA = p B c2A                          VB = p A c2B

                 A − ap − d 270 − 75 − 85
        c 2A =                  =         = 55 cm
                    2             2
               B − b p − d 215 − 20 − 85
        c 2B =            =               = 55 cm
                   2              2
        VA = 0,0247 . 215 . 55 = 292,1 kN

        VB = 0,0247 . 270 . 55 = 366,8 kN

        As forças cortantes de cálculo, com γf = 1,4 são:

        VA,d = 1,4 . 292,1 = 408,9 kN

        VB,d = 1,4 . 366,8 = 513,5 kN
UNESP – Bauru/SP – Sapatas de Fundação                                                               26

                                                           A
                                                         270cm




                                                                  S2A




                                                                                       C2B
                                                                                  42,5 55
                                      S2B




                                                                                    2
                                                                                  d
                             215cm
                               B




                                                                                  bp
                                                                                  20
                                                           ap     d
                                                                      2    C2A
                                                          75     42,5      55




                                                                          S2A




                                                                                    85
                                                                                  58,8
                           90




                                                                                     d
                                                                                   d2A
                           h

                                 h0
                                 30




                                                                                 p = 0,0247




                                          ap     d
                                                     2
                                         75     42,5                                     d2A
                                                 S2A
               20
               bp




                                                                  105
                                                                  b2A




                                                                                               b2A
                   42,5
                2




                           S2B
               d




                                          b2B
                                         160
                          Figura 38 – Dimensões e seções de referência S2A e S2B .


        Dimensões d2Ae d2B :

              h 90
              =    = 30 cm
        h0 ≥ 3 3                         → adotado h 0 = 30 cm
             20 cm
             
UNESP – Bauru/SP – Sapatas de Fundação                                                   27


                   h − h0 
        d 2 A = d 1 −      ≤ 1,5c 2 A
                   A − ap 
                          

        1,5c 2 A = 1,5c 2 B = 1,5 ⋅ 55 = 82,5 cm

                       90 − 30 
        d 2 A = 85 1 −           = 58,8 cm ≤ 82,5 cm         → ok!
                    270 − 75  

                   h − h0 
        d 2 B = d 1 −      ≤ 1,5c 2 B
                   B − bp 
                          

                       90 − 30 
        d 2 B = 85 1 −           = 58,8 cm ≤ 82,5 cm         → ok!
                    215 − 20  

        d 2 B = d 2 A = 44,3 cm ≤ 93,8 cm → ok!

        Larguras das seções S2:

        b 2 A = b p + d = 20 + 85 = 105 cm

        b 2 B = a p + d = 75 + 85 = 160 cm

        Forças cortantes limites conforme o CEB-70:

                    0,474
        Vd ,lim =         b 2 ⋅ d 2 ⋅ ρ ⋅ f ck
                      γc

        Cálculo das taxas de armadura à flexão (ρ):

               A sA     6,67
        ρA =         =           = 0,00113 = 0,113 % ≤ 1 %
             100d 2 A 100 ⋅ 58,8
               A sB     5,71
        ρB =         =           = 0,000971 = 0,0971 % ≤ 1 %
             100d 2 B 100 ⋅ 58,8

                      0,474
        VA,d ,lim =         105 ⋅ 58,8 ⋅ 0,00113 ⋅ 25 = 352,0 kN
                       1,4

        VA,d = 408,9 > VA ,d ,lim = 352,0 kN

                      0,474
        VB,d ,lim =         160 ⋅ 58,8 ⋅ 0,000971 ⋅ 25 = 496,3 kN
                       1,4

        VB,d = 513,5 > VB,d ,lim = 496,3 kN

       A força cortante limite sugerida pelo CEB-70 é rigorosa (muito baixa), por isso, para
sapatas rígidas, Machado (1988) sugere o seguinte valor para sapatas isoladas rígidas:
UNESP – Bauru/SP – Sapatas de Fundação                                               28


                           f ck
        Vd ,lim = 0,63            b2 d 2
                           γc

        Aplicando ao exemplo:

                              25
        VA,d ,lim = 0,63           105 ⋅ 58,8 = 1.389 kN >> VA,d = 408,9 kN
                           10 ⋅1,4

      Caso se considere apenas o CEB-70, existem soluções, como aumentar o fck , as
dimensões A e B, a altura h, a quantidade de armadura de flexão, etc.

Nota: como a sapata é rígida não é necessário verificar a punção. Entretanto, a NBR 6118
recomenda verificar a tensão na diagonal de compressão (item 19.5.3.1), como mostrado a
seguir.

        Verificação da Diagonal Comprimida:

        uo = perímetro do pilar (superfície crítica C - Figura 39).

        uo = 2 (20 + 75) = 190 cm

        FSd = N Sd = γ f ⋅ N = 1,4 ⋅1303 = 1.824 kN
        (sem redução da força pela reação contrária da base da sapata)
                                                            C
                                                    75
                                             20




                                                          bp




                                                    ap
                           Figura 39 – Superfície crítica C – contorno do pilar.

        Tensão de cisalhamento atuante:

                FSd    1824
        τSd =        =         = 0,113 kN/cm2 = 1,13 MPa
                u o d 190 ⋅ 85

        Tensão de cisalhamento resistente:

                                             25  2,5
        τ Rd , 2 = 0,27α V ⋅ f cd = 0,27 1 −         = 0,43 kN/cm2 = 4,3 MPa
                                          250  1,4

        τSd = 1,13 MPa < τ Rd , 2 = 4,3 MPa

        Portanto, não irá ocorrer o esmagamento das bielas comprimidas.

Detalhamento (Figura 40)

        Como a largura da sapata (B) é próxima do comprimento A, a armadura AsB será
distribuída uniformemente no comprimento A.
        Para a armadura de flexão recomenda-se 10 cm ≤ espaçamento ≤ 20 cm.
UNESP – Bauru/SP – Sapatas de Fundação                                                                                                               29

        c = 97,5 cm > h = 90 cm

        φ 10 mm, C25, boa aderência, sem gancho: lb = 38 cm.

        cnom = 4,0 cm (cobrimento), φl,pil = 20 mm (lb = 75 cm).

        lgancho,incl ≥ 38 – [(97,5 – 4,0 – 90) + 20] ≥ 14,5 cm

                                                                                                                                     20




                                                                                                                             N2 - 19 Ø12,5 C = 285
                                                                                                                                                20
                                            AsB     N2 - 19 c/14




                                                                                             (215 - 8)/12 = 17,2
                                                   (270 - 8)/14 = 18,7




                                                                          AsA N1 - 17 c/12




                                                                                                                              AsB     205
                                                                                                                             20
                                                                                                                                     20

                                            20                       20
                                              AsA       260
                                       20




                                                                                                                   20
                                               N1 - 17 Ø12,5 C = 340


                                                                         Øl,pil
                                                                         97,5

                                                                                                    ≥ 14
                          ≥ lb Øl, pilar




                                                                                                                   ,5
                               83




                                                                                                                        30




                                                                    h = 90



                                                                            20                                          lanc ≥ lb ≥ 38 cm



                   Figura 40 – Detalhamento das armaduras de flexão da sapata.


2.8   EXERCÍCIOS PROPOSTOS

1o) Ver Alonso (1983), pg. 14 (sapata isolada). Dimensionar e detalhar as armaduras de uma
sapata para um pilar de seção 30 x 100 cm, com carga de 3000 kN, com:
σsolo = 0,3 MPa              Mx = M y = 0
C25                                        θl,pilar = 22,5 mm

2o) Resolver o Exercício 1 fazendo o pilar circular com diâmetro de 60 cm, e com a sapata de
base circular.

2.9   MÉTODO DAS BIELAS

       O método ou teoria das bielas surgiu após numerosos ensaios realizados por Lebelle
(1936), e se aplica às sapatas rígidas, corridas ou isoladas. A carga é transferida do pilar para a
UNESP – Bauru/SP – Sapatas de Fundação                                                    30

base da sapata por meio de bielas de concreto comprimido, que induzem tensões de tração na
base da sapata (Figura 41), que devem ser resistidas por armadura.



                  Biela de compressão




                                                        Armadura necessária para
                                                        resistir à força de tração


            Figura 41 – Caminhamento da carga do pilar em direção à base da sapata.


        Segundo Gerrin (1955), os ensaios mostram que não ocorre ruptura por compressão das
bielas de concreto, e sua verificação pode ser dispensada.
        A Figura 42 mostra as forças atuantes na sapata, de acordo com o método das bielas.

                                                  P

                                                  0

                                                  dN
                                                                           x
                                         y                                      dy
                                                                  dT   y
                                             d0




                                                         dT
                                                                           dx
                                                         dT   x

                                                                       dy
                                                              pd
                                                                 x

                              B                                        A




                    Figura 42 – Esquema de forças segundo o método das bielas.


       Considerando somente a direção x, como se fosse uma sapata corrida (Figura 43), tem-se
as equações:
UNESP – Bauru/SP – Sapatas de Fundação                                                        31

                                              p




                                              P




                                                                             (A - ap)
                                                                               A.d
                                                      ds



                                 β≥




                                                                        d

                                                                             d 0=
                                    45°


                                              α
                                 As                   dx


                                                                        p

                                A                          A
                                    2                          2
                                              2dP
                                          0
                                                  A
                                                                            d0

                                                                                        dN
                                                                        d
                                              α




                                                                                    α

                                         dT                                       dT
                                                           p d x = dP
                                                  x                                      dP
                              Figura 43 – Forças na direção x da sapata.

        dT = dN ⋅ cos α
        dP = dN ⋅ sen α


                dP            dP          x
        dT =         cos α =     = p ⋅ dx
               sen α         tgα          d0

                A
                    p           1 p  A2      
        Tx = ∫ 2       x ⋅ dx =         − x2 
               x    d0          2 d0  4
                                     
                                              
                                              


             1 p (A − a p )  A 2      
        Tx =                     − x2 
             2 A⋅d  4      
                                       
                                       

        Para x = 0, Tx = Tmáx :

               1 P (A − a p ) A 2                     P (A − a p )
        Tx =                            → Tx =
               2 A A⋅d 4                              8    d
UNESP – Bauru/SP – Sapatas de Fundação                                                                             32

        De forma análoga para a direção                  da sapata isolada:

               P (B − b p )
        Ty =
               8    d

        A tensão máxima na biela de compressão é obtida das relações:

               dN                                       dx
        σc =                            onde d s =
               ds                                      sen α

       A máxima compressão ocorre nas bielas mais inclinadas (α = αo) e a tensão máxima
ocorre no ponto A, onde a seção da biela é a mínima. A tensão máxima resulta:


        σc =
             P 
                1 +
                        (
                     A − ap 2 
                              
                                    )
                           2
             ap      4 − d0 
                             


        A Figura 44 mostra as armaduras de flexão da sapata, conforme o método das bielas.
                                            A

                                            y


                                            ap

                                                                    x
                                                                            P
                               bp
            B




                                                                                                      Asy ou AsB



                                                                                         1
                                                                                     d ≥ 2 (B - bp)
                                                P
                                                                    d ≥ 2 (A - ap)
                h




                                                                        1




                                                    Asx ou AsA


                                Figura 44 – Armaduras de flexão da sapata.


