SlideShare a Scribd company logo
1 of 7
Download to read offline
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
*
†
( , , 610065 )
( 2011 6 26 ; 2011 9 23 )
, ,
. , (Bi, ZnTe, ZnS, GaAs) 14/8, 12/6 10/4 6-8
, . ,
, . ,
, ; 6-8 2-6-8 ;
, , , .
: , ,
PACS: 07.35.+k
1
( )
( 1 mm3
) .
100 GPa
( )[1,2]
,
[3−6]
,
,
.
.
(
) (
)[7]
,
12 GPa[8,9]
.
,
. WC ,
25 GPa[10]
,
, 80 GPa
[11,12]
. ,
(mm ), ,
[13]
, ,
,
. , ,
,
.
,
, ,
, 2-6-8
[10,14−22]
.
6-8
[23−25]
. ,
,
,
,
2-6-8
. [24]
* - NSAF ( : 10976018) (
: 11027405) .
† E-mail: duanweihe@scu.edu.cn
c 2012 Chinese Physical Society http://wulixb.iphy.ac.cn
100701-1
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
, , , [24]
.
,
(Bi, ZnTe, ZnS GaAs)
6-8 .
,
,
( ) ( ) ,
,
,
. ,
(6-8 2-6-8 )
,
, 25/17 (
/ , mm
), 19/12, 18/11, 14/8, 12/6, 10/5, 10/4 7/3
. ,
.
,
,
.
2
(6-8 )[23−25]
(2-6-8 )[10,17]
,
, ( )
( ) ,
.
6-8 ,
1(a) , F
.
, 1(b) , F1
.
: F1 =
1
4
F,
F2 =
√
3F1 =
√
3
4
F.
2-6-8 ,
MA8 [10]
Kawai [17]
2-6-8
, ,
.
2(a) , F
, F1
.
, 2(b) , F2
. , F1 =
1
√
3
F,
F2 =
1
4
F1 =
√
3
12
F,
F3 =
√
3F2 =
1
4
F.
1 (a) ; (b)
2 (a) ; (b)
3
a,
S =
√
3
4
a2
. ( ) P1,
,
( ) P2, :
η =
P1
P2
× 100%.
6-8 ,
P2 =
F2
S
=
F
a2
, :
η =
P1
P2
× 100% =
P1 × a2
F
× 100%; (1)
2-6-8 , P2 =
F3
S
=
F
√
3a2
, :
η =
P1
P2
× 100% =
√
3P1 × a2
F
× 100%. (2)
100701-2
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
4
4.1
Bi, ZnTe, ZnS GaAs
,
, : Bi (I-II, 2.55 GPa), Bi
(III-IV, 7.7 GPa)[26,27]
; ZnTe (I-II,5 GPa), ZnTe (II-III,
8.9—9.5 GPa), ZnTe (III-IV, 11.5—13 GPa)[28,29]
; ZnS
(15.6 GPa)[30]
GaAs (19.3 GPa)[31]
, , ZnTe
(I-II, 5 GPa) ZnTe
5 GPa, ZnTe (II-III, 8.9—9.5 GPa) ZnTe
8.9—9.5 GPa , ZnTe
(III-IV, 11.5—13 GPa) ZnTe
11.5—13 GPa , .
, 6-
8 .
[24] [25] ,
.
DS 6×8MN
AX-104-1-3 .
WC ,
14.5, 19.5 22 GPa ,
4, 6 8 mm
( 3 ), 10, 12
14 mm .
[25].
3
4.2
1 14 mm 12 mm
,
8 mm 6 mm, 19.5 GPa;
.
2 MgO
14 mm, 8 mm,
14.5 GPa 19.5 GPa; 6-8
14/8 ,
.
3 MgO
10 mm, 4 mm,
22 GPa; 6-8 10/4
, [25] ,
.
5
5.1
6-8 ,
η =
P1 × a2
F
× 100% , P1 ,
, , (
) , ,
; , ,
. 10 GPa , 14/8
12/6 1.1 , 10/4 2.0 ,
12/6 10/4 1.7 .
, 4 , 14/8
12/6 ,
, . ,
, , 14/8 ,
12/6 , 10/4 , 4 .
, ( )
,
,
. 14/8 ( )
12/6 , 14/8
12/6 ; ,10/4
12/6
, 10/4 12/6
, 10/4
.
, 1 2 3
,
,
. 14/8 10/4
, 12/6
, .
,
, ,
( ) , ,
100701-3
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
.
,
,
,
.
,
, ,
, ,
. , ,
, .
4 6-8 , 10/4, 12/6 14/8
1 1’ 10/4
,
22 GPa; 2 2’ 12/6
,
19.5 GPa; 3 3’ 14/8
,
19.5 GPa. , ZnTe (II-III, 8.9—9.5 GPa)
9.2 GPa, ZnTe (III-IV, 11.5—13 GPa)
12.3 GPa. , •
,
1, 2 3
5.2
5 , 14/8 , 6-8
2-6-8 ,
, .
10 GPa , 6-8
2-6-8 1.2 .
6 6-8 2-6-8
10/4 ,
19 GPa , 6-8
2-6-8 1.2 .
14/8 10/4
, ,
( ), 6-8
2-6-8 . 6-8
, 2-6-8 .
, , 6-8
, ,