        As armaduras são:

                        Txd                                         Tyd
        A sx = A sA =                   ;           A sy = A sB =
                        f yd                                        f yd

        Levando-se em consideração as duas direções, a tensão máxima na biela é:
UNESP – Bauru/SP – Sapatas de Fundação                                                         33


                                                             
                                   (      ) (
                                             2
                                                          )
                                                          2   
        σ c,máx   =
                          p      1 + A − a p + B − b p       
                    λ ⋅ a p ⋅ bp           1  2
                                                   2          
                                        4       d0         
                                 
                                          1− λ             
                                                              

                     ap       bP
        Onde λ =          =      (áreas hometéticas).
                      A       B

        No caso particular de sapatas (e pilares) quadradas:

                                          
                                             2

                       p      1  A−a  
                                         p
        σ c,máx   =          1 +          
                    λ ⋅A ⋅ap  2  1
                                      d0  
                                           
                                  1− λ     


2.9.1 Exemplo 2 - Sapata Isolada Rígida

       Calcular as armaduras de flexão da sapata do Exemplo 1 pela “Teoria ou Método das
Bielas”.

Resolução

        Verificação do ângulo β:

                      d               85         85
        tg β =                 =              =      = 0,8718 → β = 41,1º < 45º → não ok!
                  1              1              97,5
                    (A − a p )     (270 − 75)
                  2              2

portanto, a altura útil da sapata deve ser aumentada para um valor igual ou superior a 97,5 cm, de
modo a resultar um ângulo β igual ou superior a 45°. Considerando h = 105 cm e d = 100 cm
tem-se:

                  100
        tg β =         = 1,0256 → β = 45,7 º ≥ 45º → ok!
                  97,5

        Forças de tração:

               P (A − a p ) 1,1 ⋅1303 (270 − 75)
        Tx =               =         ⋅           = 349,4 kN
               8    d            8       100

               P (B − b p ) 1,1 ⋅1303 (270 − 75)
        Ty =               =         ⋅           = 349,4 kN
               8    d            8       100

                          1,4 ⋅ 349,4
        A sx = A sA =                 = 11,25 cm2 = Asy = AsB
                               50
                             1,15
UNESP – Bauru/SP – Sapatas de Fundação                                                    34

        A NBR 6118 recomenda verificar a tensão na diagonal comprimida (item 19.5.3.1), como
feito no Exemplo 1, porém, para as sapatas rígidas com ângulo β igual ou superior a 45°, não
deve ocorrer esmagamento da diagonal comprimida.

2.10 SAPATAS ISOLADAS SOB AÇÕES EXCÊNTRICAS

       Excentricidades nas sapatas podem ser causadas pela existência de momentos fletores ou
força horizontal no pilar, como também pela carga vertical, quando aplicada fora do centro de
gravidade da base da sapata, como as sapatas de divisa (Figura 45).


                                                                                  M
                        e
           divisa




                                                                    H
                    N                                                       N




                                                                   MA



                                                HA             N
                            MB



                                      N




                                                                           B




                                                               A
                                         HB




                            Figura 45 – Sapatas isoladas sob ações excêntricas.


2.10.1 Excentricidade em Uma Direção

a) Ponto de aplicação da força dentro do núcleo central de inércia (Figura 46)

                                 A
        Ocorre quando e <          . Tem-se:
                                 6
UNESP – Bauru/SP – Sapatas de Fundação                                                                 35


                                     e
                                                                                 N    M⋅y
                                             N                             σ=       ±
                                                                                A⋅B    I

                                                                                      N      6e
           σmín                                                            σ máx =       (1 + )
                                                                                     A⋅B     A
                                                        σmáx
                                                                                      N      6e
                                                                           σ máx =       (1 − )
                                                                                     A⋅B     A
                                 A




                                                 6
                                             B
        B




                                  A               N
                  núcleo                 6



   Figura 46 – Ponto de aplicação da força dentro do
               núcleo central de inércia.

                                                                                     A
b) Ponto de aplicação da força no limite do núcleo central (e =                        ) (Figura 47)
                                                                                     6

                        A
                                                                            N
                                                               σ máx = 2
                                                                           A⋅B
                         A
                             6


                                     N




                                                 σmáx

  Figura 47 – Ponto de aplicação da força no
           limite do núcleo central.

                                                                            A
c) Ponto de aplicação da força fora do núcleo central (e >                    ) (Figura 48)
                                                                            6

       Parte da base da sapata (e solo) fica sob tensões de tração (σmín < 0). Neste caso, um novo
diagrama triangular é adotado, excluindo-se a zona tracionada, e com o CG (CP) do triângulo
coincidente com o limite do novo núcleo central. A tensão de compressão máxima aumenta para:
UNESP – Bauru/SP – Sapatas de Fundação                                                   36


                          A
                                                                             2N
                                                               σ máx =
                            A                                               A    
                                6                                        3B  − e 
       B
                                                                            2    

                                            N
                                e



         σmín          LN

                                                σmáx, 1

                        3(A/2 - e)
                            A0


                                                σmáx
                 LN




                              A0
                                    6

 Figura 48 – Ponto de aplicação da força fora
              do núcleo central.


2.10.2 Excentricidade nas Duas Direções

       A Figura 49 mostra o desenho em planta de uma sapata com excentricidades nas duas
direções.
                                                               A

                                                               y
                                                                          N
                                                          eB




                                                                              x
                                        B




                                                                   eA




                      Figura 49 – Sapata com excentricidade nas duas direções.

        O equilíbrio é obtido com as pressões atuando em apenas uma parte da área da base da
sapata, e:
             N      M ⋅y M ⋅x
        σ=       ± B ± A
            A⋅B       I        I
UNESP – Bauru/SP – Sapatas de Fundação                                                                  37




                                     MB                                                            MA

              HB                                                          HA
                              N                                                         N




                              B                                                         A


                     Figura 50 – Forças e momentos fletores atuantes na sapata.


        M A ' base = M A + H A ⋅ h                        ,       M B' base = M B + H B ⋅ h

               MA                         MB
        eA =             ,         eB =
               N                          N

              eA eB 1
a) Quando       +  ≤  (Figura 51)
              A   B 6

                                               A

                                               y
                                                              N
                                          eB




                                                   CG             x
                         B




                                                    eA



                                                                                               x
                                                                                        σ má




                                                      n
                                               σ mí

                                                                           eA eB 1
                             Figura 51 – Tensões na sapata para              +  ≤ .
                                                                           A   B 6

                 N  6e A 6e B 
        σ máx =        1+    +
                A⋅B      A    B 
                 N  6e A 6e B 
        σ min =       1−     −
                A⋅B      A    B 
        (toda seção seta comprimida)
UNESP – Bauru/SP – Sapatas de Fundação                                                   38

                eA eB 1
b) Quando         +  >  (Figura 52)
                A   B 6

                                            seção
                                            comprimida
                              3 y                                 1
                                                              N




                                         eB
                         B
                                                         eA
                                    α
                                                                   x
                              4                 A                 2                  x
                                                                              σ má




                                                     n
                                              σ mí
                                                                       eA eB 1
                          Figura 52 – Tensões na sapata para             +  > .
                                                                       A   B 6

                           N
        σ máx = σ1 =
                       K1 ⋅ A ⋅ B

        σmín = σ4 = K4 σ1           (fictício, não considerado)

        σmín = σ4 < 0

        K1 e K4 são determinadas no ábaco mostrado na Figura 53.
        Num ponto qualquer de coordenadas (x, y) a tensão é:

                                    x y B    
                                     +  tg α 
                                    A B A    
        σ mín   = σ 4 + (σ1 − σ 4 )
                                        B
                                     1 + tg α
                                        A
UNESP – Bauru/SP – Sapatas de Fundação                                                   39




  Figura 53 – Ábaco para determinação das tensões máximas nas sapatas retangulares rígidas
                    para ação com dupla excentricidade (Montoya, 1973).
UNESP – Bauru/SP – Sapatas de Fundação                                                                            40

Notas:
- Em todos os casos analisados deve-se ter, para a combinação de carregamento mais
desfavorável, σ máx = 1,3 σsolo ;
- Para as cargas permanentes atuantes sobre a sapata, a base da sapata deve estar inteiramente
comprimida, isto é:

         e A ,g        e B, g       1
                  +             ≤           (G = peso próprio e solo sobre a sapata - Figura 54).
          A             B           6




                                                  Gs1                         Gs2

                                                        Gb1             Gb2



     Figura 54 – Forças representativas do peso próprio da sapata e do solo sobre a sapata.


- Para garantir a segurança contra tombamento da sapata, na condição mais desfavorável, pelo
menos a metade da base da sapata deve estar comprimida, o que se consegue fazendo:

                   2                2
         eA   eB  1
          +  ≤
        A B       9

2.11 EXEMPLO 3 – Sapata Isolada sob Força Normal e um Momento Fletor
(Exemplo extraído de Newton C. P. Ferro, Notas de Aula, 2005, Departamento de Engenharia Civil,
UNESP – Bauru/SP)

      Para um pilar de 20 x 60 cm submetido a uma força de compressão de 820 kN e um
momento fletor atuando em torno do eixo paralelo ao menor lado do pilar de 6200 kN.cm,
dimensionar a fundação em sapata isolada, sendo conhecidos:

concreto C25, aço CA-50, σsolo = 0,022 kN/cm² (0,22 MPa), armadura do pilar: 10 φ 12,5 mm.

Resolução

1) Calculo das dimensões (em planta) da sapata, sem considerar o efeito do momento fletor.

        Área do apoio da sapata:

                      1,1N 1,1 ⋅ 820
        Ssap =              =        = 41.000 cm2
                      σsolo   0,022

        Dimensão em planta da sapata, com abas (balanços - c) iguais nas duas direções:

                  1            1                                  1
        B=         (bp − a p +      )   (
                                 bp − a p         )2 + Ssap   =     (20 − 60) + 1 (20 − 60)2 + 41000 = 183,5 cm
                  2            4                                  2             4

adotando um valor múltiplo de 5 cm: B = 185 cm.
UNESP – Bauru/SP – Sapatas de Fundação                                                                     41

        A – ap = B – bp

        A = ap – bp + B = 60 – 20 + 185 = 225 cm

        Tensões na base da sapata (Figura 55):

              N    M⋅y
        σ=       ±
             A⋅B    I

             A                           B ⋅ A3
        y=               ;        I=
             2                            12

              M     6200
        e=       =          = 6,9 cm
             1,1N 1,1 ⋅ 820

         A 225
           =   = 37,5 cm
         6   6

                    A
        e = 6,9 <     = 37,5 cm          →        a força está aplicada dentro do núcleo central de inércia.
                    6

                  1,1 ⋅ 820  6 ⋅ 6,9                2
        σ máx =             1 +       = 0,0257 kN/cm > σ solo = 0,022              ∴ não ok!
                  225 ⋅185      225 

        Aumentando a seção da base da sapata para:

        A = 240 cm       ;        B = 200 cm

        Obedecendo:

        A − B = a p − bp          →          240 – 200 = 60 – 20

        A tensão máxima passa a ser : σmáx = 0,022 kN/cm2 = σ solo → ok!

                  1,1 ⋅ 820      6 ⋅ 6,9
        σ mín =             (1 −         ) = 0,0156 kN/cm2 > 0 (como esperado!)
                  240 ⋅ 200       240
UNESP – Bauru/SP – Sapatas de Fundação                                                    42



                                                       M
                                                               60




                                                                         185
                                               20
                                                       225




                                                                    M


                                                           N




                                                                        1,1N
                                                                         AB



                                                                         My
                                                                          I




                                  0,0156
                                                                        0,0220



                    Figura 55 – Dimensões da sapata e esquema da reação do solo.


2) Altura da sapata

        Fazendo como sapata rígida, conforme o CEB-70:

                                     A − ap        240 − 60
        0,5 ≤ tg β ≤ 1,5 → c =                 =            = 90 cm
                                           2          2

                h
        0,5 ≤      ≤ 1,5 → 45 ≤ h ≤ 135 cm
                90

        Pelo critério da NBR 6118/03:

             A − ap       240 − 60
        h≥            ≥            ≥ 60 cm
                3            3

       É importante definir a altura da sapata também em função do comprimento de ancoragem
da armadura longitudinal do pilar (10 φ 12,5 mm): considerando situação de boa aderência, com
gacho, C25, CA-50 (nervurado): lb = 33 cm.

        Adotado h = 60 cm > lb = 33 cm (sapata rígida)

3) Cálculo dos momentos fletores e forças cortantes segundo o CEB-70
UNESP – Bauru/SP – Sapatas de Fundação                                                                                43

                         h                        60
          Verificação:     ≤ c ≤ 2h          →       ≤ c ≤ 2 ⋅ 60
                         2                        2

          30 ≤ c = 90 ≤ 120 cm                   → ok!

          Momentos fletores nas seções de referência S1 (Figura 56):

                           A
                         240cm




                                                   CB
                                                   90
  200cm




                                                   bp
                                                   20
    B




                                                   CB
                                                   90                                     99

                CA        ap            CA
                                                                    0,01936
                90        60            90                                                                    0,022
                                                                                               P1A
                         0,15 ap = 9




                                                                                       1,917

                                                                                                 0,131
                                        xa                                        66                     33
                                       99                                      49,5                  49,5
                                                  55
   60




                                                   d
   h




                                S1A




  0,0156
                          P1A                     0,022
                                                 KN
                                                     cm²

                                       Figura 56 – Seção de referência S1A .


          Dimensão A:

          p1A = 0,022 −
                          (0,022 − 0,0156) 99 = 0,01936             kN/cm2 (ver Figura 56)
                                      240

          M1A = (1,917 ⋅ 49,5 + 0,132 ⋅ 66) 200 = 20.708 kN.cm

          Dimensão B (considerando a pressão média e diagrama retangular – ver Figura 57):

                    0,022 + 0,0156
          p méd =                  = 0,0188 kN/cm2
                           2

                      x2B                (90 + 0,15 ⋅ 20) 2
          M1B   = p⋅A     = 0,0188 ⋅ 240                    = 19.512 kN.cm
                       2                         2

          Armaduras de flexão:
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação
Dimensionamento de Sapatas de Fundação

Weitere ähnliche Inhalte

Was ist angesagt?

Muros de arrimo, dimensionamento e detalhamento
Muros de arrimo, dimensionamento e detalhamentoMuros de arrimo, dimensionamento e detalhamento
Muros de arrimo, dimensionamento e detalhamentorubensmax
 
Cálculo da capacidade de carga de fundações em estacas pelo SPT
Cálculo da capacidade de carga de fundações em estacas pelo SPTCálculo da capacidade de carga de fundações em estacas pelo SPT
Cálculo da capacidade de carga de fundações em estacas pelo SPTEngenheiro No Canteiro
 
Aula 9 formas-escoras
Aula 9   formas-escorasAula 9   formas-escoras
Aula 9 formas-escorasAlex_123456
 
1. noções básicas de estrutura
1. noções básicas de estrutura1. noções básicas de estrutura
1. noções básicas de estruturaWillian De Sá
 
Ftool Para Iniciantes
Ftool Para IniciantesFtool Para Iniciantes
Ftool Para Iniciantesguestd69150e
 
Fundações tipos e equipamentos
Fundações   tipos e equipamentosFundações   tipos e equipamentos
Fundações tipos e equipamentosNicodemos Mendes
 
Questoes sistemas 1 22 a 33
Questoes sistemas 1   22 a 33Questoes sistemas 1   22 a 33
Questoes sistemas 1 22 a 33stephaneosorio
 
Apostila de concreto armado
Apostila de concreto armadoApostila de concreto armado
Apostila de concreto armadoAugusto Costa
 
Pilares - REPRESENTAÇÃO GRAFICA
Pilares - REPRESENTAÇÃO GRAFICAPilares - REPRESENTAÇÃO GRAFICA
Pilares - REPRESENTAÇÃO GRAFICAguidify
 
2. forças que atuam nas estruturas
2. forças que atuam nas estruturas2. forças que atuam nas estruturas
2. forças que atuam nas estruturasWillian De Sá
 
Concreto reservatorio elevado
Concreto reservatorio elevadoConcreto reservatorio elevado
Concreto reservatorio elevadoPaulo Marcelo
 
Ensaios e Investigações Geotécnicas: SPT e CPT
Ensaios e Investigações Geotécnicas: SPT e CPTEnsaios e Investigações Geotécnicas: SPT e CPT
Ensaios e Investigações Geotécnicas: SPT e CPTCaio Talarico
 
Mecânicas dos Solos (exercícios)
Mecânicas dos Solos (exercícios)Mecânicas dos Solos (exercícios)
Mecânicas dos Solos (exercícios)Danilo Max
 

Was ist angesagt? (20)

1 lajes -
1  lajes -1  lajes -
1 lajes -
 
Muros de arrimo, dimensionamento e detalhamento
Muros de arrimo, dimensionamento e detalhamentoMuros de arrimo, dimensionamento e detalhamento
Muros de arrimo, dimensionamento e detalhamento
 
Cálculo da capacidade de carga de fundações em estacas pelo SPT
Cálculo da capacidade de carga de fundações em estacas pelo SPTCálculo da capacidade de carga de fundações em estacas pelo SPT
Cálculo da capacidade de carga de fundações em estacas pelo SPT
 
Aula 9 formas-escoras
Aula 9   formas-escorasAula 9   formas-escoras
Aula 9 formas-escoras
 
1. noções básicas de estrutura
1. noções básicas de estrutura1. noções básicas de estrutura
1. noções básicas de estrutura
 
Sapatas
SapatasSapatas
Sapatas
 
Sistema construtivo
Sistema construtivoSistema construtivo
Sistema construtivo
 
Ftool Para Iniciantes
Ftool Para IniciantesFtool Para Iniciantes
Ftool Para Iniciantes
 
Aula 1 concreto armado
Aula 1 concreto armado Aula 1 concreto armado
Aula 1 concreto armado
 
Fundações tipos e equipamentos
Fundações   tipos e equipamentosFundações   tipos e equipamentos
Fundações tipos e equipamentos
 
Questoes sistemas 1 22 a 33
Questoes sistemas 1   22 a 33Questoes sistemas 1   22 a 33
Questoes sistemas 1 22 a 33
 
Sapatas 1
Sapatas 1Sapatas 1
Sapatas 1
 
Apostila de concreto armado
Apostila de concreto armadoApostila de concreto armado
Apostila de concreto armado
 
Pilares - REPRESENTAÇÃO GRAFICA
Pilares - REPRESENTAÇÃO GRAFICAPilares - REPRESENTAÇÃO GRAFICA
Pilares - REPRESENTAÇÃO GRAFICA
 
Trabalho lajes
Trabalho lajesTrabalho lajes
Trabalho lajes
 
2. forças que atuam nas estruturas
2. forças que atuam nas estruturas2. forças que atuam nas estruturas
2. forças que atuam nas estruturas
 
Concreto reservatorio elevado
Concreto reservatorio elevadoConcreto reservatorio elevado
Concreto reservatorio elevado
 
VIGAS-Flexao simples-exemplo completo
VIGAS-Flexao simples-exemplo completoVIGAS-Flexao simples-exemplo completo
VIGAS-Flexao simples-exemplo completo
 
Ensaios e Investigações Geotécnicas: SPT e CPT
Ensaios e Investigações Geotécnicas: SPT e CPTEnsaios e Investigações Geotécnicas: SPT e CPT
Ensaios e Investigações Geotécnicas: SPT e CPT
 
Mecânicas dos Solos (exercícios)
Mecânicas dos Solos (exercícios)Mecânicas dos Solos (exercícios)
Mecânicas dos Solos (exercícios)
 

Ähnlich wie Dimensionamento de Sapatas de Fundação

Ähnlich wie Dimensionamento de Sapatas de Fundação (20)

Unesp cap. 1 - sapatas
Unesp   cap. 1 - sapatasUnesp   cap. 1 - sapatas
Unesp cap. 1 - sapatas
 
Lajes 02-critérios de projeto
Lajes 02-critérios de projetoLajes 02-critérios de projeto
Lajes 02-critérios de projeto
 
Fundações 03-critérios de projeto
Fundações 03-critérios de projetoFundações 03-critérios de projeto
Fundações 03-critérios de projeto
 
Lajes
LajesLajes
Lajes
 
Lajes
LajesLajes
Lajes
 
Calculo viga ponte
Calculo viga ponteCalculo viga ponte
Calculo viga ponte
 
Trabalho de redes
Trabalho de redesTrabalho de redes
Trabalho de redes
 
Administração de Sistema Unix
Administração de Sistema UnixAdministração de Sistema Unix
Administração de Sistema Unix
 
Trabalho sobre rebites
Trabalho sobre rebitesTrabalho sobre rebites
Trabalho sobre rebites
 
Pilar 03-critérios de projeto
Pilar 03-critérios de projetoPilar 03-critérios de projeto
Pilar 03-critérios de projeto
 
Access 2007 basico
Access 2007 basicoAccess 2007 basico
Access 2007 basico
 
64805565 access-basico
64805565 access-basico64805565 access-basico
64805565 access-basico
 
Apostila projeto estrutural - soeiro
Apostila projeto estrutural - soeiroApostila projeto estrutural - soeiro
Apostila projeto estrutural - soeiro
 
Sistemas2
Sistemas2Sistemas2
Sistemas2
 
Apostila agregados e aglomerantes.pdf
Apostila agregados e aglomerantes.pdfApostila agregados e aglomerantes.pdf
Apostila agregados e aglomerantes.pdf
 
Manual de instalacao Injepro de 35 paginas.pdf
Manual de instalacao Injepro de 35 paginas.pdfManual de instalacao Injepro de 35 paginas.pdf
Manual de instalacao Injepro de 35 paginas.pdf
 
Exemplos 01-manual do usuário
Exemplos 01-manual do usuárioExemplos 01-manual do usuário
Exemplos 01-manual do usuário
 
Projetopiscinas
ProjetopiscinasProjetopiscinas
Projetopiscinas
 
Tqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porteTqs 01-epp-edificações de pequeno porte
Tqs 01-epp-edificações de pequeno porte
 
Guia de estudo 101 completo
Guia de estudo 101   completoGuia de estudo 101   completo
Guia de estudo 101 completo
 

Mehr von Jailson1212

Desenho retangulo1
Desenho retangulo1Desenho retangulo1
Desenho retangulo1Jailson1212
 
Proteção da bomba model-cota
Proteção da bomba model-cotaProteção da bomba model-cota
Proteção da bomba model-cotaJailson1212
 
Proteção model
Proteção modelProteção model
Proteção modelJailson1212
 
Curso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.comCurso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.comJailson1212
 
Curso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.comCurso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.comJailson1212
 

Mehr von Jailson1212 (9)

Dds 50 temas
Dds 50 temasDds 50 temas
Dds 50 temas
 
Desenho retangulo1
Desenho retangulo1Desenho retangulo1
Desenho retangulo1
 
Proteção da bomba model-cota
Proteção da bomba model-cotaProteção da bomba model-cota
Proteção da bomba model-cota
 