.
5 14/8 , 6-8 2-6-8
1 1’
,
14.5 GPa; 2 2’ [17]
, [17]
2-6-8 . •
,
1 2
6 10/4 , 6-8 2-6-8
1 1’
,
22 GPa; 2 2’ [10]
, [10]
2-6-8 . •
, 1
2
5.3
7 ,
,
10 GPa ,
100701-4
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
1.1 ;
, ,
,
.
7 6-8 14/8 ,
1 1’
,
19.5 GPa; 2 2’
,
14.5 GPa. •
,
1 2
, 1 2
,
,
.
,
,
. ,
, , ,
,
. ,
,
,
.
6-8 10/4 , 8
.
10 GPa ,
1.4 .
,
,
;
,
,
. , , ,
.
8 6-8 10/4 ,
1 1’
,
22 GPa; 2 2’ [25]
, [25]
15.6 GPa.
• ,
1 2
6
,
. ,
,
.
, ; 6-8
2-6-8 ;
,
, ,
. ,
, 6-8
.
.
[1] Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075
[2] Singh A K, Liermann H P, Akahama Y, Saxena S K, Men´endez-
Proupin E 2007 J. Appl. Phys. 101 123526
[3] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013
[4] Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283
[5] Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th
100701-5
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
EHPRG Karlsruhe, Germany, June 27–July 1, 2005
[6] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall
W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735
[7] Sung C M 1997 High Temp.-High Pressure 29 253
[8] Khvostantsev L G 1984 High Temp.-High Pressure 16 165
[9] Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J
Z, Daemen L L 2005 Advances in High-Pressure Technology for
Geophysical Applications (Amsterdam: Elsevier B. V.) p461
[10] Liebermann R C, Wang Y B 1992 High-Pressure Research: Ap-
plication to Earth and Planetary Sciences (Washington DC: AGU)
p19
[11] Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245
[12] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190
[13] Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T,
Shimomura O 2002 J. Phys.: Condens. Matter 14 10497
[14] Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci.
Instrum. 74 3002
[15] Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda
Y, Kubo T, Utsumi W 2004 Phys. Earth Planet. Int. 143-144 497
[16] Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916
[17] Frost D J, Poe B T, Trønnes R G, Liebske C, Duba A,Rubie D C
2004 Phys. Earth Planet. Int. 143-144 507
[18] Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178
[19] Cordier P, Rubie D C 2001 Mater. Sci. Eng. A 309-310 38
[20] L¨u S J, Luo J T, Shu L, Hu Y, Yuan C S, Hong S M 2009 Acta
Phys. Sin. 58 6852 (in Chinese) [ , , , ,
, 2009 58 6852]
[21] Kunimoto T, Irifune T, Sumiya H 2008 High Press. Res. 28 237
[22] Kunimoto T, Irifune T 2010 J. Phys.: Conference Series 215
012190
[23] He D W, Wang F L, Kou Z L, Peng F Chinese Patent (No. ZL
2007 1 0048839.2) 13 May 2009 [ , , ,
( :ZL 2007 1 0048839.2) 13 May 2009]
[24] Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang
J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 ( in Chinese)
[ , , , , , , , ,
2008 57 5429]
[25] Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H
H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys.
Sin. 59 3107 (in Chinese) [ , , , ,
, , , , , , 2010
59 3107]
[26] Getting I C 1998 Metrologia 35 119
[27] Lloyd E C 1971 NBS Special Publication 326 201
[28] Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435
[29] Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun.
132 333
[30] Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S
1999 J. Appl. Phys. 86 6608
[31] Yagi T, Akimoto S 1976 J. Appl. Phys. 47 3350
100701-6
Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701
Influence of mechanical configuration and hardness
of last stage anvil on high pressure producing
efficiency for octahedral cell∗
Guan Jun-Wei He Duan-Wei†
Wang Hai-Kuo Xu Chao Wang Wen-Dan
Wang Kai-Xue He Kai Peng Fang
( Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China )
( Received 26 June 2011; revised manuscript received 23 September 2011 )
Abstract
We analyse the loading force transmissions for two kinds of loading structures directed at multistage octahedral cell of high
pressure device, and build a mechanical relationship for high pressure producing efficiency. The relationship between cell pressure and
hydraulic load is calibrated at room temperature for 14/8, 12/6 and 10/4 cell assemblies using the phase transitions of Bi, ZnTe, ZnS
and GaAs under high pressure. Also we discuss qualitatively the influences of both mechanical configuration and hardness of last stage
anvil on high pressure producing efficiency of octahedral cell. The experimental results show that both mechanical configuration and
hardness of last stage anvil are key factors for affecting high pressure producing efficiency, what is more, the mechanical configuration
is more important. The larger the geometry configuration of octahedral cell, the higher the high pressure producing efficiency is;
high pressure producing efficiency of 6-8 type loading configuration is higher than that of 2-6-8 type loading configuration; when the
pressure of octahedral cell approaches to Vickers hardness of last stage anvil, the harder the last stage anvil, the higher the high pressure
producing efficiency and the higher cell pressure is.
Keywords: mechanical configuration, loading configuration, high pressure producing efficiency
PACS: 07.35.+k
* Project supported by the National Natural Science Foundation of China-NSAF (Grant No. 10976018) and National Natural Science Foundation
of China (Grant No. 11027405).
† E-mail: duanweihe@scu.edu.cn
100701-7