Proteção model
Proteção modelProteção model
Proteção model
 
Tubulação 1
Tubulação 1Tubulação 1
Tubulação 1
 
Tubulação 1
Tubulação 1Tubulação 1
Tubulação 1
 
Tubulação ind
Tubulação indTubulação ind
Tubulação ind
 
Curso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.comCurso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.com
 
Curso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.comCurso básico de eletrônica 109 pag poluidor.blogspot.com
Curso básico de eletrônica 109 pag poluidor.blogspot.com
 

Dimensionamento de Sapatas de Fundação

  • 1. UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus de Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil Disciplina: 2133 - ESTRUTURAS DE CONCRETO III NOTAS DE AULA SAPATAS DE FUNDAÇÃO Prof. Dr. PAULO SÉRGIO DOS SANTOS BASTOS (wwwp.feb.unesp.br/pbastos) Bauru/SP Agosto/2012
  • 2. APRESENTAÇÃO Esta apostila tem o objetivo de servir como notas de aula na disciplina 2133 – Estruturas de Concreto III, do curso de Engenharia Civil da Faculdade de Engenharia, da Universidade Estadual Paulista - UNESP – Campus de Bauru. O texto apresenta o dimensionamento das sapatas de fundação, conforme os procedimentos contidos na NBR 6118/2003 - “Projeto de estruturas de concreto – Procedimento”. Agradecimentos ao técnico Tiago Duarte de Mattos, pela confecção dos desenhos, e ao aluno Lucas F. Sciacca, pelo auxílio na digitação do texto. Esta é a primeira versão da apostila, e críticas e sugestões serão muito bem-vindas.
  • 3. SUMÁRIO 1. DEFINIÇÕES...........................................................................................................................1 1.1 FUNDAÇÃO SUPERFICIAL............................................................................................1 1.2 SAPATA DE FUNDAÇÃO ...............................................................................................1 1.3 TIPOS DE SAPATAS ........................................................................................................1 1.4 DETALHES CONSTRUTIVOS ........................................................................................3 2. SAPATAS ISOLADAS............................................................................................................3 2.1 CLASSIFICAÇÃO QUANTO À RIGIDEZ ......................................................................4 2.2 COMPORTAMENTO ESTRUTURAL.............................................................................5 2.2.1 Sapatas Rígidas ...........................................................................................................5 2.2.2 Sapatas Flexíveis .........................................................................................................6 2.3 DISTRIBUIÇÃO DE TENSÕES NO SOLO.....................................................................6 2.4 ESTIMATIVA DAS DIMENSÕES DE SAPATAS ISOLADAS COM CARGA CENTRADA .................................................................................................................................7 2.4.1 Sapata com Balanços (abas) Iguais nas Duas Direções ..............................................7 2.4.2 Balanços não Iguais nas Duas Direções (cA ≠ cB).......................................................8 2.5 PROJETO CONFORME O CEB-70..................................................................................9 2.5.1 Dimensionamento da Armadura Inferior ....................................................................9 2.5.2 Momentos Fletores em Sapatas Isoladas com Carga Centrada.................................10 2.5.3 Ancoragem da Armadura de Flexão..........................................................................13 2.5.4 Força Cortante de Referência em Sapatas Isoladas com Carga Centrada.................14 2.5.5 Força Cortante Limite ...............................................................................................16 2.6 VERIFICAÇÃO À PUNÇÃO ..........................................................................................16 2.6.1 Tensão de Cisalhamento Solicitante .........................................................................18 2.6.2 Verificação de Tensão Resistente de Compressão Diagonal do Concreto na Superfície Crítica C..................................................................................................................19 2.6.3 Tensão Resistente na Superfície Crítica C’ em Elementos Estruturais ou Trechos sem Armadura de Punção ........................................................................................................20 2.7 EXEMPLO 1 – SAPATA ISOLADA RÍGIDA ...............................................................21 2.8 EXERCÍCIOS PROPOSTOS ...........................................................................................29 2.9 MÉTODO DAS BIELAS .................................................................................................29 2.9.1 Exemplo 2 - Sapata Isolada Rígida ...........................................................................33 2.10 SAPATAS ISOLADAS SOB AÇÕES EXCÊNTRICAS.............................................34 2.10.1 Excentricidade em Uma Direção...............................................................................34 2.10.2 Excentricidade nas Duas Direções ............................................................................36 2.11 EXEMPLO 3 – Sapata Isolada sob Força Normal e um Momento Fletor....................40 2.12 EXEMPLO 4 – SAPATA ISOLADA SOB FLEXÃO OBLÍQUA ..............................48 2.13 SAPATA ISOLADA FLEXÍVEL SOB CARGA CENTRADA..................................54 2.14 VERIFICAÇÃO DE SAPATA FLEXÍVEL À FORÇA CORTANTE QUANDO bW ≥ 5d 56 2.15 EXEMPLO 5 – Sapata Flexível....................................................................................57 3. SAPATA CORRIDA .............................................................................................................62 3.1 SAPATA CORRIDA RÍGIDA SOB CARGA UNIFORME ...........................................64 3.2 SAPATA CORRIDA FLEXÍVEL SOB CARGA LINEAR UNIFORME ......................65 3.3 EXEMPLO 6 – SAPATA CORRIDA RÍGIDA...............................................................67 3.4 EXERCÍCIO PROPOSTO ...............................................................................................69
  • 4. 3.5 EXEMPLO 7 – SAPATA CORRIDA FLEXÍVEL..........................................................69 3.6 EXERCÍCIO PROPOSTO ...............................................................................................73 4. VERIFICAÇÃO DA ESTABILIDADE DAS SAPATAS...................................................74 5. VERIFICAÇÃO DO ESCORREGAMENTO DA ARMADURA DE FLEXÃO EM SAPATAS.......................................................................................................................................75 6. SAPATA NA DIVISA COM VIGA DE EQUILÍBRIO .....................................................76 6.1 ROTEIRO DE CÁLCULO...............................................................................................78 6.2 ESFORÇOS SOLICITANTES NA VIGA DE EQUILÍBRIO.........................................78 6.3 PRÉ-DIMENSIONAMENTO DA VIGA DE EQUILÍBRIO ..........................................81 6.4 DIMENSIONAMENTO DA SAPATA DA DIVISA ......................................................81 6.5 EXEMPLO 8 ....................................................................................................................83 6.6 TAREFA...........................................................................................................................90 6.7 VIGA ALAVANCA NÃO NORMAL À DIVISA ..........................................................90 6.8 EXERCÍCIO PROPOSTO ...............................................................................................91 7. SAPATA EXCÊNTRICA DE DIVISA ................................................................................92 8. SAPATA ASSOCIADA (CONJUNTA, CONJUGADA)....................................................95 8.1 SAPATA RETANGULAR...............................................................................................95 8.2 VERIFICAÇÕES E DIMENSIONAMENTO..................................................................98 8.3 SAPATA DE FORMA TRAPEZOIDAL.......................................................................100 8.4 SAPATA ASSOCIADA COM VIGA DE RIGIDEZ ....................................................101 8.5 EXEMPLO 9 ..................................................................................................................102 9. QUESTIONÁRIO ................................................................................................................111 10. RERERÊNCIAS BIBLIOGRÁFICAS ..............................................................................112