More Related Content

Viewers also liked

πιστοποιητικο ισοδυναμίας
πιστοποιητικο ισοδυναμίαςπιστοποιητικο ισοδυναμίας
πιστοποιητικο ισοδυναμίαςIoannis Sousouras
 
السيرة الذاتية ‫‬
السيرة الذاتية ‫‬السيرة الذاتية ‫‬
السيرة الذاتية ‫‬????? ???
 
يوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبة
يوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبةيوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبة
يوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبةmohd al-dabbas
 
李喆杨的奖学金证书
李喆杨的奖学金证书李喆杨的奖学金证书
李喆杨的奖学金证书Zheyang Li
 
قائمة تدريب أ.د طارق النمر
قائمة تدريب أ.د  طارق النمرقائمة تدريب أ.د  طارق النمر
قائمة تدريب أ.د طارق النمرTareq Alnemr
 
Использование ореха маньчжурского в качестве источника биологически активных ...
Использование ореха маньчжурского в качестве источника биологически активных ...Использование ореха маньчжурского в качестве источника биологически активных ...
Использование ореха маньчжурского в качестве источника биологически активных ...kulibin
 
בגצ מורי הנהיגה
בגצ מורי הנהיגהבגצ מורי הנהיגה
בגצ מורי הנהיגהGal Wolkowicz
 
КОРПОРАТИВНЫЕ УСЛУГИ
КОРПОРАТИВНЫЕ УСЛУГИКОРПОРАТИВНЫЕ УСЛУГИ
КОРПОРАТИВНЫЕ УСЛУГИGeeksLab Odessa
 
*最終版シンポジウムチラシ
*最終版シンポジウムチラシ*最終版シンポジウムチラシ
*最終版シンポジウムチラシKyoko Hasegawa
 
Η Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιού
Η Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιούΗ Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιού
Η Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιούVeronika Dimitrakopoulou
 
خطاب اعتماد التعليم العالى
خطاب اعتماد  التعليم العالىخطاب اعتماد  التعليم العالى
خطاب اعتماد التعليم العالىtaher badawy
 
ΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣ
ΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣ
ΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣFotini Kyriakou
 
خطاب اعتماد وزارة الداخلية ‫‬
خطاب اعتماد وزارة الداخلية ‫‬خطاب اعتماد وزارة الداخلية ‫‬
خطاب اعتماد وزارة الداخلية ‫‬taher badawy
 
آموزش کارکنان پذیرائی
آموزش کارکنان پذیرائیآموزش کارکنان پذیرائی
آموزش کارکنان پذیرائیali bakhshizadeh
 

Viewers also liked (16)

весь-журнал
весь-журналвесь-журнал
весь-журнал
 
πιστοποιητικο ισοδυναμίας
πιστοποιητικο ισοδυναμίαςπιστοποιητικο ισοδυναμίας
πιστοποιητικο ισοδυναμίας
 
السيرة الذاتية ‫‬
السيرة الذاتية ‫‬السيرة الذاتية ‫‬
السيرة الذاتية ‫‬
 
يوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبة
يوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبةيوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبة
يوم جديد - لقاء الدكتور محمد الدباس مع سمر غرايبة
 
李喆杨的奖学金证书
李喆杨的奖学金证书李喆杨的奖学金证书
李喆杨的奖学金证书
 
قائمة تدريب أ.د طارق النمر
قائمة تدريب أ.د  طارق النمرقائمة تدريب أ.د  طارق النمر
قائمة تدريب أ.د طارق النمر
 
Использование ореха маньчжурского в качестве источника биологически активных ...
Использование ореха маньчжурского в качестве источника биологически активных ...Использование ореха маньчжурского в качестве источника биологически активных ...
Использование ореха маньчжурского в качестве источника биологически активных ...
 
בגצ מורי הנהיגה
בגצ מורי הנהיגהבגצ מורי הנהיגה
בגצ מורי הנהיגה
 
ΚΤΙΡΙΟ ΓΡΑΦΕΙΩΝ
ΚΤΙΡΙΟ ΓΡΑΦΕΙΩΝΚΤΙΡΙΟ ΓΡΑΦΕΙΩΝ
ΚΤΙΡΙΟ ΓΡΑΦΕΙΩΝ
 
КОРПОРАТИВНЫЕ УСЛУГИ
КОРПОРАТИВНЫЕ УСЛУГИКОРПОРАТИВНЫЕ УСЛУГИ
КОРПОРАТИВНЫЕ УСЛУГИ
 
*最終版シンポジウムチラシ
*最終版シンポジウムチラシ*最終版シンポジウムチラシ
*最終版シンポジウムチラシ
 
Η Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιού
Η Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιούΗ Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιού
Η Επίδραση του διαζυγίου στην γνωστική και ψυχοκοινωνική ανάπτυξη του παιδιού
 