  • 5. UNESP – Bauru/SP – Sapatas de Fundação 1 1. DEFINIÇÕES As definições apresentadas a seguir tomam como base a norma NBR 6122/2010. 1.1 FUNDAÇÃO SUPERFICIAL A fundação superficial é também chamada fundação rasa ou direta. É definida como: “elemento de fundação em que a carga é transmitida ao terreno pelas tensões distribuídas sob a base da fundação, e a profundidade de assentamento em relação ao terreno adjacente à fundação é inferior a duas vezes a menor dimensão da fundação.” Quanto ao dimensionamento, as fundações superficiais devem ser definidas por meio de dimensionamento geométrico e de calculo estrutural. 1.2 SAPATA DE FUNDAÇÃO Sapata de fundação é um “elemento de fundação superficial, de concreto armado, dimensionado de modo que as tensões de tração nele resultantes sejam resistidas pelo emprego de armadura especialmente disposta para esse fim.” 1.3 TIPOS DE SAPATAS Sapata Isolada: transmite ações de um único pilar, que pode estar centrado ou excêntrico; pode ser retangular, quadrada, circular, etc., (Figura 1). h=cte h = var Figura 1 – Sapata isolada. Sapata corrida: “Sapata sujeita à ação de uma carga distribuída linearmente ou de pilares ao longo de um mesmo alinhamento.”, (Figura 2). parede sapata OU Figura 2 – Sapata corrida para apoio de parede.
  • 6. UNESP – Bauru/SP – Sapatas de Fundação 2 Sapata associada: é a sapata comum a mais de um pilar, sendo também chamada sapata combinada ou conjunta (Figura 3). Transmitem ações de dois ou mais pilares e é utilizada como alternativa quando a distância entre duas ou mais sapatas é pequena. A VR P1 P2 PLANTA A Viga de rigidez ELEVAÇÃO CORTE AA Figura 3 – Sapata associada (viga de fundação). Viga alavanca ou viga de equilíbrio: “elemento estrutural que recebe as cargas de um ou dois pilares (ou pontos de carga) e é dimensionado de modo a transmiti-las centradas às fundações. Da utilização de viga de equilíbrio resultam cargas nas fundações diferentes das cargas dos pilares nelas atuantes.” É comum em pilar de divisa onde o momento fletor resultante da excentricidade da ação com a reação da base deve ser resistido pela “viga de equilíbrio” (VE), Figura 4. sapata 1 sapata 2 VA Viga alavanca (VA) Figura 4 – Sapata com viga de equilíbrio.
  • 7. UNESP – Bauru/SP – Sapatas de Fundação 3 A configuração das vigas baldrames (VB) em relação à sapata pode variar, conforme alguns casos indicados na Figura 5. Viga VB baldrame (VB) VB Figura 5 – Posicionamento da viga baldrame em relação à sapata. 1.4 DETALHES CONSTRUTIVOS “A base de uma fundação deve ser assente a uma profundidade tal que garanta que o solo de apoio não seja influenciado pelos agentes atmosféricos e fluxos d’água. Nas divisas com terrenos vizinhos, salvo quando a fundação for assente sobre rocha, tal profundidade não deve ser inferior a 1,5 m” (NBR 6122/96, item 6.4.2). A Figura 6 mostra alguns detalhes construtivos sugeridos para as sapatas. h / 3 h0 ≥  20 cm 3 a 10 cm α >3 1 h h0 Lastro de concreto simples ( ≥ 5cm, fck ≥ σsolo, rocha) Figura 6 – Sugestão para alguns detalhes construtivos da sapata. α ≤ 30° (ângulo do talude natural do concreto fresco – não é obrigatório). 2. SAPATAS ISOLADAS Nas sapatas isoladas, o centro de gravidade da sapata deve coincidir com o centro de aplicação da ação do pilar; a menor dimensão deve ser ≥ 60 cm (NBR 6122/96, 6.4.1); a relação
  • 8. UNESP – Bauru/SP – Sapatas de Fundação 4 entre os lados deve ser A/B ≤ 2,5. Regularmente, os lados A e B devem ser escolhidos de modo que cA ≈ cB , mostrados na Figura 7. Se cA = cB : A – ap = B – bp A – B = ap – bp ⇒ Asx ≈ Asy (ou AsA ≈ AsB) A CB bp B CB CA ap CA Figura 7 – Notação para a sapata isolada. 2.1 CLASSIFICAÇÃO QUANTO À RIGIDEZ Conforme a NBR 6118/03 (item 22.4.1), a classificação das sapatas quanto à rigidez é: ap Pilar (A - a p ) Sapata rígida: h≥ 3 (A - a p ) h Sapata flexível: h < 3 A Figura 8 – Altura h da sapata. com: h = altura da sapata (Figura 8); A = dimensão (lado) da sapata numa determinada direção; ap = dimensão do pilar na direção do lado A. Nota: a classificação acima deve ser verificada segundo as duas direções da sapata, ou seja, segundo as direções dos lados A e B de sapatas retangulares.
  • 9. UNESP – Bauru/SP – Sapatas de Fundação 5 ap Pilar Pelo CEB-70, a sapata é rígida quando: 0,5 ≤ tg β ≤ 1,5 (26,6º ≤ β ≤ 56,3º) h β tg β = h / c C Balanço Figura 9 – Ângulo β e balanço c. A sapata será considerada flexível se: tg β < 0,5 tg β > 1,5 ⇒ bloco de fundação - dispensa-se a armadura de flexão porque o concreto resiste a σt . 2.2 COMPORTAMENTO ESTRUTURAL (NBR 6118/03, 22.4.2) 2.2.1 Sapatas Rígidas São aquelas com alturas “grandes” e tem a preferência no projeto de fundações. a) há flexão nas duas direções (A e B), com a tração na flexão sendo uniformemente distribuída na largura da sapata. As armaduras de flexão AsA e AsB são distribuídas uniformemente nas larguras A e B da sapata (Figura 10). Sapata rígida As B A As A Figura 10 – Armadura positiva de flexão de sapata isolada. b) há atuação de força cortante nas duas direções (A e B), não apresentando ruptura por tração diagonal, e sim por compressão diagonal, a ser verificada conforme o item 19.5.3.1 (Figura 11). Não há possibilidade de punção, porque a sapata fica inteiramente dentro do cone de punção.
  • 10. UNESP – Bauru/SP – Sapatas de Fundação 6 Seção a ter compressão verificada (item 19.5.3.1 da NBR6118) σI σII Figura 11 – Tensões principais na sapata isolada. 2.2.2 Sapatas Flexíveis São aquelas com alturas “pequenas”. “Embora de uso mais raro, as sapatas flexíveis são utilizadas para fundação de cargas pequenas e solos relativamente fracos.” (NBR 6118/03). a) há flexão nas duas direções, mas a tração na flexão não é uniforme na largura (Figura 12); b) há a necessidade da verificação à punção. N p M (variável) Figura 12 – Momento fletor na sapata flexível. 2.3 DISTRIBUIÇÃO DE TENSÕES NO SOLO As principais variáveis que afetam a distribuição de tensões são: características das cargas aplicadas, rigidez relativa fundação-solo, propriedades do solo e intensidade das cargas. (ver Velloso e Lopes – Fundações, v.1, ed. Oficina de Textos). A distribuição real não é uniforme, mas por simplicidade, na maioria dos casos, admite-se a distribuição uniforme, o que geralmente resulta esforços solicitantes maiores (Figura 13). A NBR 6122 (6.3.2) admite a distribuição uniforme, exceto no caso de fundações apoiadas sobre rocha.
  • 11. UNESP – Bauru/SP – Sapatas de Fundação 7 Rígida Flexível distribuiçao Areia admitida Areia distribuição real Figura 13 – Distribuição de tensões no solo. A NBR 6118/03 (item 22.4.1) declara: “Para sapata rígida pode-se admitir plana a distribuição de tensões normais no contato sapata-terreno, caso não se disponha de informações mais detalhadas a respeito.” 2.4 ESTIMATIVA DAS DIMENSÕES DE SAPATAS ISOLADAS COM CARGA CENTRADA A area de apoio da sapata pode ser estimada como: 1,05 N 1,1N Ssap = ou Ssap = σsolo σsolo onde os fatores 1,05 e 1,1 estimam o peso próprio da sapata e do solo sobre a sapata. 2.4.1 Sapata com Balanços (abas) Iguais nas Duas Direções Conforme as dimensões mostradas na Figura 14, tem-se: A = 2cA + ap B = 2cB + bp Com cA = cB , fica: A – B = ap – bp Ssap Ssap = A ⋅ B → A = B Ssap − B = a p − bp B Multiplicando por B: ( Ssap − B 2 = a p − b p B ) 1 1 B= 2 (bp − a p + ) 4 bp − a p ( )2 + Ssap
  • 12. UNESP – Bauru/SP – Sapatas de Fundação 8 A e B devem ser múltiplos de 5 cm. É indicado que a dimensão seja no mínimo 80 cm no caso de sapata de edifícios, e 60 cm para sapatas de residências térreas e de dois pavimentos (sobrado). A CB bp B CB CA ap CA Figura 14 – Sapata isolada com balanços iguais nas duas direções. 2.4.2 Balanços não Iguais nas Duas Direções (cA ≠ cB) Neste caso recomenda-se obedecer a seguinte relação: A ≤ 3,0 B Sendo R a relação entre as dimensões (Figura 15), tem-se: A =R → A = B⋅ R B Ssap = A . B ⇒ Ssap = R . B2 Ssap B= , com A e B múltiplos de 5 cm. R A CB bp B CB CA ap CA Figura 15 – Sapata isolada com balanços não iguais nas duas direções.
  • 13. UNESP – Bauru/SP – Sapatas de Fundação 9 2.5 PROJETO CONFORME O CEB-70 O método proposto pelo CEB-70 pode ser aplicado a sapatas com: h c ≤ 2h e c≥ 2 h ou seja: ≤ c ≤ 2h 2 h Se c < → bloco de fundação. 2 C C h Figura 16 – Balanço c na sapata isolada. Admite-se que o solo tem comportamento elástico, e daí que as reações do solo sobre a superfície de apoio da sapata seguem uma linha plana (Figura 17). M("pequeno") M("grande") (LN fora da N seção) N Distribuição admitida para quando existirem tensões de tração na base da sapata x Superfície plana Figura 17 – Reação do solo na base da sapata. 2.5.1 Dimensionamento da Armadura Inferior Os momentos fletores são calculados, para cada direção, em relação a uma seção de referência (S1A e S1B), que dista 0,15 vezes a dimensão do pilar normal à seção de referência, e se encontra internamente ao pilar (Figura 18). d1 = d ≤ 1,5cA ap CA 0,15 ap d1 S1A A Figura 18 – Seção de referência S1 .
  • 14. UNESP – Bauru/SP – Sapatas de Fundação 10 O momento fletor é calculado levando-se em conta o diagrama de tensões no solo, entre a seção S1 e a extremidade da sapata, como indicado na Figura 19. S1 σ2 σ1 Figura 19 – Diagrama para cálculo do momento fletor na seção de referência S1 . No cálculo da armadura de flexão que atravessa a seção S1 consideram-se as características geométricas da seção de referência S1. O menor momento fletor deve ser pelo menos 1/5 do maior momento fletor, isto é, a relação entre as armaduras de flexão ortogonais deve ser ≥ 1/5. 2.5.2 Momentos Fletores em Sapatas Isoladas com Carga Centrada Os momentos fletores são calculados nas seções de referência S1 , conforme indicados na Figura 20. Supondo balanços iguais, cA = cb : A − ap B − bp cA = = cB = 2 2 ap 0,15 bp xB S1B bp B 0,15ap CB S1A CA xA A N S1A p Figura 20 – Notações e seção de referência S1 .