خطاب اعتماد التعليم العالى
خطاب اعتماد  التعليم العالىخطاب اعتماد  التعليم العالى
خطاب اعتماد التعليم العالى
 
ΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣ
ΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣ
ΓΡΑΦΗΜΑ ΙΤΑΛΙΑΣ
 
خطاب اعتماد وزارة الداخلية ‫‬
خطاب اعتماد وزارة الداخلية ‫‬خطاب اعتماد وزارة الداخلية ‫‬
خطاب اعتماد وزارة الداخلية ‫‬
 
آموزش کارکنان پذیرائی
آموزش کارکنان پذیرائیآموزش کارکنان پذیرائی
آموزش کارکنان پذیرائی
 

Similar to 管俊伟

生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測Yuta Takahashi
 
Hydrodynamic study of anadjustableheightpacked column operating
Hydrodynamic study of anadjustableheightpacked column operatingHydrodynamic study of anadjustableheightpacked column operating
Hydrodynamic study of anadjustableheightpacked column operatingIAEME Publication
 
Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische
Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische
Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische BASF
 
Essential Oil of Slovakian Mentha longifolia Huds.
Essential Oil of Slovakian Mentha longifolia Huds.Essential Oil of Slovakian Mentha longifolia Huds.
Essential Oil of Slovakian Mentha longifolia Huds.Attila Szkukalek
 
Prediction of slip velocity in the pneumatic conveyance of solids in the
Prediction of slip velocity in the pneumatic conveyance of solids in thePrediction of slip velocity in the pneumatic conveyance of solids in the
Prediction of slip velocity in the pneumatic conveyance of solids in theIAEME Publication
 
SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...
SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...
SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...IAEME Publication
 
Dielectric constant study of polyaniline ni cofe2o3 composites
Dielectric constant study of polyaniline ni cofe2o3 compositesDielectric constant study of polyaniline ni cofe2o3 composites
Dielectric constant study of polyaniline ni cofe2o3 compositesIAEME Publication
 
Granular Particles and Related System
Granular Particles and Related SystemGranular Particles and Related System
Granular Particles and Related SystemSparisoma Viridi
 

Similar to 管俊伟 (11)

生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
生活リズムの類似性や周期性に基づく心身の健康状態の推定と予測
 
Hydrodynamic study of anadjustableheightpacked column operating
Hydrodynamic study of anadjustableheightpacked column operatingHydrodynamic study of anadjustableheightpacked column operating
Hydrodynamic study of anadjustableheightpacked column operating
 
Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische
Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische
Hydrogen-Mediated C-C Coupling Beyond Hydroformylation: Michael J. Krische
 
Essential Oil of Slovakian Mentha longifolia Huds.
Essential Oil of Slovakian Mentha longifolia Huds.Essential Oil of Slovakian Mentha longifolia Huds.
Essential Oil of Slovakian Mentha longifolia Huds.
 
Prediction of slip velocity in the pneumatic conveyance of solids in the
Prediction of slip velocity in the pneumatic conveyance of solids in thePrediction of slip velocity in the pneumatic conveyance of solids in the
Prediction of slip velocity in the pneumatic conveyance of solids in the
 
Sun et al-2002 nanowires
Sun et al-2002 nanowiresSun et al-2002 nanowires
Sun et al-2002 nanowires
 
Publication 2
Publication 2Publication 2
Publication 2
 
SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...
SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...
SELECTION OF SUITABLE EQUATIONS IN FINAL ESTIMATION OF LOCAL SCOUR (SECOND ED...
 