  • 15. UNESP – Bauru/SP – Sapatas de Fundação 11 Pressão da sapata no solo: 1,05 N p= A.B onde o fator 1,05 considera o peso próprio e do solo sobre a sapata. Outros valores podem ser adotados. As distâncias xA e xB são: xA = cA + 0,15ap xB = cB + 0,15bp Áreas de referência nas duas direções (Figura 21): A1A = xA B A1B = xB A xA A1B xB B A1A A Figura 21 – Áreas de referência. Resultantes da pressão (tensão) no solo (Figura 22): R1A = p . xA . B R1B = p . xB . A p R1A S1A xA Figura 22 – Resultante da pressão no solo. Momento fletor em cada direção:
  • 16. UNESP – Bauru/SP – Sapatas de Fundação 12 2 xA xA M1A = R 1A ⇒ M1A = p . B 2 2 2 xB xB M1B = R 1B ⇒ M1B = p . A 2 2 No cálculo da armadura de flexão, embora a seção comprimida A’c seja um trapézio, o cálculo pode ser feito simplificadamente considerando-se a seção retangular (Figura 23). Se considerar-se o trapézio deve-se fazer σcd = 0,8 fcd . A'c LN As Figura 23 – Área de concreto comprimida pela flexão (A’c). Como na flexão simples, com auxílio dos coeficientes K tabelados: 2 b w d1 Kc = ⇒ na tabela de valores de Kc e Ks encontra-se βx , o domínio e Ks Md com bw = A ou B. Md As = Ks ≥ As,mín d1 Simplificadamente também pode-se fazer: Md As = ≥ As,mín 0,85d1 . f yd Nas sapatas de base quadrada, a armadura de flexão pode ser uniformemente distribuída na largura da sapata. A armadura deve se estender de face à face e terminar com gancho nas duas extremidades. Nas sapatas de base retangular, a armadura paralela ao lado menor (B) deve-se obedecer: a) quando B ≥ ap + 2h (Figura 24): 2B A armadura é calculada como sendo: A s A+B
  • 17. UNESP – Bauru/SP – Sapatas de Fundação 13 B Armadura ap bp B A Figura 24 – Distribuição de As quando B ≥ ap + 2h. b) no caso de B < ap + 2h (Figura 25): A armadura é calculada como sendo: A s ( 2 a p + 2h ) A + a p + 2h ap + 2h ap Armadura bp B A Figura 25 – Distribuição de As quando B < ap + 2h. 2.5.3 Ancoragem da Armadura de Flexão 1ºcaso: se a aba de comprimento c superar a altura h, a armadura deve ser ancorada a partir da seção distante h da face do pilar, e deve se estender até as bordas da sapata (Figura 26). lb é o comprimento de ancoragem básico, considerado sem gancho. C>h h lb h Figura 26 – Ancoragem da armadura quando c > h.
  • 18. UNESP – Bauru/SP – Sapatas de Fundação 14 2ºcaso: se o comprimento c da aba for inferior a h, a armadura deve ser totalmente ancorada na vizinhança imediata da borda da sapata, sendo o comprimento de ancoragem medido a partir da extremidade retilínea da barra (Figura 27). C<h lb h Figura 27 – Ancoragem da armadura quando c < h. 2.5.4 Força Cortante de Referência em Sapatas Isoladas com Carga Centrada No dimensionamento, a força cortante a ser considerada é calculada numa seção de referencia S2 , em cada direção da sapata, perpendicular à base de apoio da sapata e distante d/2 da face do pilar em cada direção, como indicado na Figura 28. A S2A C2B S2B 2 d bp B 45° d ap 2 C2A N d h d2A h0 p C2A A Figura 28 – Seções de referência S2A e S2B relativas as duas direções da sapata.
  • 19. UNESP – Bauru/SP – Sapatas de Fundação 15 com:  h − h0  d 2 A = d 1 −  < 1,5c 2A  A −ap     h − h0  d 2 B = d 1 −  < 1,5c 2 B  B − bp    No caso de sapata alongada (c > 1,5B) a seção S2 é considerada na face do pilar (Figura 29). C B S 2A na face do pilar Figura 29 – Seção de referência S2 em sapata alongada (c > 1,5B). A largura b2A da seção de referência S2A é tomada conforme indicado na Figura 30. A 45° ap b p+ d b2A B bp S2A N d d2A ≤ 1,5 C2A d 2 C2A Figura 30 – Dimensão b2A da seção de referência S2A .
  • 20. UNESP – Bauru/SP – Sapatas de Fundação 16 Com relação às dimensões A e B da sapata: b2A = bp + d b2B = ap + d 2.5.5 Força Cortante Limite Na seção de referência S2, a força cortante de cálculo não deve ultrapassar os valores seguintes: 1,5 Vd,lim = b 2 ⋅ d 2 ρ ⋅ f ck , para fck em kN/cm2; γC 0,474 Vd ,lim = b 2 ⋅ d 2 ρ ⋅ f ck , para fck em MPa. γC com: Vd,lim em kN; γc = coeficiente de segurança do concreto; b2 e d2 em cm; ρ = taxa de armadura longitudinal da seção de referência S2 : AS ρ= ≤ 0,01 (não se dispõe de resultados de ensaios com ρ > 1 %); b2 ⋅ d2 As = área da armadura longitudinal disposta na largura b2 da seção S2 . Vd,lim pode ser aumentada com o acréscimo de armadura transversal. Se Vd ≤ Vd,lim não é necessário colocar armadura transversal. Se essa condição não ocorrer, deve-se aumentar a altura da sapata, de modo a evitar a armadura transversal. NOTA: se a força cortante atuante for maior que a força cortante limite, uma possibilidade para resolver o problema é adotar uma nova altura útil para a sapata, tal que: Vd d novo = d Vd ,lim 2.6 VERIFICAÇÃO À PUNÇÃO A verificação das sapatas à punção se faz conforme o item 19.5 da NBR 6118/03 - “Dimensionamento de lajes à punção”. A superfície de ruptura por punção está indicada na Figura 31. d tg α = , fazendo α = 27° x d d tg 27 º = → x= ≅ 2d x 0,51
  • 21. UNESP – Bauru/SP – Sapatas de Fundação 17 pilar superfície de ruptura de uma laje por efeito de As- punção d α = 25º a 30º x laje Figura 31 – Superfície de ruptura de uma laje por efeito de punção. “O modelo de cálculo corresponde à verificação do cisalhamento em duas ou mais superfícies críticas definidas no entorno de forças concentradas. Na primeira superfície crítica (contorno C), do pilar ou da carga concentrada, deve ser verificada indiretamente a tensão de compressão diagonal do concreto, através da tensão de cisalhamento.” A Figura 32 ilustra as superfícies críticas C e C’. 2d 2d 2d C C C Borda livre C' C' C' B. livre C 2d B. livre C' Figura 32 – Superfícies críticas C e C’. “Na segunda superfície crítica (contorno C’) afastada 2d do pilar ou da carga concentrada, deve ser verificada a capacidade da ligação à punção, associada à resistência à tração diagonal. Essa verificação também se faz através de uma seção de cisalhamento, no entorno C’. Caso haja necessidade, a ligação deve ser reforçada por armadura transversal. A terceira superfície crítica (contorno C”) apenas deve ser verificada quando for necessário colocar armadura transversal.” No estudo aqui apresentado de punção aplicado às sapatas serão apresentados somente os itens relacionados à dispensa da armadura transversal. A verificação é feita comparando a tensão de cisalhamento solicitante (τsd) nas superfícies críticas, com a tensão de cisalhamento resistente (τRd2), dada pela NBR 6118/03 para cada superfície crítica. Dispensa-se a armadura transversal para a punção quando τSd ≤ τRd2 .
  • 22. UNESP – Bauru/SP – Sapatas de Fundação 18 2.6.1 Tensão de Cisalhamento Solicitante 2.6.1.1 Pilar Interno com Carregamento Simétrico A tensão de cisalhamento solicitante é: FSd τSd = u ⋅d onde: d= (d x + d y ) = altura útil da laje ao longo do contorno crítico C’; 2 dx e dy são as alturas úteis nas duas direções ortogonais; u = perímetro do contorno crítico C’; u . d = área da superfície crítica; FSd = força ou reação concentrada, valor de cálculo. No caso da superfície crítica C, u deve ser trocado por u0 (perímetro do contorno C). A força de punção FSd pode ser reduzida da força distribuída aplicada na face oposta da laje, dentro do contorno considerado na verificação, C ou C’ (isso será mostrado no Exemplo 5). 2.6.1.2 Pilar Interno com Momento Fletor Aplicado Neste caso, o efeito da assimetria deve ser considerado, e a tensão de cisalhamento solicitante é: FSd K ⋅ M Sd τSd = + u ⋅ d Wp ⋅ d sendo: K = coeficiente que representa a parcela do momento fletor MSd que é transmitida ao pilar por cisalhamento, dependente da relação C1/C2 (ver Tabela 1); C1 = dimensão do pilar paralela à excentricidade da força, indicado na Figura 33; C2 = dimensão do pilar perpendicular à excentricidade da força. Tabela 1 - Valores de K em função de C1 e C2 . C1/C2 0,5 1,0 2,0 3,0 K 0,45 0,60 0,70 0,80 Notas: - é permitida interpolação para valores intermediários da Tabela 1; - quando C1/C2 > 3,0 considera-se K = 0,8. Wp = módulo de resistência plástica do contorno C’. Pode ser calculado desprezando a curvatura dos cantos do perímetro crítico por: u Wp = ∫ e dl 0 dl = comprimento infinitesimal no perímetro crítico u;
  • 23. UNESP – Bauru/SP – Sapatas de Fundação 19 e = distância de dl ao eixo que passa pelo centro do pilar e sobre o qual atua o momento fletor MSd . 2 C1 Wp = + C1 C 2 + 4C 2 d + 16d 2 + 2π d C1 (pilar retangular) 2 Wp = 4r 2 + 16r d + 16d 2 (pilar circular; r = raio) ou 2 Wp = (D + 4d ) (D = diâmetro) Nota: para pilares de borda e de canto, ver a NBR 6118/03 (item 19.5). Msd e1 Msd e1 Fsd Fsd C' ≡ c2 e Fsd dl c1 2d Figura 33 – Sapata submetida à força normal e momento fletor. 2.6.2 Verificação de Tensão Resistente de Compressão Diagonal do Concreto na Superfície Crítica C (NBR 6118, 19.5.3.1) “Esta verificação deve ser feita no contorno C, em lajes submetidas à punção, com ou sem armadura”. τSd ≤ τRd2 τRd2 = 0,27αv fcd  f  onde α v = 1 − ck  , com fck em MPa.  250  A superfície crítica C, corresponde ao contorno do pilar ou da carga concentrada, deve ser verificada indiretamente a tensão de compressão diagonal do concreto, por meio da tensão de cisalhamento (Figura 34). A tensão de cisalhamento solicitante é: F τSd = Sd uo d com: FSd = força solicitante de cálculo;