Dielectric constant study of polyaniline ni cofe2o3 composites
Dielectric constant study of polyaniline ni cofe2o3 compositesDielectric constant study of polyaniline ni cofe2o3 composites
Dielectric constant study of polyaniline ni cofe2o3 composites
 
PHD_talk
PHD_talkPHD_talk
PHD_talk
 
Granular Particles and Related System
Granular Particles and Related SystemGranular Particles and Related System
Granular Particles and Related System
 

More from PATIO FURNITURE CO., LIMITED (12)

Beach furniture
Beach furnitureBeach furniture
Beach furniture
 
rattan outdoor living sofa
rattan outdoor living sofarattan outdoor living sofa
rattan outdoor living sofa
 
all weather wicker rattan sofa
all weather wicker rattan sofaall weather wicker rattan sofa
all weather wicker rattan sofa
 
6 pcs wicker sofa update photos
6 pcs wicker sofa update photos6 pcs wicker sofa update photos
6 pcs wicker sofa update photos
 
sofa update photos july 21
sofa update photos july 21sofa update photos july 21
sofa update photos july 21
 
Outdoor Furniture
Outdoor Furniture Outdoor Furniture
Outdoor Furniture
 
许超
许超许超
许超
 
Update photos april 8th
Update photos april 8thUpdate photos april 8th
Update photos april 8th
 
Patio wicker rattan sun bed
Patio wicker rattan sun bedPatio wicker rattan sun bed
Patio wicker rattan sun bed
 
Patio wicker rattan chaise lounger
Patio wicker rattan chaise loungerPatio wicker rattan chaise lounger
Patio wicker rattan chaise lounger
 
Patio wicker rattan table and chairs
Patio wicker rattan table and chairsPatio wicker rattan table and chairs
Patio wicker rattan table and chairs
 
Patio wicker rattan sofa
Patio wicker rattan sofaPatio wicker rattan sofa
Patio wicker rattan sofa
 

管俊伟

  • 1. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 * † ( , , 610065 ) ( 2011 6 26 ; 2011 9 23 ) , , . , (Bi, ZnTe, ZnS, GaAs) 14/8, 12/6 10/4 6-8 , . , , . , , ; 6-8 2-6-8 ; , , , . : , , PACS: 07.35.+k 1 ( ) ( 1 mm3 ) . 100 GPa ( )[1,2] , [3−6] , , . . ( ) ( )[7] , 12 GPa[8,9] . , . WC , 25 GPa[10] , , 80 GPa [11,12] . , (mm ), , [13] , , , . , , , . , , , , 2-6-8 [10,14−22] . 6-8 [23−25] . , , , , 2-6-8 . [24] * - NSAF ( : 10976018) ( : 11027405) . † E-mail: duanweihe@scu.edu.cn c 2012 Chinese Physical Society http://wulixb.iphy.ac.cn 100701-1
  • 2. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 , , , [24] . , (Bi, ZnTe, ZnS GaAs) 6-8 . , , ( ) ( ) , , , . , (6-8 2-6-8 ) , , 25/17 ( / , mm ), 19/12, 18/11, 14/8, 12/6, 10/5, 10/4 7/3 . , . , , . 2 (6-8 )[23−25] (2-6-8 )[10,17] , , ( ) ( ) , . 6-8 , 1(a) , F . , 1(b) , F1 . : F1 = 1 4 F, F2 = √ 3F1 = √ 3 4 F. 2-6-8 , MA8 [10] Kawai [17] 2-6-8 , , . 2(a) , F , F1 . , 2(b) , F2 . , F1 = 1 √ 3 F, F2 = 1 4 F1 = √ 3 12 F, F3 = √ 3F2 = 1 4 F. 1 (a) ; (b) 2 (a) ; (b) 3 a, S = √ 3 4 a2 . ( ) P1, , ( ) P2, : η = P1 P2 × 100%. 6-8 , P2 = F2 S = F a2 , : η = P1 P2 × 100% = P1 × a2 F × 100%; (1) 2-6-8 , P2 = F3 S = F √ 3a2 , : η = P1 P2 × 100% = √ 3P1 × a2 F × 100%. (2) 100701-2
  • 3. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 4 4.1 Bi, ZnTe, ZnS GaAs , , : Bi (I-II, 2.55 GPa), Bi (III-IV, 7.7 GPa)[26,27] ; ZnTe (I-II,5 GPa), ZnTe (II-III, 8.9—9.5 GPa), ZnTe (III-IV, 11.5—13 GPa)[28,29] ; ZnS (15.6 GPa)[30] GaAs (19.3 GPa)[31] , , ZnTe (I-II, 5 GPa) ZnTe 5 GPa, ZnTe (II-III, 8.9—9.5 GPa) ZnTe 8.9—9.5 GPa , ZnTe (III-IV, 11.5—13 GPa) ZnTe 11.5—13 GPa , . , 6- 8 . [24] [25] , . DS 6×8MN AX-104-1-3 . WC , 14.5, 19.5 22 GPa , 4, 6 8 mm ( 3 ), 10, 12 14 mm . [25]. 3 4.2 1 14 mm 12 mm , 8 mm 6 mm, 19.5 GPa; . 2 MgO 14 mm, 8 mm, 14.5 GPa 19.5 GPa; 6-8 14/8 , . 3 MgO 10 mm, 4 mm, 22 GPa; 6-8 10/4 , [25] , . 5 5.1 6-8 , η = P1 × a2 F × 100% , P1 , , , ( ) , , ; , , . 10 GPa , 14/8 12/6 1.1 , 10/4 2.0 , 12/6 10/4 1.7 . , 4 , 14/8 12/6 , , . , , , 14/8 , 12/6 , 10/4 , 4 . , ( ) , , . 14/8 ( ) 12/6 , 14/8 12/6 ; ,10/4 12/6 , 10/4 12/6 , 10/4 . , 1 2 3 , , . 14/8 10/4 , 12/6 , . , , , ( ) , , 100701-3
  • 4. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 . , , , . , , , , , . , , , . 4 6-8 , 10/4, 12/6 14/8 1 1’ 10/4 , 22 GPa; 2 2’ 12/6 , 19.5 GPa; 3 3’ 14/8 , 19.5 GPa. , ZnTe (II-III, 8.9—9.5 GPa) 9.2 GPa, ZnTe (III-IV, 11.5—13 GPa) 12.3 GPa. , • , 1, 2 3 5.2 5 , 14/8 , 6-8 2-6-8 , , . 10 GPa , 6-8 2-6-8 1.2 . 6 6-8 2-6-8 10/4 , 19 GPa , 6-8 2-6-8 1.2 . 14/8 10/4 , , ( ), 6-8 2-6-8 . 6-8 , 2-6-8 . , , 6-8 , , . 5 14/8 , 6-8 2-6-8 1 1’ , 14.5 GPa; 2 2’ [17] , [17] 2-6-8 . • , 1 2 6 10/4 , 6-8 2-6-8 1 1’ , 22 GPa; 2 2’ [10] , [10] 2-6-8 . • , 1 2 5.3 7 , , 10 GPa , 100701-4
  • 5. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 1.1 ; , , , . 7 6-8 14/8 , 1 1’ , 19.5 GPa; 2 2’ , 14.5 GPa. • , 1 2 , 1 2 , , . , , . , , , , , . , , , . 6-8 10/4 , 8 . 10 GPa , 1.4 . , , ; , , . , , , . 8 6-8 10/4 , 1 1’ , 22 GPa; 2 2’ [25] , [25] 15.6 GPa. • , 1 2 6 , . , , . , ; 6-8 2-6-8 ; , , , . , , 6-8 . . [1] Greene R G, Luo H, Ruoff A L 1994 Phys. Rev. Lett. 73 2075 [2] Singh A K, Liermann H P, Akahama Y, Saxena S K, Men´endez- Proupin E 2007 J. Appl. Phys. 101 123526 [3] Jayaraman A 1986 Rev. Sci. Instrum. 57 1013 [4] Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283 [5] Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th 100701-5
  • 6. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 EHPRG Karlsruhe, Germany, June 27–July 1, 2005 [6] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735 [7] Sung C M 1997 High Temp.-High Pressure 29 253 [8] Khvostantsev L G 1984 High Temp.-High Pressure 16 165 [9] Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 Advances in High-Pressure Technology for Geophysical Applications (Amsterdam: Elsevier B. V.) p461 [10] Liebermann R C, Wang Y B 1992 High-Pressure Research: Ap- plication to Earth and Planetary Sciences (Washington DC: AGU) p19 [11] Tange Y, Irifune T, Funakoshi K 2008 High Pressure Res. 28 245 [12] Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190 [13] Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497 [14] Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002 [15] Katsura T, Funakoshi K, Kubo A, Nishiyama N, Tange Y, Sueda Y, Kubo T, Utsumi W 2004 Phys. Earth Planet. Int. 143-144 497 [16] Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916 [17] Frost D J, Poe B T, Trønnes R G, Liebske C, Duba A,Rubie D C 2004 Phys. Earth Planet. Int. 143-144 507 [18] Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178 [19] Cordier P, Rubie D C 2001 Mater. Sci. Eng. A 309-310 38 [20] L¨u S J, Luo J T, Shu L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [ , , , , , 2009 58 6852] [21] Kunimoto T, Irifune T, Sumiya H 2008 High Press. Res. 28 237 [22] Kunimoto T, Irifune T 2010 J. Phys.: Conference Series 215 012190 [23] He D W, Wang F L, Kou Z L, Peng F Chinese Patent (No. ZL 2007 1 0048839.2) 13 May 2009 [ , , , ( :ZL 2007 1 0048839.2) 13 May 2009] [24] Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 ( in Chinese) [ , , , , , , , , 2008 57 5429] [25] Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [ , , , , , , , , , , 2010 59 3107] [26] Getting I C 1998 Metrologia 35 119 [27] Lloyd E C 1971 NBS Special Publication 326 201 [28] Ohtani A, Motobayashi M, Onodera A 1980 Phys. Lett. A 75 435 [29] Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333 [30] Jiang J Z, Gerward L, Frost D, Secco R, Peyronneau J, Olsen J S 1999 J. Appl. Phys. 86 6608 [31] Yagi T, Akimoto S 1976 J. Appl. Phys. 47 3350 100701-6
  • 7. Acta Phys. Sin. Vol. 61, No. 10 (2012) 100701 Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell∗ Guan Jun-Wei He Duan-Wei† Wang Hai-Kuo Xu Chao Wang Wen-Dan Wang Kai-Xue He Kai Peng Fang ( Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ) ( Received 26 June 2011; revised manuscript received 23 September 2011 ) Abstract We analyse the loading force transmissions for two kinds of loading structures directed at multistage octahedral cell of high pressure device, and build a mechanical relationship for high pressure producing efficiency. The relationship between cell pressure and hydraulic load is calibrated at room temperature for 14/8, 12/6 and 10/4 cell assemblies using the phase transitions of Bi, ZnTe, ZnS and GaAs under high pressure. Also we discuss qualitatively the influences of both mechanical configuration and hardness of last stage anvil on high pressure producing efficiency of octahedral cell. The experimental results show that both mechanical configuration and hardness of last stage anvil are key factors for affecting high pressure producing efficiency, what is more, the mechanical configuration is more important. The larger the geometry configuration of octahedral cell, the higher the high pressure producing efficiency is; high pressure producing efficiency of 6-8 type loading configuration is higher than that of 2-6-8 type loading configuration; when the pressure of octahedral cell approaches to Vickers hardness of last stage anvil, the harder the last stage anvil, the higher the high pressure producing efficiency and the higher cell pressure is. Keywords: mechanical configuration, loading configuration, high pressure producing efficiency PACS: 07.35.+k * Project supported by the National Natural Science Foundation of China-NSAF (Grant No. 10976018) and National Natural Science Foundation of China (Grant No. 11027405). † E-mail: duanweihe@scu.edu.cn 100701-7