  • 24. UNESP – Bauru/SP – Sapatas de Fundação 20 uo = perímetro de contorno crítico C; uo = 2 (ap + bp) uo d = área da superfície crítica C; d = altura útil ao longo do contorno crítico C. ap C bp Fsd d τsd Figura 34 – Tensão de cisalhamento na sapata. 2.6.3 Tensão Resistente na Superfície Crítica C’ em Elementos Estruturais ou Trechos sem Armadura de Punção (NBR 6118, 19.5.3.2) A tensão de cisalhamento resistente na superfície crítica C’deve ser calculada por:  20  1 τ Rd1 = 0,13 1 +   (100ρ ⋅ f ck )3  d  onde: ρ = ρx . ρy ; d= (d x + d y ) = altura útil em C’(cm); 2 ρ = taxa geométrica de armadura de flexão aderente; ρx e ρy = taxas de armadura nas duas direções ortogonais; fck em MPa. No caso de sapatas de fundação, a tensão de cisalhamento resistente é:  20  3 2d τ Rd1 = 0,13 1 +   100 ρ f ck  ≤ 0,5f cd 2  d  a* fcd2 = resistência de cálculo do concreto à compressão para regiões não fissuradas. a* ≤ 2d
  • 25. UNESP – Bauru/SP – Sapatas de Fundação 21  f  f cd 2 = 0,6 1 − ck  f cd (MPa )  250  u* = 2ap + 2bp + 2πa* Superfície C' (perímetro = u*) a* A ap d Figura 35 – Distância a*. Para pilares com momento fletor solicitante, τSd é: FSd   τ Sd =  1 + K M Sd u *  u*d  W p FSd    2.7 EXEMPLO 1 – SAPATA ISOLADA RÍGIDA (Exemplo extraído do curso de Lauro Modesto dos Santos - “Edifícios de Concreto Armado”, 1988, p.11-31 – Escola Politécnica da USP) Dimensionar uma sapata direta de fundação para um pilar com seção 20 x 75cm, sendo a taxa admissível do solo ( σsolo ) de 2,5 kgf/cm2 (0,25 MPa), sendo também conhecidos: Nk = 1.303 kN momentos fletores Mx = My = 0 materiais: concreto C25 , aço CA-50 φl,pil = 20 mm (pilar interno) γc = 1,4 Resolução Dimensões da sapata (Figura 36), considerando um fator de 1,1 para considerar o peso próprio da sapata e o solo sobre a sapata: 1,1N k 1,1 ⋅ 1303 Ssap = = = 57.332 cm 2 = 5,7332 m2 σsolo 0,025
  • 26. UNESP – Bauru/SP – Sapatas de Fundação 22 Fazendo a sapata com balanços iguais (cA = cB = c), a dimensão do menor lado da sapata em planta é: 1 1 B= (b p − a p ) + (b p − a p ) 2 + Ssap 2 4 1 1 B= (20 − 75) + (20 − 75) 2 + 57332 = 213,5 cm 2 4 como as dimensões devem ser preferencialmente valores múltiplos de 5 cm, adota-se B como o múltiplo superior, B = 215 cm. O lado maior da sapata é: Ssap 57332 A= = = 266,7 cm (adota-se A = 270 cm), e B 215 Ssap = 270 . 215 = 58.050 cm 2 Os balanços resultam: A − ap 270 − 75 cA = cB = c = = = 97,5 cm 2 2 A altura da sapata, fazendo como sapata rígida, é:  A − a p  270 − 75 NBR 6118 → h ≥   3 ≥  ≥ 65 cm   3 h h Pelo CEB-70: 0,5 ≤ tg β ≤ 1,5 com tg β = = c 97,5 h 0,5 ≤ ≤ 1,5 → 48,8 ≤ h ≤ 146,3 cm 97,5 Para possibilitar a ancoragem da armadura longitudinal do pilar dentro do volume da sapata, a altura deve ser superior ao comprimento de ancoragem da armadura do pilar: h ≥ l b,φ,pil l b,φ,pil = 53 cm (com gancho, região de boa aderência, C25, φ l ,pil = 20 mm) Adotando h = 90 cm ≥ l bφ,pil = 53 cm, a sapata é rígida.
  • 27. UNESP – Bauru/SP – Sapatas de Fundação 23 A 270cm xA 108,75 97,5 CB 215cm bp 20 B 97,5 CB CA ap CA 97,5 75 97,5 0,15 ap = 11,25 h = 90 ≥ 30 d = 85 p Figura 36 – Dimensões (cm) da sapata e seção de referência S1 . Para a altura útil pode-se considerar: d = h – 5 cm → d = 85 cm Pressão no solo: 1,1N k 1,1 ⋅1303 p= = = 0,0247 kN/cm2 A ⋅ B 270 ⋅ 215 Para aplicar o processo do CEB-70 deve-se verificar: h 90 ≤ c ≤ 2h → ≤ c ≤ 2 ⋅ 90 2 2 45 ≤ c = 97,5 cm ≤ 180 cm → ok! Cálculo dos momentos fletores nas seções de referência S1A e S1B : x2A x2 M1A = p ⋅ B ; M1B = p ⋅ A B 2 2 x A = c A + 0,15a p = 97,5 + 0,15 ⋅ 75 = 108,75 cm
  • 28. UNESP – Bauru/SP – Sapatas de Fundação 24 x B = c B + 0,15b p = 97,5 + 0,15 ⋅ 20 = 100,5 cm 108,75 2 M1A = 0,0247 . 215 = 31.402 kN.cm 2 100,5 2 M1B = 0,0247 . 270 = 33.679 kN.cm 2 O menor momento fletor deve ser ao menos 20 % do maior: M1A 31402 1 = = 0,93 > → ok! M1B 33679 5 A Figura 37 ilustra os momentos fletores solicitantes na sapata. A = 270 31402 B = 215 MB MA 33679 S1A MB = 33679 MA = 31402 Figura 37 – Momentos fletores atuantes na sapata. Armadura segundo a dimensão A da sapata: M1A,d = 1,4 . 31402 = 43.963 kN.cm b d 2 215 . 85 2 kc = = = 35,3 Md 43963 observe que M1A,d atua segundo a dimensão menor da sapata (lado B). Na tabela de kc e ks resulta: βx = 0,03 (domínio 2) e ks = 0,023. M1A ,d 43963 A sA = k s = 0,023 d 85 AsA = 11,90 cm2 Armadura segundo a dimensão B da sapata:
  • 29. UNESP – Bauru/SP – Sapatas de Fundação 25 M1B,d = 1,4 . 33679 = 47.151 kN.cm 270 . 85 2 kc = = 41,4 ⇒ β x = 0,02, dom. 2, k s = 0,023 47151 M1B,d 47151 A sB = k s 0,023 d 85 AsB = 12,76 cm2 Como opção para o cálculo da armadura tem-se a fórmula simplificada: M1A ,d 43963 A sA = = = 14,00 cm 2 0,85d . f yd 085 . 85 . 43,48 M1B,d 47151 A sB = = = 15,00 cm 2 0,85d . f yd 0,85 . 85 . 43,48 A escolha das armaduras pode ser feita com auxílio de uma tabela de armadura em laje (cm /m). É necessário tranformar a armadura em cm2/m: 2 14,00 Na dimensão A: = 6,51 cm2/m (φ 10 mm c/12 cm – 6,67 cm2/m) 2,15 15,00 Na dimensão B: = 5,56 cm2/m (φ 10 mm c/14 cm – 5,71 cm2/m) 2,70 O detalhamento das armaduras está mostrado adiante. Verificação das forças cortantes nas seções de referência S2A e S2B, conforme as dimensões indicadas na Figura 38. As forças cortantes nas seções de referência S2A e S2B são: VA = p B c2A VB = p A c2B A − ap − d 270 − 75 − 85 c 2A = = = 55 cm 2 2 B − b p − d 215 − 20 − 85 c 2B = = = 55 cm 2 2 VA = 0,0247 . 215 . 55 = 292,1 kN VB = 0,0247 . 270 . 55 = 366,8 kN As forças cortantes de cálculo, com γf = 1,4 são: VA,d = 1,4 . 292,1 = 408,9 kN VB,d = 1,4 . 366,8 = 513,5 kN
  • 30. UNESP – Bauru/SP – Sapatas de Fundação 26 A 270cm S2A C2B 42,5 55 S2B 2 d 215cm B bp 20 ap d 2 C2A 75 42,5 55 S2A 85 58,8 90 d d2A h h0 30 p = 0,0247 ap d 2 75 42,5 d2A S2A 20 bp 105 b2A b2A 42,5 2 S2B d b2B 160 Figura 38 – Dimensões e seções de referência S2A e S2B . Dimensões d2Ae d2B :  h 90  = = 30 cm h0 ≥ 3 3 → adotado h 0 = 30 cm 20 cm 
  • 31. UNESP – Bauru/SP – Sapatas de Fundação 27  h − h0  d 2 A = d 1 −  ≤ 1,5c 2 A  A − ap    1,5c 2 A = 1,5c 2 B = 1,5 ⋅ 55 = 82,5 cm  90 − 30  d 2 A = 85 1 − = 58,8 cm ≤ 82,5 cm → ok!  270 − 75    h − h0  d 2 B = d 1 −  ≤ 1,5c 2 B  B − bp     90 − 30  d 2 B = 85 1 − = 58,8 cm ≤ 82,5 cm → ok!  215 − 20   d 2 B = d 2 A = 44,3 cm ≤ 93,8 cm → ok! Larguras das seções S2: b 2 A = b p + d = 20 + 85 = 105 cm b 2 B = a p + d = 75 + 85 = 160 cm Forças cortantes limites conforme o CEB-70: 0,474 Vd ,lim = b 2 ⋅ d 2 ⋅ ρ ⋅ f ck γc Cálculo das taxas de armadura à flexão (ρ): A sA 6,67 ρA = = = 0,00113 = 0,113 % ≤ 1 % 100d 2 A 100 ⋅ 58,8 A sB 5,71 ρB = = = 0,000971 = 0,0971 % ≤ 1 % 100d 2 B 100 ⋅ 58,8 0,474 VA,d ,lim = 105 ⋅ 58,8 ⋅ 0,00113 ⋅ 25 = 352,0 kN 1,4 VA,d = 408,9 > VA ,d ,lim = 352,0 kN 0,474 VB,d ,lim = 160 ⋅ 58,8 ⋅ 0,000971 ⋅ 25 = 496,3 kN 1,4 VB,d = 513,5 > VB,d ,lim = 496,3 kN A força cortante limite sugerida pelo CEB-70 é rigorosa (muito baixa), por isso, para sapatas rígidas, Machado (1988) sugere o seguinte valor para sapatas isoladas rígidas:
  • 32. UNESP – Bauru/SP – Sapatas de Fundação 28 f ck Vd ,lim = 0,63 b2 d 2 γc Aplicando ao exemplo: 25 VA,d ,lim = 0,63 105 ⋅ 58,8 = 1.389 kN >> VA,d = 408,9 kN 10 ⋅1,4 Caso se considere apenas o CEB-70, existem soluções, como aumentar o fck , as dimensões A e B, a altura h, a quantidade de armadura de flexão, etc. Nota: como a sapata é rígida não é necessário verificar a punção. Entretanto, a NBR 6118 recomenda verificar a tensão na diagonal de compressão (item 19.5.3.1), como mostrado a seguir. Verificação da Diagonal Comprimida: uo = perímetro do pilar (superfície crítica C - Figura 39). uo = 2 (20 + 75) = 190 cm FSd = N Sd = γ f ⋅ N = 1,4 ⋅1303 = 1.824 kN (sem redução da força pela reação contrária da base da sapata) C 75 20 bp ap Figura 39 – Superfície crítica C – contorno do pilar. Tensão de cisalhamento atuante: FSd 1824 τSd = = = 0,113 kN/cm2 = 1,13 MPa u o d 190 ⋅ 85 Tensão de cisalhamento resistente:  25  2,5 τ Rd , 2 = 0,27α V ⋅ f cd = 0,27 1 −  = 0,43 kN/cm2 = 4,3 MPa  250  1,4 τSd = 1,13 MPa < τ Rd , 2 = 4,3 MPa Portanto, não irá ocorrer o esmagamento das bielas comprimidas. Detalhamento (Figura 40) Como a largura da sapata (B) é próxima do comprimento A, a armadura AsB será distribuída uniformemente no comprimento A. Para a armadura de flexão recomenda-se 10 cm ≤ espaçamento ≤ 20 cm.
  • 33. UNESP – Bauru/SP – Sapatas de Fundação 29 c = 97,5 cm > h = 90 cm φ 10 mm, C25, boa aderência, sem gancho: lb = 38 cm. cnom = 4,0 cm (cobrimento), φl,pil = 20 mm (lb = 75 cm). lgancho,incl ≥ 38 – [(97,5 – 4,0 – 90) + 20] ≥ 14,5 cm 20 N2 - 19 Ø12,5 C = 285 20 AsB N2 - 19 c/14 (215 - 8)/12 = 17,2 (270 - 8)/14 = 18,7 AsA N1 - 17 c/12 AsB 205 20 20 20 20 AsA 260 20 20 N1 - 17 Ø12,5 C = 340 Øl,pil 97,5 ≥ 14 ≥ lb Øl, pilar ,5 83 30 h = 90 20 lanc ≥ lb ≥ 38 cm Figura 40 – Detalhamento das armaduras de flexão da sapata. 2.8 EXERCÍCIOS PROPOSTOS 1o) Ver Alonso (1983), pg. 14 (sapata isolada). Dimensionar e detalhar as armaduras de uma sapata para um pilar de seção 30 x 100 cm, com carga de 3000 kN, com: σsolo = 0,3 MPa Mx = M y = 0 C25 θl,pilar = 22,5 mm 2o) Resolver o Exercício 1 fazendo o pilar circular com diâmetro de 60 cm, e com a sapata de base circular. 2.9 MÉTODO DAS BIELAS O método ou teoria das bielas surgiu após numerosos ensaios realizados por Lebelle (1936), e se aplica às sapatas rígidas, corridas ou isoladas. A carga é transferida do pilar para a
  • 34. UNESP – Bauru/SP – Sapatas de Fundação 30 base da sapata por meio de bielas de concreto comprimido, que induzem tensões de tração na base da sapata (Figura 41), que devem ser resistidas por armadura. Biela de compressão Armadura necessária para resistir à força de tração Figura 41 – Caminhamento da carga do pilar em direção à base da sapata. Segundo Gerrin (1955), os ensaios mostram que não ocorre ruptura por compressão das bielas de concreto, e sua verificação pode ser dispensada. A Figura 42 mostra as forças atuantes na sapata, de acordo com o método das bielas. P 0 dN x y dy dT y d0 dT dx dT x dy pd x B A Figura 42 – Esquema de forças segundo o método das bielas. Considerando somente a direção x, como se fosse uma sapata corrida (Figura 43), tem-se as equações:
  • 35. UNESP – Bauru/SP – Sapatas de Fundação 31 p P (A - ap) A.d ds β≥ d d 0= 45° α As dx p A A 2 2 2dP 0 A d0 dN d α α dT dT p d x = dP x dP Figura 43 – Forças na direção x da sapata. dT = dN ⋅ cos α dP = dN ⋅ sen α dP dP x dT = cos α = = p ⋅ dx sen α tgα d0 A p 1 p  A2  Tx = ∫ 2 x ⋅ dx =  − x2  x d0 2 d0  4    1 p (A − a p )  A 2  Tx =  − x2  2 A⋅d  4    Para x = 0, Tx = Tmáx : 1 P (A − a p ) A 2 P (A − a p ) Tx = → Tx = 2 A A⋅d 4 8 d
  • 36. UNESP – Bauru/SP – Sapatas de Fundação 32 De forma análoga para a direção da sapata isolada: P (B − b p ) Ty = 8 d A tensão máxima na biela de compressão é obtida das relações: dN dx σc = onde d s = ds sen α A máxima compressão ocorre nas bielas mais inclinadas (α = αo) e a tensão máxima ocorre no ponto A, onde a seção da biela é a mínima. A tensão máxima resulta: σc = P  1 + ( A − ap 2   ) 2 ap  4 − d0    A Figura 44 mostra as armaduras de flexão da sapata, conforme o método das bielas. A y ap x P bp B Asy ou AsB 1 d ≥ 2 (B - bp) P d ≥ 2 (A - ap) h 1 Asx ou AsA Figura 44 – Armaduras de flexão da sapata. As armaduras são: Txd Tyd A sx = A sA = ; A sy = A sB = f yd f yd Levando-se em consideração as duas direções, a tensão máxima na biela é:
  • 37. UNESP – Bauru/SP – Sapatas de Fundação 33    ( ) ( 2 ) 2  σ c,máx = p 1 + A − a p + B − b p  λ ⋅ a p ⋅ bp   1  2 2   4  d0    1− λ    ap bP Onde λ = = (áreas hometéticas). A B No caso particular de sapatas (e pilares) quadradas:     2 p  1  A−a   p σ c,máx = 1 +    λ ⋅A ⋅ap  2  1   d0      1− λ    2.9.1 Exemplo 2 - Sapata Isolada Rígida Calcular as armaduras de flexão da sapata do Exemplo 1 pela “Teoria ou Método das Bielas”. Resolução Verificação do ângulo β: d 85 85 tg β = = = = 0,8718 → β = 41,1º < 45º → não ok! 1 1 97,5 (A − a p ) (270 − 75) 2 2 portanto, a altura útil da sapata deve ser aumentada para um valor igual ou superior a 97,5 cm, de modo a resultar um ângulo β igual ou superior a 45°. Considerando h = 105 cm e d = 100 cm tem-se: 100 tg β = = 1,0256 → β = 45,7 º ≥ 45º → ok! 97,5 Forças de tração: P (A − a p ) 1,1 ⋅1303 (270 − 75) Tx = = ⋅ = 349,4 kN 8 d 8 100 P (B − b p ) 1,1 ⋅1303 (270 − 75) Ty = = ⋅ = 349,4 kN 8 d 8 100 1,4 ⋅ 349,4 A sx = A sA = = 11,25 cm2 = Asy = AsB 50 1,15
  • 38. UNESP – Bauru/SP – Sapatas de Fundação 34 A NBR 6118 recomenda verificar a tensão na diagonal comprimida (item 19.5.3.1), como feito no Exemplo 1, porém, para as sapatas rígidas com ângulo β igual ou superior a 45°, não deve ocorrer esmagamento da diagonal comprimida. 2.10 SAPATAS ISOLADAS SOB AÇÕES EXCÊNTRICAS Excentricidades nas sapatas podem ser causadas pela existência de momentos fletores ou força horizontal no pilar, como também pela carga vertical, quando aplicada fora do centro de gravidade da base da sapata, como as sapatas de divisa (Figura 45). M e divisa H N N MA HA N MB N B A HB Figura 45 – Sapatas isoladas sob ações excêntricas. 2.10.1 Excentricidade em Uma Direção a) Ponto de aplicação da força dentro do núcleo central de inércia (Figura 46) A Ocorre quando e < . Tem-se: 6
  • 39. UNESP – Bauru/SP – Sapatas de Fundação 35 e N M⋅y N σ= ± A⋅B I N 6e σmín σ máx = (1 + ) A⋅B A σmáx N 6e σ máx = (1 − ) A⋅B A A 6 B B A N núcleo 6 Figura 46 – Ponto de aplicação da força dentro do núcleo central de inércia. A b) Ponto de aplicação da força no limite do núcleo central (e = ) (Figura 47) 6 A N σ máx = 2 A⋅B A 6 N σmáx Figura 47 – Ponto de aplicação da força no limite do núcleo central. A c) Ponto de aplicação da força fora do núcleo central (e > ) (Figura 48) 6 Parte da base da sapata (e solo) fica sob tensões de tração (σmín < 0). Neste caso, um novo diagrama triangular é adotado, excluindo-se a zona tracionada, e com o CG (CP) do triângulo coincidente com o limite do novo núcleo central. A tensão de compressão máxima aumenta para:
  • 40. UNESP – Bauru/SP – Sapatas de Fundação 36 A 2N σ máx = A A  6 3B  − e  B 2  N e σmín LN σmáx, 1 3(A/2 - e) A0 σmáx LN A0 6 Figura 48 – Ponto de aplicação da força fora do núcleo central. 2.10.2 Excentricidade nas Duas Direções A Figura 49 mostra o desenho em planta de uma sapata com excentricidades nas duas direções. A y N eB x B eA Figura 49 – Sapata com excentricidade nas duas direções. O equilíbrio é obtido com as pressões atuando em apenas uma parte da área da base da sapata, e: N M ⋅y M ⋅x σ= ± B ± A A⋅B I I
  • 41. UNESP – Bauru/SP – Sapatas de Fundação 37 MB MA HB HA N N B A Figura 50 – Forças e momentos fletores atuantes na sapata. M A ' base = M A + H A ⋅ h , M B' base = M B + H B ⋅ h MA MB eA = , eB = N N eA eB 1 a) Quando + ≤ (Figura 51) A B 6 A y N eB CG x B eA x σ má n σ mí eA eB 1 Figura 51 – Tensões na sapata para + ≤ . A B 6 N  6e A 6e B  σ máx = 1+ + A⋅B  A B  N  6e A 6e B  σ min = 1− − A⋅B  A B  (toda seção seta comprimida)
  • 42. UNESP – Bauru/SP – Sapatas de Fundação 38 eA eB 1 b) Quando + > (Figura 52) A B 6 seção comprimida 3 y 1 N eB B eA α x 4 A 2 x σ má n σ mí eA eB 1 Figura 52 – Tensões na sapata para + > . A B 6 N σ máx = σ1 = K1 ⋅ A ⋅ B σmín = σ4 = K4 σ1 (fictício, não considerado) σmín = σ4 < 0 K1 e K4 são determinadas no ábaco mostrado na Figura 53. Num ponto qualquer de coordenadas (x, y) a tensão é: x y B  +  tg α  A B A  σ mín = σ 4 + (σ1 − σ 4 ) B 1 + tg α A
  • 43. UNESP – Bauru/SP – Sapatas de Fundação 39 Figura 53 – Ábaco para determinação das tensões máximas nas sapatas retangulares rígidas para ação com dupla excentricidade (Montoya, 1973).
  • 44. UNESP – Bauru/SP – Sapatas de Fundação 40 Notas: - Em todos os casos analisados deve-se ter, para a combinação de carregamento mais desfavorável, σ máx = 1,3 σsolo ; - Para as cargas permanentes atuantes sobre a sapata, a base da sapata deve estar inteiramente comprimida, isto é: e A ,g e B, g 1 + ≤ (G = peso próprio e solo sobre a sapata - Figura 54). A B 6 Gs1 Gs2 Gb1 Gb2 Figura 54 – Forças representativas do peso próprio da sapata e do solo sobre a sapata. - Para garantir a segurança contra tombamento da sapata, na condição mais desfavorável, pelo menos a metade da base da sapata deve estar comprimida, o que se consegue fazendo: 2 2  eA   eB  1   +  ≤ A B 9 2.11 EXEMPLO 3 – Sapata Isolada sob Força Normal e um Momento Fletor (Exemplo extraído de Newton C. P. Ferro, Notas de Aula, 2005, Departamento de Engenharia Civil, UNESP – Bauru/SP) Para um pilar de 20 x 60 cm submetido a uma força de compressão de 820 kN e um momento fletor atuando em torno do eixo paralelo ao menor lado do pilar de 6200 kN.cm, dimensionar a fundação em sapata isolada, sendo conhecidos: concreto C25, aço CA-50, σsolo = 0,022 kN/cm² (0,22 MPa), armadura do pilar: 10 φ 12,5 mm. Resolução 1) Calculo das dimensões (em planta) da sapata, sem considerar o efeito do momento fletor. Área do apoio da sapata: 1,1N 1,1 ⋅ 820 Ssap = = = 41.000 cm2 σsolo 0,022 Dimensão em planta da sapata, com abas (balanços - c) iguais nas duas direções: 1 1 1 B= (bp − a p + ) ( bp − a p )2 + Ssap = (20 − 60) + 1 (20 − 60)2 + 41000 = 183,5 cm 2 4 2 4 adotando um valor múltiplo de 5 cm: B = 185 cm.
  • 45. UNESP – Bauru/SP – Sapatas de Fundação 41 A – ap = B – bp A = ap – bp + B = 60 – 20 + 185 = 225 cm Tensões na base da sapata (Figura 55): N M⋅y σ= ± A⋅B I A B ⋅ A3 y= ; I= 2 12 M 6200 e= = = 6,9 cm 1,1N 1,1 ⋅ 820 A 225 = = 37,5 cm 6 6 A e = 6,9 < = 37,5 cm → a força está aplicada dentro do núcleo central de inércia. 6 1,1 ⋅ 820  6 ⋅ 6,9  2 σ máx = 1 +  = 0,0257 kN/cm > σ solo = 0,022 ∴ não ok! 225 ⋅185  225  Aumentando a seção da base da sapata para: A = 240 cm ; B = 200 cm Obedecendo: A − B = a p − bp → 240 – 200 = 60 – 20 A tensão máxima passa a ser : σmáx = 0,022 kN/cm2 = σ solo → ok! 1,1 ⋅ 820 6 ⋅ 6,9 σ mín = (1 − ) = 0,0156 kN/cm2 > 0 (como esperado!) 240 ⋅ 200 240
  • 46. UNESP – Bauru/SP – Sapatas de Fundação 42 M 60 185 20 225 M N 1,1N AB My I 0,0156 0,0220 Figura 55 – Dimensões da sapata e esquema da reação do solo. 2) Altura da sapata Fazendo como sapata rígida, conforme o CEB-70: A − ap 240 − 60 0,5 ≤ tg β ≤ 1,5 → c = = = 90 cm 2 2 h 0,5 ≤ ≤ 1,5 → 45 ≤ h ≤ 135 cm 90 Pelo critério da NBR 6118/03: A − ap 240 − 60 h≥ ≥ ≥ 60 cm 3 3 É importante definir a altura da sapata também em função do comprimento de ancoragem da armadura longitudinal do pilar (10 φ 12,5 mm): considerando situação de boa aderência, com gacho, C25, CA-50 (nervurado): lb = 33 cm. Adotado h = 60 cm > lb = 33 cm (sapata rígida) 3) Cálculo dos momentos fletores e forças cortantes segundo o CEB-70
  • 47. UNESP – Bauru/SP – Sapatas de Fundação 43 h 60 Verificação: ≤ c ≤ 2h → ≤ c ≤ 2 ⋅ 60 2 2 30 ≤ c = 90 ≤ 120 cm → ok! Momentos fletores nas seções de referência S1 (Figura 56): A 240cm CB 90 200cm bp 20 B CB 90 99 CA ap CA 0,01936 90 60 90 0,022 P1A 0,15 ap = 9 1,917 0,131 xa 66 33 99 49,5 49,5 55 60 d h S1A 0,0156 P1A 0,022 KN cm² Figura 56 – Seção de referência S1A . Dimensão A: p1A = 0,022 − (0,022 − 0,0156) 99 = 0,01936 kN/cm2 (ver Figura 56) 240 M1A = (1,917 ⋅ 49,5 + 0,132 ⋅ 66) 200 = 20.708 kN.cm Dimensão B (considerando a pressão média e diagrama retangular – ver Figura 57): 0,022 + 0,0156 p méd = = 0,0188 kN/cm2 2 x2B (90 + 0,15 ⋅ 20) 2 M1B = p⋅A = 0,0188 ⋅ 240 = 19.512 kN.cm 2 2 Armaduras de flexão: