SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Downloaden Sie, um offline zu lesen
BPH 4202
Pharmaceutical Technology III
Md. Imran Nur Manik
Lecturer
Department of Pharmacy
Primeasia University
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 1
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Packaging Technology
Introduction
Packaging is an economical means of providing presentation, protection, identification/information,
containment, convenience and compliance for a product during storage, carriage, display and use
until such time as the product is used or administered. Pharmaceutical packaging provides
protection for lifesaving drugs, surgical devices, blood and blood products, neutraceuticals,
powders, poultices, liquid and dosage forms, solid and semisolid dosage forms.
Definitions
Packaging
Packaging is the process by which the pharmaceuticals are suitably packed so that they should
retain their therapeutic effectiveness from the time of their packaging till they are consumed.
It is the art and science which involves preparing the articles for transport, storage, display and use.
Container
A container may be defined as a device in which the drug is enclosed and is in direct contact with
the drug.
Closures
A closure is a device which seals the container to exclude oxygen, carbon-dioxide, moisture,
micro-organisms and prevent the loss of volatile substances.
Categorically differentiating pharmaceutical packaging
Primary Packaging: This is the first packaging envelope which is in touch with the dosage form
or equipment. The packaging needs to be such that there is no interaction with the drug and will
provide proper containment of pharmaceuticals. E.g. Blister packages, Strip packages, etc.
Secondary Packaging: This is consecutive covering or package which stores pharmaceuticals
packages in it for their grouping. e.g. Cartons, boxes, etc.
Tertiary packaging: This is to provide bulk handling and shipping of pharmaceuticals from one
place to another. e.g. Containers, barrels, etc.
Materials of construction refer to the substances (e.g., glass, high density polyethylene (HDPE) resin, metal) used
to manufacture a packaging component.
A packaging component means any single part of a container closure system. Typical components are containers
(e.g., ampules, vials, bottles), container liners (e.g., tube liners), closures (e.g., screw caps, stoppers), closure liners,
stopper over seals, container inner seals, administration ports (e.g., on large-volume parenterals (LVPs)),
overwraps, administration accessories, and container labels.
A primary packaging component means a packaging component that is or may be in direct contact with the
dosage form.
A secondary packaging component means a packaging component that is not and will not be in direct contact
with the dosage form.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 2
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
A container closure system refers to the sum of packaging components that together contain and protect the
dosage form. This includes primary packaging components and secondary packaging components, if the latter are
intended to provide additional protection to the drug product.
A packaging system is equivalent to a container closure system.
A package or market package refers to the container closure system and labelling, associated components
(e.g., dosing cups, droppers, spoons), and external packaging (e.g., cartons or shrink wrap). A market package is
the article provided to a pharmacist or retail customer upon purchase and does not include packaging used solely
for the purpose of shipping such articles.
Quality refers to the physical, chemical, microbiological, biological, bioavailability, and stability attributes that a
drug product should maintain if it is to be deemed suitable for therapeutic or diagnostic use. In this guidance, the
term is also understood to convey the properties of safety, identity, strength, quality, and purity.
An extraction profile refers to the analysis (usually by chromatographic means) of extracts obtained from a
packaging component.
A quantitative extraction profile is one in which the amount of each detected substance is determined.
Purposes of packaging
The package passes through a number of stages, beginning with the container manufacturer,
thence to the product manufacturer, wholesaler, retailer and finally the consumer.
Therefore the packaging should perform the following purposes
1. Protect the contents from the environmental hazards: This includes
a) Light - protect the contents from light.
b) Temperature - withstand extremes of temperature.
c) Moisture - withstand extremes of humidity.
d) Atmospheric gases - protect the contents from the effect of atmospheric gases (e.g. aerial
oxidation).
e) Particles - protect from particulate contamination.
f) Microorganisms - protect from microbial contamination.
2. Protects the content from the mechanical hazards: This includes
a) Vibration - Usually due to transportation.
b) Compression - this usually includes pressure applied during stacking.
c) Shock - such as impact, drops or rapid retardation.
d) Puncture - penetration from sharp objects or during handling operations.
e) Abrasion - this may create electrostatic effects.
3. To prevent the addition or loss of its contents: This includes
a) Protect the contents from both loss and gain of water.
b) Protect the contents from loss of volatile materials.
c) Must not shed particles into the contents.
d) Must not leach anything to the contents.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 3
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
4. Provide pharmaceutically elegant appearance: This includes
a) In a competitive market the appearance of a package first draws the attraction of the
consumers than its contents.
b) Must be easy to label and thus to identify the product.
5. Product identification
The package must also give clear identification of the product at all stages and again the life of the
patient may depend upon rapid and correct identification in emergencies.
6. Convenience
The form of the package should be such that, it offers convenience at all stages of its life history.
Properties of packaging materials
The good packaging materials i.e. the containers and closures must meet the following criteria.
(Ideal properties of containers and closures)
1. The material must give the container sufficient strength to withstand the extremes of
temperature and pressure as well as to withstand handling while empty, while filling, closing,
sterilizing, labelling, transport, storage and use by the consumer.
2. The material should be impervious to any possible contaminants; for example solids, liquids,
gases vapours or microorganisms.
3. It should not interact with the contents. This includes migration, absorption, adsorption or
extraction. e.g. Absorption of water from creams into cardboard boxes.
4. It should protect the contents from the loss of product due to leakage, spillage or
permeation.
5. It should protect the contents from the loss of water and volatile materials.
6. The container must not impart its own colour, test or odour to the preparation.
7. It must not alter the identity of the product.
8. They must be FDA (Food & Drug Administration) approved,
9. They must meet applicable tamper-resistance requirements
10. They must be adaptable to commonly employed high-speed packaging equipment.
11. Must be cheap and economical i.e. they must have reasonable cost in relation to the cost of
the product.
12. They must be convenient and easy to use by the patient.
13. They must be non-toxic and biodegradable.
14. The container and closure must not react either with each other or with the preparation.
15. Apart from all these a container and closure should be attractive in appearance and must
have sale promotion and marketing value.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 4
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Shelf-life: The shelf life (t90) of a pharmaceutical product is the length of time the product may safely be stored on
the dispensary shelf before significant decomposition occurs. This is important since, at best, drugs may
decompose to inactive products; in the worst case the decomposition may yield toxic compounds. The shelf-life is
often taken to be the time for decomposition of 10% of the active drug to occur, leaving 90% of the activity.
Factors influencing the choice of packaging
The choice of package is governed by the facilities available and by the ultimate use of the product.
Some of the important aspects include
1. The physical form of the product e.g. solid, semisolid, liquid or gas.
2. Chemical and physical characteristics of the drug entity, the excipients and the formulation;
3. Product detail covering any recognized routes of deterioration or degradation.
4. The dosage form and frequency of dosage,
5. The route of drug administration e.g. oral, parenteral, or external.
6. Type of patient (baby, child, teenager, adult, elderly, infirm etc.),
7. The stability of the product i.e. its protective needs.
8. Interaction of the product with the packaging materials.
9. Marketing requirements of the product.
10. The eventual channels of sale, i.e. where, when, how and by whom it is to be used or
administered (e.g. doctor, dentist, nurse, patient etc.)
11. Whether the product is seasonal or has a year round use may be a further influence on pack
selection.
12. The place of using the product, i.e. Clinic, Home, Hospital etc.
13. The distribution system, for example conventional wholesale/retail outlets, or direct to
selected outlets.
14. The suitability of the manufacturing facilities may have to be considered for a number of
reasons, i.e . New pack increased sales, improvements in GMP, revised product, new
product etc.
15. Over all costs should be considered in order to make a cost effective quality product.
Types of Container
The containers can be classified into the following types.
1. Well closed containers: A well closed containers is used to protect the preparation from
contamination by extraneous solids to prevent the loss of potency of active constituents and
to prevent the loss of contents during transport, storage and handling.
2. Air-tight containers: Air-tight containers are used to protect the containers from
atmospheric contamination of liquids, solids or vapors. They prevent the drugs due to
efflorescence, deliquescence or evaporation.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 5
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
3. Hermetically-Sealed containers: Hermetically sealed container is that which does not allow
the air or other gases to pass through it. They are generally used for injectables.
4. Light-resistant containers: Light resistant containers are used to protect the drugs which
undergo decomposition in the presence of light. For e.g .Amber colored glass or opaque
glass.
5. Single dose containers: They are used to supply only one dose of the medicament. They
are sealed in such a way that the contents cannot be removed without removing the seal;
the contents so removed are consumed immediately. e,g. ampoules.
6. Multi dose containers: A multi dose container should hold a number of doses. It is sealed
in such a way that success doses can be withdrawn easily without changing the strength,
quality or purity of the remaining contents e.g multi dose vials.
7. Aerosol containers: Containers for aerosols must be strong enough to withstand the
pressure evolved inside the container at the time of use of preparation.
Classification of containers according to their shapes
1. Glass / polyethylene bottles.
(i) Narrow mouth
(ii) Wide mouth
2. Dropper bottles/ droptainers
3. Collapsible tubes
4. Ampoules
5. Vials
6. Polythene packets for i.v. fluid.
7. Polythene / glass bottle for i.v. fluids
1. Glass / Polyethene bottles
Wide mouthed bottles are used for containing solid dosage forms like powder,
capsules, and tablets. To absorb the moisture sometimes silica-gel bags are given
inside the bottle.
For low viscosity liquids e.g. gargles, mouth washes, mixtures, elixirs narrow mouthed bottle
is used. For high viscosity liquids or for suspensions wide-mouthed bottles are used.
Liquid preparations for external uses like lotion, liniments, paints etc. are supplied in
coloured fluted bottles in order to distinguish them from preparations meant for internal use.
2. Dropper bottles or droptainers: Eye drops, ear drops, nasal drops etc. should be
dispensed in amber colour glass bottles fitted with a dropper. Now-a-days manufacturers
prefer plastic droptainers. It is a single piece of squeezable container having an in built
dropper.
3. Collapsible tubes: Ointments, pastes, gels are packed in plastic or metal tubes.
4. Ampoules: Ampoules are made of special type of neutral glass having low m.p. so that it
can be heat sealed at low temperature.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 6
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
5. Vials: Used for storing multi dose indictable preparation. The needle is passed through the
rubber closure, the drug is drawn out. The rubber plug automatically seals the hole. Thus
contamination of bacteria is checked.
6. Polyethene packets for infusion fluid: These flexible bags or packets are made of
PVC, polyethylene or polypropylene.
7. Glass bottles for i.v. fluids: Previously glass bottles with big rubber stoppers were used.
Materials used for the making of containers
The following materials are used for the construction of containers and closure
1. Glass:
a) Type I ( Neutral or Borosilicate Glass)
b) Type II ( Treated Soda-lime glass)
c) Type III ( Soda-lime glass)
d) Type IV- General Purpose soda lime glass
e) NP—soda glass (non parenteral usage)
f) Coloured glass
g) Neutral glass
2. Metals: a) Tin b) Iron c) Aluminium d) Lead.
3. Plastics: a) Thermosetting resins : (i) Phenolics
(ii) Urea
b) Thermoplastic resins: (i) Polyethylene
(ii) Polypropylene
(iii) Polyvinylchloride (PVC)
(iv) Polystyrene
(v) Polycarbonate
(vi) Polyamide (Nylon)
(vii) Acrylic multipolymers
(viii) Polyethylene terephthalate (PET)
4. Rubber: a) Natural rubber
b) Neoprene rubber
c) Butyl rubber.
5. Fibrous material
6. Films, foils and laminates
Glass and Glass Containers
Glass has been widely used as a drug packaging material. Glass is composed of sand, soda ash,
limestone, & cullet. Si, Al, Na, K, Ca, Mg, Zn & Ba are generally used into preparation of glass.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 7
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Advantages
1. They have good protection power as they are impermeable to atmospheric gases and
moisture with a proper closure system.
2. They are relatively non-reactive (depending on the grade chosen).
3. They can be used on high speed packaging lines.
4. They can be easily labeled.
5. They are usually transparent.
6. Colored glass especially amber, can protect the photosensitive medicaments from light
during their storage.
7. They are hygienic and suitable for sterilization; as they can withstand the variation in
temperature and pressure during sterilization.
8. They are neutral after proper treatment.
9. They do not deteriorate with age.
10. They are economical and easily available in various shapes and sizes.
Disadvantages
1. Glass is fragile so easily broken.
2. They are heavier in comparison to plastic containers.
3. Release alkali to aqueous preparation.
4. They may crack when subjected to sudden changes of temperature.
5. Some containers can impart alkalinity and insoluble flakes to the formulations.
6. Transparent glasses gives passage to UV-light which may damage the photosensitive drugs
Flaking
During flaking the alkali is extracted from the surface of the glass containers and a silica rich layer is
formed which sometimes gets detached from the surface and can be seen in the contents in the
form of shining flakes. This is a serious problem, especially in parenteral preparations.
Fig; Flacking Fig: Weathering
Weathering
Weathering is a common problem with glass containers in which sometimes moisture condensed on
the surface of glass container, can extract some weakly bonded alkali, leaving behind a white
deposit of alkali carbonate. Further condensation of moisture will lead to the formation of an alkaline
weathering.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 8
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
To prevent weathering, the deposited white layer of alkali carbonates should be removed as early as possible by
washing the containers with dilute solution of acid and then washing thoroughly with water.
Types of glass
1. Type I ( Neutral or Borosilicate Glass)
2. Type II ( Treated Soda-lime glass)
3. Type III ( Soda-lime glass)
4. Type IV- General Purpose soda lime glass
5. NP—soda glass (non-parenteral usage)
6. Colored glass
7. Neutral glass
1. Type I-Borosilicate glass:
Highly resistant and chemically inert glass. Alkali‟s and earth cations of glass are replaced by boron
and/or aluminum and zinc. These are used to contain strong acids and alkalis.
2. Type II-Treated soda-lime glass:
These are more chemically inert than Type I glass. The glass surface is de-alkalized by
“Sulfur treatment” which prevents blooming/weathering from bottles.
3. Type III- Regular soda lime glass:
Untreated soda lime glass with average chemical resistance.
4. Type IV- General Purpose soda lime glass:
Glass is not used for parenterals, used only for products intended to be used orally or topically.
Type of glass Main Constituents Properties Uses
Type-I
Borosilicate
glass
e.g. Pyrex,
Borosil
SiO2  80%
B2O3  12
Al2O3 - 2%
Na2O+CaO - 6%
 Has high melting point so
can withstand high
temperature
 Resistant to chemical
substances
 Reduced leaching action
 Laboratory glass
apparatus
 For injections and
 For water for
injection.
Type-II
Treated soda-
lime glass
Made of soda lime
glass. The surface of
which is treated with
acidic gas like SO2 (i.e.
dealkalised) at
elevated temperature
(5000
C) and moisture.
 The surface of the glass is
fairly resistant to attack by
water for a period of time.
 Sulfur treatment neutralizes
the alkaline oxides on the
surface, thereby rendering
the glass more chemically
resistant.
 Used for alkali
sensitive products
 Infusion fluids, blood
& plasma.
 Large volume
container
Type-III
Regular soda-
lime glass
SiO2
Na2O
CaO
 It contains high
concentration of alkaline
oxides and imparts
alkalinity to aqueous
substances
 Flakes separate easily.
 May crack due to sudden
change of temperature.
 For all solid dosage
forms (e.g. tablets,
powders)
 For oily injections
 Not to be used for
aqueous injection
 Not to be used for
alkali-sensitive
drugs.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 9
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Type of glass Main Constituents Properties Uses
Type NP
Non-parenteral
glass or General
purpose soda-
lime glass.
 For oral and
 Topical purpose
 Not for ampoules.
Neutral Glass SiO2  72-75%
B2O3  7-10%
Al2O3  6%
Na2O  6-8%
K2O  0.5  2%
BaO  2-4%
 They are softer and can
easily be moulded
 Good resistance to
autoclaving
 Resistant to alkali-
preparations (with pH upto
8)
 Lower cost than borosilicate
 Small vials (<25 ml)
 Large transfusion
bottles
Neutral Tubing
for Ampoules
SiO2  67%
B2O3  7.5%
Al2O3  8.5%
Na2O  8.7%
K2O  4%
CaO  4%
MgO  0.3%
 In comparison to neutral
glass its melting point is
less. After filling the glass
ampoules are sealed by
fusion and therefore the
glass must be easy to melt.
 Ampoules for
injection.
Coloured glass Glass + iron oxide  Produce amber colour glass
 Can resist radiation from
290 400 450nm
UV Visible
 For photosensitive
products.
Metal and metal containers
Metals are used for construction of containers. The metals commonly used for this purpose are
aluminium, tin plated steel, stainless steel, tin and lead.
Advantages
1. They are sturdy. (
2. They are impermeable to light, moisture and gases.
3. They can be made into rigid unbreakable containers by impact extrusion.
4. They are light in weight as compared to glass containers.
5. Labels can be printed directly on to their surface.
Disadvantages
1. They are expensive.
2. They react with certain chemicals
3. They may shed metal particles into the pharmaceutical product.
COLLAPSIBLE TUBES METAL
The collapsible metal tube is an attractive container that permits controlled amounts to be dispensed
easily, with good enclosure, and adequate protection of the product. It is light in weight and
unbreakable and lends itself to high speed automatic filling operations.
Most commonly used are tin, aluminium and lead.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 10
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
TIN
Advantages:
I. This metal is very resistant to chemical attack.
II. Readily coats a number of the metals e.g. tin-coated lead tubes combine the softness of lead
with the inertness of tin and for this reason it was formerly used for packaging fluoride
toothpaste.
Disadvantage:
Tin is the most expensive metal among tin, lead, aluminium and iron.
Uses:
I. Tin containers are preferred for foods, like milk powder containers are coated with tin.
II. Currently, some eye ointment still packaged in pure tin ointment tubes.
ALUMINIUM
Advantages:
I. Aluminium is a light metal-hence the shipment cost of the product is less.
II. They provide attractiveness of tin at somewhat lower cost.
III. The surface of aluminium reacts with atmospheric oxygen to form a thin, tough, coherent,
transparent coating of oxide, of atomic thickness, which protects the metal from further
oxidation.
Disadvantages:
I. Any substance that reacts with the oxide coating can cause corrosion e.g. products with the
oxide coating can cause corrosion e.g. products of high or low pH, some complexing agents
etc.
II. As a result of corrosion process H2 may evolve.
Uses:
I. Aluminium ointment tubes.
II. Screw caps
III. Aluminium strips for strip-packaging of tablet, capsules etc. Sometimes internally lacquered
aluminium containers are used to stop the reaction with the content.
LEAD
Advantages:
I. Lowest cost of all the metals used in pharmaceutical containers.
II. Soft metal.
Disadvantage:
Lead when taken internally there is risk of lead poisoning. So lead containers and tubes should
always have internal lining of inert metal or polymer.
Use:
With lining lead tubes are used for such product as fluoride tooth paste.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 11
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
IRON
Advantages: Iron as such is not used for pharmaceutical packaging, large qualities of tin-coated steel,
popularly called „tin‟, combines the strength of steel with the corrosion resistance of tin.
Disadvantages: If an aqueous liquid can penetrate a pinhole or other fault in the layer of tin, which is
virtually a short-circuited galvanic cell is set up and the intense chemical reaction which results brings
about rapid corrosion of underlying steel. As a further measure the tin surface is lacquered.
Uses: Screw caps and aerosol cans.
Plastic and plastic containers
Plastics may be defined as any group of substances, of natural or synthetic origins,
consisting chiefly of polymers of high molecular weight that can be moulded into a shape or
form by heat and pressure.
Advantages
1. They are light in weight than glass and can be handled easily.
2. They are poor conductor of heat.
3. They have sufficient mechanical strength.
4. They can be transported easily.
5. Extremely resistant to breakage.
6. They are available in various shapes and sizes.
7. They are resistant to inorganic chemicals.
8. They have good protection power.
9. Flexible.
10. Variety of sizes and shapes.
11. Essentially chemically inert, strong, rigid, high quality, various designs.
Disadvantages
1. All are permeable to some degree to moisture, oxygen, carbon dioxide etc.
2. Most exhibit electrostatic attraction.
3. Allow penetration of light rays unless pigmented black etc.
4. Poor printing, thermostatic charge.
5. They cannot withstand heat without softening or distorting.( ,)
6. They may interact with certain chemical to cause softening or distortion.
7. They may absorb chemical substances, such as preservatives for solution.
8. Over all they are prone to possible extraction, interaction, adsorption, absorption, lightness
and hence poor physical stability.
Other possible negative features include:
1. Stress cracking: a phenomenon related to low density polythene and certain stress cracking
agents such as wetting agents, detergents and some volatile oils;
2. Panelling or cavitation: whereby a container shows inward distortion or partial collapse
owing to absorption of gases from the headspace, absorption causing swelling of the plastic, or
dimpling following a steam autoclaving operation.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 12
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
3. Crazing: a surface reticulation which can occur particularly with polystyrene and certain
chemical substances (isopropyl myristate first causes crazing, which ultimately reaches a state
of total embrittlement and disintegration).
4. Poor key of print: certain plastics, such as the polyolefins, need pre-treating before ink will
key. Additives that migrate to the surface of the plastic may also cause printing problems.
5. Poor impact resistance: both polystyrene and PVC have poor impact resistance. This can be
improved by the inclusion of impact modifiers, such as rubber in the case of polystyrene and
methyl methacrylate butadiene styrene for PVC. However, both increase the permeability of
each.
Classes of plastics
There are two classes of plastics, reflecting the behavior with respect to individual or repeated
exposure to heating and cooling.
 Thermoplastics
Capable of being shaped after initial heating (On heating, they soften to a viscous fluid) and
solidifying by cooling.
Resistant to breakage and cheap to produce and providing the right plastics are chosen will provide
the necessary protection of the product in an attractive containers.
E.g. Polyethylene, polypropylene, polyvinylchloride, polystyrene, nylon (polyamide), polycarbonate,
acrylic multipolymers, polyethylene terephthalate etc.
 Thermosets
When heated, they may become flexible but they do not become liquid; usually their shape is
retained right up to the temperature of decomposition. Because of a high degree of cross-linking
they are usually hard and brittle at room temperature.
During heating such materials form permanent crosslinks between the linear chains, resulting in
solidification and loss of plastic flow.
E.g. Phenolic, urea and melamine are representative of thermosets.
Examples of Plastics
Poly ethylene:
This is used as high and low density polyethylene
Low density polyethylene (LDPE) is preferred plastic for squeeze bottles.
High density poly ethylene (HDPE) is less permeable to gases and more resistant to oils, chemicals
and solvents. It is widely used in bottles for solid dosage forms.
Polyvinylchloride (PVC): Used as rigid packaging material and main component of intravenous
bags.
Poly Propylene: It has good resistance to cracking when flexed. Suitable for use in closures, tablet
containers and intravenous bottles.
Polystyrene: It is also used for jars for ointments and creams with low water content.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 13
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Drug-Plastic Consideration
A packaging must protect the drug without altering the composition of the product until the last dose is
removed.
Drug plastic considerations have been divided into five separate categories:-
(1) Permeation, (2) leaching, (3) sorption, (4) chemical reaction, and (5) alteration in the physical properties of
plastics or products.
1. PERMEATION
The transmission of gases, vapours or liquids through plastic packaging materials can have an adverse effect on
the shelf-life of a drug.
I. Permeation of water vapour and O2 through the plastic wall into the drug can cause a problem if the
dosage form is sensitive to hydrolysis and oxidation. Temperature and humidity influences the
permeability of oxygen and water.
e.g. Nylons are hydrophilic in nature, and are poor barrier for water while hydrophobic materials as
polyethylene provide much better barriers.
II. Formulations containing volatile ingredients may change when stored in plastic containers due to the
permeation of one or two ingredients through the walls of the containers. Often, the aroma of cosmetic
products become objectionable and the taste of medicinal products changes.
III. Certain w/o emulsions cannot be stored in a hydrophobic plastic bottle, since there is a tendency for the
oil phase to migrate and diffuse into the plastic.
2. LEACHING
Additives those are added in the plastics may leach into the content. Particular dyes may migrate into a
parenteral solution and cause a toxic effect.
Release of a constituent from the plastic container to the drug product may lead to drug contamination, may
catalyse some reaction in the solution - decomposing the drug.
3. SORPTION
This process involves the removal of constituents from the drug product by the packaging material. Drug
substances of high potency are administered in small doses. In this case losses due to sorption may significantly
affect the therapeutic efficacy of the preparation.
A common problem is the loss of preservatives. These agents exert their activity at low concentration, and their
loss through sorption may be great enough to leave a product unprotected against microbial growth.
Factors influencing the characteristics of sorption from products are:
i. chemical structure of the solute,
ii. pH,
iii. solvent system,
iv. concentration of solute,
v. temperature,
vi. time of contact and
vii. area of contact.
4. CHEMICAL REACTIVITY
Certain ingredients that are used in plastic formulations may react chemically with one or more components of
a drug. Ingredients in the formulation may react with the plastic. Even micro-quantities of chemically
incompatible substances can alter the appearance of the plastic or the drug product.
5. MODIFICATION
The physical and chemical alteration of the packaging material by the drug product is called modification.
Deformation in polyethylene containers is often caused by permeation of gases and vapours from the
environment or by loss of content through the container walls.
i. Oils have a softening effect on polyethylene and PVC.
ii. Fluorinated hydrocarbons attack polyethylene and PVC. In some cases the content may extract the
plasticizers, antioxidant or stabilizer, thus changing the flexibility of the package.
iii. Plasticizers when extracted by some solvents renders the wall stiff.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 14
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Rubber
Natural rubber consists of long chain polymers of isoprene units linked together in the cis-position.
Its most important source is the tree Hevea braziliensis from which a latex, containing 30 to 40% of
rubber in colloidal suspension, exudes when shallow cuts are made in the bark.
The main types of rubber used for pharmaceutical products include natural rubber, neoprene, nitrile,
butyl, chlorobutyl, bromobutyl and silicone rbber.
Categories of Rubbers
Mainly two types of rubbers are used
1. Natural rubber: Suitable for multiple use closures for injectable products as rubber reseals
after multiple insertion of needle.
Disadvantages:
i. It doesn't well tolerate multiple autoclaving; whereby they become brittle and leads to
relative degree of extractable material in presence of additives.
ii. Risk of product absorption on or in to a rubber.
iii. It has certain degree of moisture & gas permeation.
2. Synthetic rubber: Have fewer additives and thus fewer extractable and tends to experience
less sorption of product ingredients.
Disadvantages:
I. They are less suitable for repeated insertions of needle because they tend to fragment
II. Sometimes the core pushes small particles of the rubber in to the product.
e.g. Silicone, butyl, bromobutyl, chlorobutyl etc.
Examples of Rubbers
BUTYL RUBBER
These are copolymers of isobutylene with 1-3% of isoprene or butadiene.
Advantages
I. After vulcanization butyl rubber possesses virtually no double bond, consequently they are
most resistant to aging and chemical attack.
II. Permeability to water vapour and air is very low.
III. Water absorption is very low.
IV. They are relatively cheaper compared to other synthetic rubbers.
Disadvantages
I. Slow decomposition takes place above 1300°C.
II. Oil and solvent resistance is not very good.
NITRILE RUBBER
Advantages:
I. Oil resistant due to polar nitrile group.
II. Heat resistant.
Disadvantage
Absorption of bactericide and leaching of extractives are considerable.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 15
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
CHLOROPRENE RUBBERS (NEOPRENE)
These are polymers of 1:4 chloprene.
Advantages
I. Due to the presence of Cl group close to the double bond, resistant to oxidation.
II. This rubber is more polar hence oil resistant.
III. Heat stability is good (up to 1500°C).
IV. Water absorption and permeability are less than for natural rubbers.
SILICONE RUBBERS
Advantages
I. Heat resistance (up to 2500°C).
II. Extremely low absorption and permeability of water.
III. Excellent aging characteristics due to their saturated chemical structures.
IV. Poor tensile strength.
Disadvantages
I. They are very expensive.
II. experience permeability to moisture and gas
Fibrous Materials
The fibrous materials are the important part of pharmaceutical packaging.
 Fibrous materials include: Papers, Labels, Cartons, Bags, Outers, Trays for Shrink Wraps,
Layer Boards On Pallets, etc.
 The Applications as well as Advantages of Cartons include:
 Increases display area
 Provides better stacking for display of stock items
 Assembles leaflets
 Provides physical protection especially to items like metal collapsible tubes.
 Fiberboard outers either as solid or corrugated board also find substantial application
for bulk shipments.
Regenerated cellulose film, trade names Cellophane & Rayophane, is used for either individual
cartons or to assemble a no. of cartons.
Films, Foils & Laminates
Regenerated cellulose film based on viscose ( chemical used for manufacturing of rayon)
& laminating two or more types of films, cellulose coatings, foil and paper play different roles such
as supportive, barrier, heat seal & decorative.
For Example: Aluminum foil even in the thinnest gauges offers the best barrier properties, which are
not approached even by the most impermeable plastics.
Plastics, as either films or coatings, can be used for decoration, flexibility, to provide various barrier
properties, heat seal ability, see-through properties (i.e. transparency), and to protect the other plies
within the lamination.
Metallization a relatively new process whereby particles of metal are laid down onto a surface
under vacuum, can significantly improve the barrier properties of a material but these do not
approach the properties of a pure foil.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 16
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
In the newer technology Co-Extrusion a number of plastic plies are extruded in combination to
produce cheaper laminations.
Uses of films, foils, laminations:
 Strip packs
 Blister packs
 Sachets
 Diaphragm seals for bottles
 Liners for boxes either attached or loose bag-in-box systems & bags.
Foil blisters: When sealed with a metal foil-cover, the blister can provide a hermetic pack i.e. an
isolated system, which excludes any exchange of gases between the product & surrounding
atmosphere.
Both blister and strip packs appear to offer a reasonable degree of child resistance; particularly if
the materials are opaque (opinion based on actual recorded poisonings or accidents).
Alu-alu foil is the best pharmaceutical packaging film for tablets, capsules, which is taking place of
PVC film.
Characteristics:
1. Applicable to tablets, capsules, pills, etc.
2. It's a good substitute for PVC sheet.
3. No cracking, delamination or pinholes.
4. It has the quite good blocking properties effectively protecting drugs from water
vapor, oxygen and ultraviolet.
5. It is particularly suitable for packing moisture-sensitive drugs or those sold in the hot
and humid areas.
6. Taking out a part of the drugs from the drug boards without any impact on other
well-packaged drugs.
7. It is used by cold-moulding packaging machines where it is easily shaped by
changing the mold.
8. Nice appearance can upgrade drug's image
Tamper Resistant Packaging
A tamper resistant package is provided with an indicator or barrier before entering the package, so
that if this indicator or barrier is broken, the buyer immediately gets the evidence that the product
has been opened or tampered. Especially over the counter products require tamper resistant
packaging.
The following packages are approved by FDA as tamper resistant packaging systems:
1. Film wrappers
2. Blister package
3. Strip package
4. Bubble pack
5. Shrink seals and bands
6. Foils, paper or plastic pouches
7. Bottle seals
8. Tape seals
9. Breakable caps
10. Sealed tubes
11. Aerosol containers
12. Sealed cartons.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 17
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
1. Film Wrapper
Film wrapper can be categorized into:
I. End-folded wrapper:
This is formed by passing the product into a sheet of overwrapping film, which forms the film around
the product and folds the edges in a gift-wrap fashion. The folded areas are heat sealed by passing
against a heated bar.
Materials: Cellophane coated in both side by heat sealable polyvinylidene chloride (PDVC) or
nitrocellulose-PDVC provides durable moisture barrier.
Polypropylene coated with heat sealable acrylic coating or polypropylene is added
with heat sealable modifiers.
II. Fin seal wrapper
The seals are formed by crimping the film together and sealing together the two inside surfaces of
the film, producing a „fin‟-seal.
In this case heated bars never comes in contact with the package, hence much greater and more
consistent sealing pressure can be applied and consequently better sealing integrity can be
accomplished.
Materials: Polyethylene or Surlyn (Du Pont‟s Ionomer resin)
III. Shrink wrapper
In this type of packaging the product is packed within a thermoplastic film that has been stretched
and oriented during its manufacture and that has the property of reverting back to its unstretched
dimensions once the molecular structure is „unfrozen‟ by application of heat.
As the film unwinds on the over-wrapping machine, a pocket is formed in the center fold of the
sheet, into which the product is inserted. An L-shaped sealer seals the remainder of the overwrap
and trims off the excess film.
Materials: Heat shrinkable grades of polypropylene, polyethylene and polyvinylchloride (PVC).
2. Blister package Discussed in details later.
3. Strip package
4. Bubble pack
The bubble pack can be made in several ways but is usually formed by sandwiching the product
between a thermoformable, extensible or heat-shrinkable plastic film and a rigid backing material.
This is generally accomplished by heat-softenting the plastic film and vaccum drawing a pocket into
the film in a manner similar to the formation of a blister in a blister pack-age.
5. Shrink Banding
The heat-shrinkable polymer is manufactured as an extruded orienred tube in a diameter slightly
larger than the cap and neck ring of the bottle to be sealed. The heat-shrinkable material is supplied
to the bottle as a printed, collapsed tube, either pre-cut to a specified length or in roll from for an
automated person.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 18
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
6. Foil, Paper or Plastic Pouches
The flexible pouch is a packaging concept capable of providing not only a package that is
temper- resistant but also a package with a high degree of environmental protection. A flexible
pouch is usually formed during the product filling operation.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 19
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
7. Bottle seal
A bottle may be made temper-resistant by bonding an inner seal to the rim of the bottle in such a
way that access to the product can only be attained by irreparably destroying the seal. Frequently
used inner seals are glassine and foil laminates.
8. Tape Seals
Tape sealing involves the application of a glued or pressure-sensitive tape or label around or over
the closure of the package, which must be destroyed to gain access to the packaged product. The
paper used most often is a high density lightweight paper with poor tear strength.
9. Breakable Caps
Breakable closures come in many different designs. The roll-on cap design used in the past for
carbonated beverages uses an aluminium shell, which is placed over the bottle neck during the
capping operation.
10. Sealed Tubes
Collapsible tubes used for packaging are constructed of metal, plastic or lamination of foil, paper
and plastic. Metal tubes are still used for those products that require the high degree of barrier
protection afforded by metal.
11. Aerosol containers
The aerosol container used for pharmaceutical products is usually made of drawn aluminium. The
inside of the container can be specially coated if product compatibility is a problem. A hydrocarbon
propellant in its cooled liquid phase is added to the container along with the product, and a spray
nozzle contained in a gasketed metal ferrule is crimped over the opening of the aerosol container.
A length of polyethylene tube, called a dip-tube, is attached to the inside of the spray nozzle and
dips into the product, drawing product into the spray nozzle when the sprayer is activated.
The spray nozzles are usually metered to allow a specific dose to be dispersed with each spray.
12. Sealed Cartons
Folding paperboard cartons have been used as a secondary package for OTC products for many
years. The popularity of this packaging mode is based on both functional and marketing
consideration.
CLOSURES
Closures are the devices by means of which containers can be opened and closed.
Proper closing of the container is necessary because
– It prevents loss of material by spilling or volatilization.
– It avoids contamination of the product from dirt, microorganisms or insects.
– It prevents deterioration of the product from the effect of the environment such as
moisture, oxygen or carbon dioxide.
Material used for closures
The closures for containers meant for storage of pharmaceutical products are generally made from
the following basic materials.
 Cork
 Glass
 Plastic
 Metal
 Rubber
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 20
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
• Cork: Cork is essentially a wood obtained from the bark of oak tree. It is used for the
manufacture of stoppers for narrow mouth bottles.
Fig: Cork
• Glass: As compared to cork glass is an ideal material for stoppers but
they do not provide leak proof closure as well as can easily slip out of
the neck of the closure during transport and handling.
• Plastic: As compared to cork, glass, rubber and metal Plastic closures are
becoming popular day by day as they are unbreakable, light in weight and can
be easily molded into various shapes and sizes.
• Metal: Tin plate and aluminum are mostly commonly used for the manufacture
of closures but aluminum is mostly used for this purpose.
RUBBERS (Elastomers)
Excellent material for forming seals, used to form closures such as bungs for vials or in similar
applications such as gaskets in aerosol cans.
Categories of Rubbers:
Natural rubbers: Suitable for multiple use closures for injectable
products as rubber reseals after multiple insertion of needle.
Synthetic rubber: Have fewer additives and thus fewer extractable and tends to experience less
sorption of product ingredients.
Unit Dose packaging
Blister Packing: In blister packing the unit dosage forms are enclosed in
between transparent blisters and suitable backing material usually
aluminum foil.
Strip Packing: In strip packing the unit dosage of drugs are hermitically sealed in between strips of
aluminum foil and/or plastic film.
Blister package
The blister package is formed by heat-softening a sheet of thermoplastic resin and vacuum drawing
the soften sheet into a contoured mold. After cooling, the sheet is released from the mold and
proceeds to the filling station of the packaging machine. The semi-rigid blister previously formed is
filled with product and lidded with a heat-sealable backing material.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 21
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
The backing material may be of two types:
(i) A push-through type or (ii) Peelable type.
Materials
The blister is prepared from polyvinylchloride (PVC)
PVC / polyethylene combinations
polypropylene
polystyrene.
For commercial reason and for machine performance the blisters on most unit dose packages are
made of PVC. For moisture protection PVC may be laminated with polyvinylidene chloride (saran) or
polychlorotrifluoroethylene (Aclar) films. Under extremely humid condition Aclar coated PVC is
preferred.
For push through type backing material aluminium foil coated with heat sealable coating is used.
For peelable type backing material polyester or paper is used as a component of the backing
lamination. This peelable type backing material is tamper proof and child resistant.
Advantages of Blister Package:
1. Reduced costs and higher packaging speeds relative to other packaging materials. Blister
packaging helps retain product integrity because drugs that are prepackaged in blisters are
shielded from adverse conditions.
2. Opportunities for product contamination are minimal.
3. Each dose is identified by product name, lot number, and expiration date.
4. Blister packaging protects pharmaceuticals in the home better than bottles do.
5. Each tablet or capsule is individually protected from tampering until use.
Types of pharmaceutical blister packaging machine
Two basic types of pharmaceutical blister packaging machine exists
Cold Forming Blistering machine:
In the case of cold forming, an aluminum-based laminate film is simply pressed into a mold by
means of a stamp. The aluminum will be elongated and maintain the formed shape.
Advantage of cold form foil blisters is that the use of aluminum is offering a near complete barrier
for water and oxygen, allowing an extended product expiry date.
The disadvantages of cold form foil blisters are the slower speed of production compared to
thermoforming and the lack of transparency of the package and the larger size of the blister card.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 22
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Example: ALU-ALU Machine
Operation:
The sequence involves;
1. Installing the Aluminium Foil,
2. Cold forming it into blister cavities via punch pins,
3. Loading the blister with the product,
4. Placing lidding material over the blister,
5. And heat-sealing the package.
6. Cutting into individual blisters
Thermo-cold forming blistering machine:
In the case of thermoforming, a plastic film or sheet is unwound from the reel and guided though a
pre-heating station on the blister line. The temperature of the pre-heating plates (upper and lower
plates) is such that the plastic will soften and become moldable.
Example: ALU-Tropical Machine
Operation:
The sequence involves;
1. Heating the plastic,
2. Thermoforming it into blister cavities,
3. Loading the blister with the product,
4. Placing lidding material over the blister,
5. And heat-sealing the package.
6. Installing the aluminium foil
7. Cold forming it into blister Pouch & seal it on thermoformed blister to give extra protection,
8. Cutting into individual blisters
1. Bottom foil uncoiler 6. Cover foil uncoiler 11. Discharge conveyor
2. Cold forming station 7. Cooling & slitting
3. Feeding device 8. Draw Off
4. Empty checker 9. Punching
5. Sealing & Embossing 10. Waste foil coiler
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 23
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Strip package
A strip package is a form of unit dose packaging that is commonly used for package is formed by
feeding two webs of a heat-sealable flexible film through either a heated crimping roller or heated
reciprocating plates. The product is dropped into the pocket formed prior to forming the final set of
seals.
A continuous strip is formed, generally several packets wide. The strip packets are cut to the
desired number of packets in length.
The product usually has a seal around each tablet. The seal can be rectangular, or “picture-frame
format” or can be contoured to the shape of the product.
Since the sealing is usually accomplished between pressure rollers, a high degree of seal integrity is
possible.
Materials:
High barrier materials e.g. foil laminations, saran-coated films.
For higher barrier applications a paper/polyethylene/foil/polyethylene lamination is commonly used.
When product visibility is important a heat-sealable cellophane or polyester can be used.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 24
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Fig: Strip Packaging Machine
Quality Assurance Aspects of Packaging
To ensure that patients and consumers receive high-quality drugs, the quality management system
must take the following considerations into account if the required quality of packaging is to be
obtained:
The requirements of the national authorities and the relevant legislation
The product
The production process
The manufacturers‟ internal policies (safety, marketing, etc.).
Bad packaging which is the result of deficiencies in the quality assurance system for packaging can
have serious consequences, and packaging defects can create problems that may result in drug
recalls. Such defects may include breakage, and problems relating to printing or inks, or errors on
labels and package inserts (patient information leaflets). The use of GMP and quality control will
prevent the release of a defective medicinal product.
Packaging processes and equipment need validation/qualification in the same way as any other part
of processing within a pharmaceutical facility.
Sampling and testing of packaging materials
Sampling:
Sampling is used;
To check the correctness of the label, packaging material or container reference, as well as
in the acceptance of consignments,
Detecting adulteration of the medicinal product, obtaining a sample for retention, etc.
The sampling procedure must take into account the homogeneity and uniformity of the
material so as to ensure that the sample is representative of the entire batch.
The sampling procedure should be described in a written protocol.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 25
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Testing programme:
Quality control tests are intended to check the identity of the material concerned. Complete
pharmacopoeial or analogous testing may also be carried out, as may special tests, where
necessary. All written specifications for packaging materials and containers should include the
nature, extent and frequency of routine tests. Routine tests vary according to the type of material
and its immediate packaging, the use of the product, and the route of administration.
Nevertheless, such tests usually include the following:
visual inspection (cleanliness, defects)
tests to identify the material
dimensional tests
physical tests
chemical tests
microbiological tests
EVALUATION OF PACKAGING MATERIALS
A. Test for hydrolytic resistance (limit of alkalinity)
Because none of the glasses used for pharmaceutical containers is completely free from extractable
alkali a test for its absence is impractical and limit tests must be used:
1. Crushed glass test
This test is done on all types of glass containers except surface treated glass (i.e. Type-II, sulfured
or siliconed surface). The container is crushed and sieved to produce uniform particle size of which
a definite weight is taken. Control of particle size and weight of powder ensures that a constant
surface area is exposed to the solution.
The measured amount of glass powder is then taken in a resistant glass beaker, measured amount
of distilled water was added, autoclaved for 1/2 an hour at 1210
C. The water was then cooled and
filtered. Filtrate is titrated with standard H2SO4.
2. Whole container test
In case of surface treated glass container the intact container is taken, filled with distilled water and
exposed to the autoclaving condition. The extracts from several containers are pooled and titrated
with standard HCl (according to I.P.)
Type Description Test used Size (ml)
Limits
Volume of 0.05 N H2SO4 to neutralize
the extract from 10g of glass (ml)
I Highly resistant
Borosilicate glass
Crushed glass All 1.0
II Treated soda lime
glass
Whole Container 100 or less 0.7
0.2
III Soda -lime glass Crushed Glass Over 100 8.5
N.P. General purpose
soda-lime glass
Crushed glass All 15.0
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 26
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
B. Metal containers for eye ointments (IP 66)
Metal collapsible tubes comply with the following test for metal particles. According to IP 50 empty
tubes are taken, filled with ointment base, sealed and kept and kept overnight.
A metal bacteriological filter assembly fitted with a suitable filter paper and heated to the melting
range of the ointment base.
Ointment bases from all the tubes squeezed at a certain rate, pooled and passed through the
heated filter under vacuum. The filter paper is washed with chloroform.
The filter paper is dried and observed with magnifying glass under oblique light. The observations
are noted as follows:
Particles 1 mm and above
Particles 0.5 mm to 1 mm
Particles 0.2 mm to 0.5 mm
Particles less than 0.2 mm
50
10
2
Nil
Total score 62
The lot of tube passes the test if the total score is less than 100 points. If the score is above 150, the
lot fails. If it is between 100 and 150 the test is repeated again with 50 more tubes. This time the lot
will pass if total 100 tubes give 150 points.
C. Plastic containers
i) Leakage test
Ten containers are filled with water, fitted with the closures and are kept inverted at room
temperature for 24 hours. There should be no signs of leakage from any container.
ii) Collapsibility test
This test is applicable to containers which are to be squeezed in order to remove the contents. a
container, by collapsing inwards during use, yield at least 90% of its nominal contents at the
required rate of flow at ambient temperature.
iii) Transparency test
A 16-fold dilution of a standard suspension described in IP96 is prepared so as to give an
absorbance at about 640 nm of 0.37 to 0.43.
Five empty containers were filled to their nominal capacity suspension in each container is
detectable when viewed through the containers, as compared with a container of the same type
filled with water.
iv) Water vapour permeability test
Five containers are filled with nominal volume of water and heat sealed with aluminium foil-
polyethylene laminate or other suitable seal. Each container is accurately weighed and allowed to
stand for 14 days at a relative humidity of 60  5% and a temperature between 20 to 250
C.
After 14 days it is weighed again. The loss in weight in each container is not more than 0.2%.
Md.
ImranNur
Manik
Md.
ImranNur
Manik
Packaging Technology
Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 27
manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University.
Other tests
This includes:
*Tests for Barium, heavy metals, tin, zinc, etc.
*Test on extracts
*Test on extracts
Specified volume of extracting medium is taken in it. Plastic of specified surface area is cut and
extracted.
With the extract following tests are carried out:
1. Appearance of the extract - must be colourless.
2. Light absorption
3. Non-volatile matter.
4. Residue on ignition.
5. Heavy metals
6. Buffering capacity
7. Oxidisable substances.
*Bacteriological tests are carried out to determine the biological response of animals to plastics and
other polymeric material by the injection or instillation of specific extracts from the material under
test.
Glass Transition Temperature (Tg)
The maximum temperature below which a material become rigid, brittle solids and are said to be in
‘glassy-state’. In this condition they are not crystalline but are super cooled liquids of high viscosity.
Above the glass temperature (Tg) thermoplastics soften and melt if heated to a considerably higher
temperature than Tg. Other plastics are very highly cross-linked and for these thermosetting plastics
Tg is so high that decomposition takes place before the material can soften and melt.
BIBLIOGRAPHY
Cooper and Gunn‟s “Tutorial Pharmacy”; Sixth Edition; Chapter 09; Pitman Medical Publishing co Ltd
England.
“Guidance for Industry Container Closure Systems for Packaging” Human Drugs and Biologics;
Chemistry, Manufacturing, and Controls Documentation; U.S. Department of Health and Human Services
Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Biologics
Evaluation and Research (CBER); May 1999
Liberman, Lachman and Kanig, “The Theory & Practice of Industrial Pharmacy” Third edition; chapter
24; Lea & Febiger, Philadelphia U.SA.
M. E. Aulton “Pharmaceutics: the science of dosage form design” Second edition, Chapter 36; Churchill
Livingstone.

Weitere ähnliche Inhalte

Was ist angesagt?

Pharmaceutical packaging
Pharmaceutical packagingPharmaceutical packaging
Pharmaceutical packagingceutics1315
 
Selection and evaluation of pharmaceutical packaging materials
Selection and evaluation of pharmaceutical packaging materialsSelection and evaluation of pharmaceutical packaging materials
Selection and evaluation of pharmaceutical packaging materialsTushar Naik
 
Formulation of parenteral products
Formulation of parenteral productsFormulation of parenteral products
Formulation of parenteral productsD.R. Chandravanshi
 
Presentation for Tablet Coating
Presentation for Tablet CoatingPresentation for Tablet Coating
Presentation for Tablet CoatingMd. Shafiqul Islam
 
Parenteral production
Parenteral   productionParenteral   production
Parenteral productionceutics1315
 
Parenteral production and aseptic area
Parenteral production and aseptic areaParenteral production and aseptic area
Parenteral production and aseptic areaShaik Sana
 
Packaging materials : Selection & Evaluation
Packaging materials : Selection & EvaluationPackaging materials : Selection & Evaluation
Packaging materials : Selection & EvaluationYash Menghani
 
blow fill seal technology
  blow fill seal technology  blow fill seal technology
blow fill seal technologyShubham Paul
 
Packaging material for various formulations
Packaging material for various formulationsPackaging material for various formulations
Packaging material for various formulationsshindemk89
 
Hard gelatin capsules ppt B
Hard gelatin  capsules ppt BHard gelatin  capsules ppt B
Hard gelatin capsules ppt BMohammed Saleem
 
Techniques for enhancement of dissolution rate
Techniques for enhancement of dissolution rateTechniques for enhancement of dissolution rate
Techniques for enhancement of dissolution rateSagar Savale
 

Was ist angesagt? (20)

Packaging science
Packaging sciencePackaging science
Packaging science
 
Blister packing
Blister packingBlister packing
Blister packing
 
Pharmaceutical packaging
Pharmaceutical packagingPharmaceutical packaging
Pharmaceutical packaging
 
Selection and evaluation of pharmaceutical packaging materials
Selection and evaluation of pharmaceutical packaging materialsSelection and evaluation of pharmaceutical packaging materials
Selection and evaluation of pharmaceutical packaging materials
 
Formulation of parenteral products
Formulation of parenteral productsFormulation of parenteral products
Formulation of parenteral products
 
Microencapsulation
MicroencapsulationMicroencapsulation
Microencapsulation
 
Presentation for Tablet Coating
Presentation for Tablet CoatingPresentation for Tablet Coating
Presentation for Tablet Coating
 
Parenteral production
Parenteral   productionParenteral   production
Parenteral production
 
Blow fill seal technology
Blow fill seal technologyBlow fill seal technology
Blow fill seal technology
 
Tablet Coating
Tablet CoatingTablet Coating
Tablet Coating
 
Enteric coating
Enteric coatingEnteric coating
Enteric coating
 
Parenteral production and aseptic area
Parenteral production and aseptic areaParenteral production and aseptic area
Parenteral production and aseptic area
 
Packaging materials : Selection & Evaluation
Packaging materials : Selection & EvaluationPackaging materials : Selection & Evaluation
Packaging materials : Selection & Evaluation
 
Form fill seal technology
Form fill seal technologyForm fill seal technology
Form fill seal technology
 
blow fill seal technology
  blow fill seal technology  blow fill seal technology
blow fill seal technology
 
Packaging material for various formulations
Packaging material for various formulationsPackaging material for various formulations
Packaging material for various formulations
 
Extrusion Spheronization
Extrusion SpheronizationExtrusion Spheronization
Extrusion Spheronization
 
Hard gelatin capsules ppt B
Hard gelatin  capsules ppt BHard gelatin  capsules ppt B
Hard gelatin capsules ppt B
 
Pharmaceutical manufacturing plant
Pharmaceutical manufacturing plantPharmaceutical manufacturing plant
Pharmaceutical manufacturing plant
 
Techniques for enhancement of dissolution rate
Techniques for enhancement of dissolution rateTechniques for enhancement of dissolution rate
Techniques for enhancement of dissolution rate
 

Andere mochten auch

CDF Cheertainer Bag-in-Box Flexible Packaging
CDF Cheertainer Bag-in-Box Flexible PackagingCDF Cheertainer Bag-in-Box Flexible Packaging
CDF Cheertainer Bag-in-Box Flexible Packagingaverash
 
CDF Intermediate Bulk Container Flexible Packaging
CDF Intermediate Bulk Container Flexible PackagingCDF Intermediate Bulk Container Flexible Packaging
CDF Intermediate Bulk Container Flexible Packagingaverash
 
CoMFA CoMFA Comparative Molecular Field Analysis)
CoMFA CoMFA Comparative Molecular Field Analysis)CoMFA CoMFA Comparative Molecular Field Analysis)
CoMFA CoMFA Comparative Molecular Field Analysis)Pinky Vincent
 
Project Selection
Project SelectionProject Selection
Project SelectionIan Cammack
 
Total quality management - notes
Total quality management - notesTotal quality management - notes
Total quality management - notesThangaraja T
 
New product development with creativity & innovation
New product development with creativity & innovationNew product development with creativity & innovation
New product development with creativity & innovationTimothy Wooi
 
validation of blister packaging machine
validation of blister packaging machinevalidation of blister packaging machine
validation of blister packaging machineNilesh Utpure
 
New product development
New product  developmentNew product  development
New product developmentSagar Gadekar
 
Project Selection Model
Project Selection ModelProject Selection Model
Project Selection ModelErsen çelebi
 
New product planning and development
New product planning and developmentNew product planning and development
New product planning and developmentBendita Baylôn Ü
 
Current good manufacturing practices and current good compounding
Current good manufacturing practices and current good compounding Current good manufacturing practices and current good compounding
Current good manufacturing practices and current good compounding Areej Abu Hanieh
 
New Product Development
New Product DevelopmentNew Product Development
New Product DevelopmentLinda Gorchels
 
Free wilson analysis qsar
Free wilson analysis qsarFree wilson analysis qsar
Free wilson analysis qsarRahul B S
 
Packaging validation
Packaging validationPackaging validation
Packaging validationGomtesh447
 

Andere mochten auch (20)

CDF Cheertainer Bag-in-Box Flexible Packaging
CDF Cheertainer Bag-in-Box Flexible PackagingCDF Cheertainer Bag-in-Box Flexible Packaging
CDF Cheertainer Bag-in-Box Flexible Packaging
 
CDF Intermediate Bulk Container Flexible Packaging
CDF Intermediate Bulk Container Flexible PackagingCDF Intermediate Bulk Container Flexible Packaging
CDF Intermediate Bulk Container Flexible Packaging
 
Tqm1ppt
Tqm1pptTqm1ppt
Tqm1ppt
 
New product planning
New product planningNew product planning
New product planning
 
CoMFA CoMFA Comparative Molecular Field Analysis)
CoMFA CoMFA Comparative Molecular Field Analysis)CoMFA CoMFA Comparative Molecular Field Analysis)
CoMFA CoMFA Comparative Molecular Field Analysis)
 
Project Selection
Project SelectionProject Selection
Project Selection
 
Chemometrics
ChemometricsChemometrics
Chemometrics
 
Tqm
TqmTqm
Tqm
 
Total quality management - notes
Total quality management - notesTotal quality management - notes
Total quality management - notes
 
GE6757 - TQM - Unit 4 - TOOLS & TECHNIQUES II
GE6757 - TQM - Unit 4 - TOOLS & TECHNIQUES IIGE6757 - TQM - Unit 4 - TOOLS & TECHNIQUES II
GE6757 - TQM - Unit 4 - TOOLS & TECHNIQUES II
 
New product development with creativity & innovation
New product development with creativity & innovationNew product development with creativity & innovation
New product development with creativity & innovation
 
validation of blister packaging machine
validation of blister packaging machinevalidation of blister packaging machine
validation of blister packaging machine
 
New product development
New product  developmentNew product  development
New product development
 
Project Selection Model
Project Selection ModelProject Selection Model
Project Selection Model
 
New product planning and development
New product planning and developmentNew product planning and development
New product planning and development
 
Current good manufacturing practices and current good compounding
Current good manufacturing practices and current good compounding Current good manufacturing practices and current good compounding
Current good manufacturing practices and current good compounding
 
Project selection
Project selection Project selection
Project selection
 
New Product Development
New Product DevelopmentNew Product Development
New Product Development
 
Free wilson analysis qsar
Free wilson analysis qsarFree wilson analysis qsar
Free wilson analysis qsar
 
Packaging validation
Packaging validationPackaging validation
Packaging validation
 

Ähnlich wie Packaging technology-MANIK

Pharmaceutical Containers and Closures: An Overview
Pharmaceutical Containers and Closures: An OverviewPharmaceutical Containers and Closures: An Overview
Pharmaceutical Containers and Closures: An OverviewPrincy Agarwal
 
Pharmaceutical packaging
Pharmaceutical  packagingPharmaceutical  packaging
Pharmaceutical packagingItsShifaSheikh
 
Pharmaceutical packaging technology
Pharmaceutical packaging technologyPharmaceutical packaging technology
Pharmaceutical packaging technologySonia Barua
 
Pharmaceutical packaging technology
Pharmaceutical packaging technologyPharmaceutical packaging technology
Pharmaceutical packaging technologySonia Barua
 
Packaging technology PPT MANIK
Packaging technology PPT MANIKPackaging technology PPT MANIK
Packaging technology PPT MANIKImran Nur Manik
 
pharmaceutical packaging material.pptx
pharmaceutical packaging material.pptxpharmaceutical packaging material.pptx
pharmaceutical packaging material.pptxEasy Concept
 
Recent Trends in Pharmaceutical Packaging Technology
Recent Trends in Pharmaceutical Packaging TechnologyRecent Trends in Pharmaceutical Packaging Technology
Recent Trends in Pharmaceutical Packaging TechnologySUMIT KOLTE
 
Pharmaceutical packaging
Pharmaceutical packagingPharmaceutical packaging
Pharmaceutical packagingAnkita Yagnik
 
Pharmaceutical Packaging, QMS, Sanket Pawar
Pharmaceutical Packaging, QMS, Sanket PawarPharmaceutical Packaging, QMS, Sanket Pawar
Pharmaceutical Packaging, QMS, Sanket PawarDRxSanketPawar
 
packing and packaging
packing and packagingpacking and packaging
packing and packagingssuser5a17b2
 
container closure system
container closure systemcontainer closure system
container closure systemBishnu Koirala
 
pharmaceutical packaging.pptx
pharmaceutical packaging.pptxpharmaceutical packaging.pptx
pharmaceutical packaging.pptxBhumiSuratiya
 
Pharmaceutical packaging material (products)
Pharmaceutical packaging material (products)Pharmaceutical packaging material (products)
Pharmaceutical packaging material (products)SubashBoss9
 
Packing of product 1ddhvcjjgghjjjkkkijjjj
Packing of product 1ddhvcjjgghjjjkkkijjjjPacking of product 1ddhvcjjgghjjjkkkijjjj
Packing of product 1ddhvcjjgghjjjkkkijjjjKoushikPaul53
 
Validation of packaging operations Pharma
Validation of packaging operations PharmaValidation of packaging operations Pharma
Validation of packaging operations PharmaDivesh Singla
 
Validation of packaging operations
Validation of packaging operations Validation of packaging operations
Validation of packaging operations Divesh Singla
 
Flexible Packaging Safety White Paper
Flexible Packaging Safety White PaperFlexible Packaging Safety White Paper
Flexible Packaging Safety White Paperschubert b2b
 

Ähnlich wie Packaging technology-MANIK (20)

Pharmaceutical Containers and Closures: An Overview
Pharmaceutical Containers and Closures: An OverviewPharmaceutical Containers and Closures: An Overview
Pharmaceutical Containers and Closures: An Overview
 
Packing techno
Packing technoPacking techno
Packing techno
 
Pharmaceutical packaging
Pharmaceutical  packagingPharmaceutical  packaging
Pharmaceutical packaging
 
Pharmaceutical packaging technology
Pharmaceutical packaging technologyPharmaceutical packaging technology
Pharmaceutical packaging technology
 
Pharmaceutical packaging technology
Pharmaceutical packaging technologyPharmaceutical packaging technology
Pharmaceutical packaging technology
 
Packaging technology PPT MANIK
Packaging technology PPT MANIKPackaging technology PPT MANIK
Packaging technology PPT MANIK
 
pharmaceutical packaging material.pptx
pharmaceutical packaging material.pptxpharmaceutical packaging material.pptx
pharmaceutical packaging material.pptx
 
Recent Trends in Pharmaceutical Packaging Technology
Recent Trends in Pharmaceutical Packaging TechnologyRecent Trends in Pharmaceutical Packaging Technology
Recent Trends in Pharmaceutical Packaging Technology
 
PT
PTPT
PT
 
Pharmaceutical packaging
Pharmaceutical packagingPharmaceutical packaging
Pharmaceutical packaging
 
Pharmaceutical Packaging, QMS, Sanket Pawar
Pharmaceutical Packaging, QMS, Sanket PawarPharmaceutical Packaging, QMS, Sanket Pawar
Pharmaceutical Packaging, QMS, Sanket Pawar
 
packing and packaging
packing and packagingpacking and packaging
packing and packaging
 
Packaging.pptx
Packaging.pptxPackaging.pptx
Packaging.pptx
 
container closure system
container closure systemcontainer closure system
container closure system
 
pharmaceutical packaging.pptx
pharmaceutical packaging.pptxpharmaceutical packaging.pptx
pharmaceutical packaging.pptx
 
Pharmaceutical packaging material (products)
Pharmaceutical packaging material (products)Pharmaceutical packaging material (products)
Pharmaceutical packaging material (products)
 
Packing of product 1ddhvcjjgghjjjkkkijjjj
Packing of product 1ddhvcjjgghjjjkkkijjjjPacking of product 1ddhvcjjgghjjjkkkijjjj
Packing of product 1ddhvcjjgghjjjkkkijjjj
 
Validation of packaging operations Pharma
Validation of packaging operations PharmaValidation of packaging operations Pharma
Validation of packaging operations Pharma
 
Validation of packaging operations
Validation of packaging operations Validation of packaging operations
Validation of packaging operations
 
Flexible Packaging Safety White Paper
Flexible Packaging Safety White PaperFlexible Packaging Safety White Paper
Flexible Packaging Safety White Paper
 

Mehr von Imran Nur Manik

Mess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdfMess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdfImran Nur Manik
 
Ramadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain dbRamadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain dbImran Nur Manik
 
Vitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manikVitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manikImran Nur Manik
 
হুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধানহুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধানImran Nur Manik
 
Physical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, ManikPhysical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, ManikImran Nur Manik
 
2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manik2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manikImran Nur Manik
 
Plants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanikPlants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanikImran Nur Manik
 
Plant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIKPlant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIKImran Nur Manik
 
The Plant Cell (Pharmacognosy) MANIK
The Plant Cell  (Pharmacognosy) MANIKThe Plant Cell  (Pharmacognosy) MANIK
The Plant Cell (Pharmacognosy) MANIKImran Nur Manik
 
Lipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIKLipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIKImran Nur Manik
 
Introduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIKIntroduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIKImran Nur Manik
 
Drug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIKDrug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIKImran Nur Manik
 
Crude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIKCrude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIKImran Nur Manik
 
Carbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIKCarbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIKImran Nur Manik
 
Alkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIKAlkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIKImran Nur Manik
 
Exam Strategy with Imran Nur
Exam Strategy with Imran NurExam Strategy with Imran Nur
Exam Strategy with Imran NurImran Nur Manik
 

Mehr von Imran Nur Manik (20)

Mess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdfMess meal with bankers fotwa.pdf
Mess meal with bankers fotwa.pdf
 
Ramadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain dbRamadan Masael Mufti Delwar Hossain db
Ramadan Masael Mufti Delwar Hossain db
 
Vitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manikVitamins &amp; vitamin containing drugs manik
Vitamins &amp; vitamin containing drugs manik
 
হুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধানহুরমতে মুসাহারাত এর শরয়ী বিধান
হুরমতে মুসাহারাত এর শরয়ী বিধান
 
Monzil book let
Monzil book letMonzil book let
Monzil book let
 
Physical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, ManikPhysical Pharmacy-I Lab, Manik
Physical Pharmacy-I Lab, Manik
 
2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manik2114:Laboratory Note Book (Sample),manik
2114:Laboratory Note Book (Sample),manik
 
Plants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanikPlants in complimentary and traditional systems of medicine MANIKanik
Plants in complimentary and traditional systems of medicine MANIKanik
 
Plant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIKPlant Analysis (Pharmacognosy) MANIK
Plant Analysis (Pharmacognosy) MANIK
 
The Plant Cell (Pharmacognosy) MANIK
The Plant Cell  (Pharmacognosy) MANIKThe Plant Cell  (Pharmacognosy) MANIK
The Plant Cell (Pharmacognosy) MANIK
 
Lipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIKLipids (Pharmacognosy) MANIK
Lipids (Pharmacognosy) MANIK
 
Introduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIKIntroduction (Pharmacognosy) MANIK
Introduction (Pharmacognosy) MANIK
 
Drug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIKDrug Literature and Publications (Pharmacognosy) MANIK
Drug Literature and Publications (Pharmacognosy) MANIK
 
Crude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIKCrude Drugs (Pharmacognosy) MANIK
Crude Drugs (Pharmacognosy) MANIK
 
Carbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIKCarbohydrate (Pharmacognosy) MANIK
Carbohydrate (Pharmacognosy) MANIK
 
Alkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIKAlkaloids (Pharmacognosy) MANIK
Alkaloids (Pharmacognosy) MANIK
 
Itehase karbala
Itehase karbalaItehase karbala
Itehase karbala
 
Exam Strategy with Imran Nur
Exam Strategy with Imran NurExam Strategy with Imran Nur
Exam Strategy with Imran Nur
 
Volatile oil (full)
Volatile oil (full)Volatile oil (full)
Volatile oil (full)
 
Tannins
TanninsTannins
Tannins
 

Kürzlich hochgeladen

call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...rajnisinghkjn
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxNiranjan Chavan
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...narwatsonia7
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Timevijaych2041
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsMedicoseAcademics
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfMedicoseAcademics
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformKweku Zurek
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...narwatsonia7
 

Kürzlich hochgeladen (20)

call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
Noida Sector 135 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few C...
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptx
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes Functions
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy Platform
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
 

Packaging technology-MANIK

  • 1. BPH 4202 Pharmaceutical Technology III Md. Imran Nur Manik Lecturer Department of Pharmacy Primeasia University
  • 2. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 1 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Packaging Technology Introduction Packaging is an economical means of providing presentation, protection, identification/information, containment, convenience and compliance for a product during storage, carriage, display and use until such time as the product is used or administered. Pharmaceutical packaging provides protection for lifesaving drugs, surgical devices, blood and blood products, neutraceuticals, powders, poultices, liquid and dosage forms, solid and semisolid dosage forms. Definitions Packaging Packaging is the process by which the pharmaceuticals are suitably packed so that they should retain their therapeutic effectiveness from the time of their packaging till they are consumed. It is the art and science which involves preparing the articles for transport, storage, display and use. Container A container may be defined as a device in which the drug is enclosed and is in direct contact with the drug. Closures A closure is a device which seals the container to exclude oxygen, carbon-dioxide, moisture, micro-organisms and prevent the loss of volatile substances. Categorically differentiating pharmaceutical packaging Primary Packaging: This is the first packaging envelope which is in touch with the dosage form or equipment. The packaging needs to be such that there is no interaction with the drug and will provide proper containment of pharmaceuticals. E.g. Blister packages, Strip packages, etc. Secondary Packaging: This is consecutive covering or package which stores pharmaceuticals packages in it for their grouping. e.g. Cartons, boxes, etc. Tertiary packaging: This is to provide bulk handling and shipping of pharmaceuticals from one place to another. e.g. Containers, barrels, etc. Materials of construction refer to the substances (e.g., glass, high density polyethylene (HDPE) resin, metal) used to manufacture a packaging component. A packaging component means any single part of a container closure system. Typical components are containers (e.g., ampules, vials, bottles), container liners (e.g., tube liners), closures (e.g., screw caps, stoppers), closure liners, stopper over seals, container inner seals, administration ports (e.g., on large-volume parenterals (LVPs)), overwraps, administration accessories, and container labels. A primary packaging component means a packaging component that is or may be in direct contact with the dosage form. A secondary packaging component means a packaging component that is not and will not be in direct contact with the dosage form.
  • 3. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 2 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. A container closure system refers to the sum of packaging components that together contain and protect the dosage form. This includes primary packaging components and secondary packaging components, if the latter are intended to provide additional protection to the drug product. A packaging system is equivalent to a container closure system. A package or market package refers to the container closure system and labelling, associated components (e.g., dosing cups, droppers, spoons), and external packaging (e.g., cartons or shrink wrap). A market package is the article provided to a pharmacist or retail customer upon purchase and does not include packaging used solely for the purpose of shipping such articles. Quality refers to the physical, chemical, microbiological, biological, bioavailability, and stability attributes that a drug product should maintain if it is to be deemed suitable for therapeutic or diagnostic use. In this guidance, the term is also understood to convey the properties of safety, identity, strength, quality, and purity. An extraction profile refers to the analysis (usually by chromatographic means) of extracts obtained from a packaging component. A quantitative extraction profile is one in which the amount of each detected substance is determined. Purposes of packaging The package passes through a number of stages, beginning with the container manufacturer, thence to the product manufacturer, wholesaler, retailer and finally the consumer. Therefore the packaging should perform the following purposes 1. Protect the contents from the environmental hazards: This includes a) Light - protect the contents from light. b) Temperature - withstand extremes of temperature. c) Moisture - withstand extremes of humidity. d) Atmospheric gases - protect the contents from the effect of atmospheric gases (e.g. aerial oxidation). e) Particles - protect from particulate contamination. f) Microorganisms - protect from microbial contamination. 2. Protects the content from the mechanical hazards: This includes a) Vibration - Usually due to transportation. b) Compression - this usually includes pressure applied during stacking. c) Shock - such as impact, drops or rapid retardation. d) Puncture - penetration from sharp objects or during handling operations. e) Abrasion - this may create electrostatic effects. 3. To prevent the addition or loss of its contents: This includes a) Protect the contents from both loss and gain of water. b) Protect the contents from loss of volatile materials. c) Must not shed particles into the contents. d) Must not leach anything to the contents.
  • 4. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 3 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 4. Provide pharmaceutically elegant appearance: This includes a) In a competitive market the appearance of a package first draws the attraction of the consumers than its contents. b) Must be easy to label and thus to identify the product. 5. Product identification The package must also give clear identification of the product at all stages and again the life of the patient may depend upon rapid and correct identification in emergencies. 6. Convenience The form of the package should be such that, it offers convenience at all stages of its life history. Properties of packaging materials The good packaging materials i.e. the containers and closures must meet the following criteria. (Ideal properties of containers and closures) 1. The material must give the container sufficient strength to withstand the extremes of temperature and pressure as well as to withstand handling while empty, while filling, closing, sterilizing, labelling, transport, storage and use by the consumer. 2. The material should be impervious to any possible contaminants; for example solids, liquids, gases vapours or microorganisms. 3. It should not interact with the contents. This includes migration, absorption, adsorption or extraction. e.g. Absorption of water from creams into cardboard boxes. 4. It should protect the contents from the loss of product due to leakage, spillage or permeation. 5. It should protect the contents from the loss of water and volatile materials. 6. The container must not impart its own colour, test or odour to the preparation. 7. It must not alter the identity of the product. 8. They must be FDA (Food & Drug Administration) approved, 9. They must meet applicable tamper-resistance requirements 10. They must be adaptable to commonly employed high-speed packaging equipment. 11. Must be cheap and economical i.e. they must have reasonable cost in relation to the cost of the product. 12. They must be convenient and easy to use by the patient. 13. They must be non-toxic and biodegradable. 14. The container and closure must not react either with each other or with the preparation. 15. Apart from all these a container and closure should be attractive in appearance and must have sale promotion and marketing value.
  • 5. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 4 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Shelf-life: The shelf life (t90) of a pharmaceutical product is the length of time the product may safely be stored on the dispensary shelf before significant decomposition occurs. This is important since, at best, drugs may decompose to inactive products; in the worst case the decomposition may yield toxic compounds. The shelf-life is often taken to be the time for decomposition of 10% of the active drug to occur, leaving 90% of the activity. Factors influencing the choice of packaging The choice of package is governed by the facilities available and by the ultimate use of the product. Some of the important aspects include 1. The physical form of the product e.g. solid, semisolid, liquid or gas. 2. Chemical and physical characteristics of the drug entity, the excipients and the formulation; 3. Product detail covering any recognized routes of deterioration or degradation. 4. The dosage form and frequency of dosage, 5. The route of drug administration e.g. oral, parenteral, or external. 6. Type of patient (baby, child, teenager, adult, elderly, infirm etc.), 7. The stability of the product i.e. its protective needs. 8. Interaction of the product with the packaging materials. 9. Marketing requirements of the product. 10. The eventual channels of sale, i.e. where, when, how and by whom it is to be used or administered (e.g. doctor, dentist, nurse, patient etc.) 11. Whether the product is seasonal or has a year round use may be a further influence on pack selection. 12. The place of using the product, i.e. Clinic, Home, Hospital etc. 13. The distribution system, for example conventional wholesale/retail outlets, or direct to selected outlets. 14. The suitability of the manufacturing facilities may have to be considered for a number of reasons, i.e . New pack increased sales, improvements in GMP, revised product, new product etc. 15. Over all costs should be considered in order to make a cost effective quality product. Types of Container The containers can be classified into the following types. 1. Well closed containers: A well closed containers is used to protect the preparation from contamination by extraneous solids to prevent the loss of potency of active constituents and to prevent the loss of contents during transport, storage and handling. 2. Air-tight containers: Air-tight containers are used to protect the containers from atmospheric contamination of liquids, solids or vapors. They prevent the drugs due to efflorescence, deliquescence or evaporation.
  • 6. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 5 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 3. Hermetically-Sealed containers: Hermetically sealed container is that which does not allow the air or other gases to pass through it. They are generally used for injectables. 4. Light-resistant containers: Light resistant containers are used to protect the drugs which undergo decomposition in the presence of light. For e.g .Amber colored glass or opaque glass. 5. Single dose containers: They are used to supply only one dose of the medicament. They are sealed in such a way that the contents cannot be removed without removing the seal; the contents so removed are consumed immediately. e,g. ampoules. 6. Multi dose containers: A multi dose container should hold a number of doses. It is sealed in such a way that success doses can be withdrawn easily without changing the strength, quality or purity of the remaining contents e.g multi dose vials. 7. Aerosol containers: Containers for aerosols must be strong enough to withstand the pressure evolved inside the container at the time of use of preparation. Classification of containers according to their shapes 1. Glass / polyethylene bottles. (i) Narrow mouth (ii) Wide mouth 2. Dropper bottles/ droptainers 3. Collapsible tubes 4. Ampoules 5. Vials 6. Polythene packets for i.v. fluid. 7. Polythene / glass bottle for i.v. fluids 1. Glass / Polyethene bottles Wide mouthed bottles are used for containing solid dosage forms like powder, capsules, and tablets. To absorb the moisture sometimes silica-gel bags are given inside the bottle. For low viscosity liquids e.g. gargles, mouth washes, mixtures, elixirs narrow mouthed bottle is used. For high viscosity liquids or for suspensions wide-mouthed bottles are used. Liquid preparations for external uses like lotion, liniments, paints etc. are supplied in coloured fluted bottles in order to distinguish them from preparations meant for internal use. 2. Dropper bottles or droptainers: Eye drops, ear drops, nasal drops etc. should be dispensed in amber colour glass bottles fitted with a dropper. Now-a-days manufacturers prefer plastic droptainers. It is a single piece of squeezable container having an in built dropper. 3. Collapsible tubes: Ointments, pastes, gels are packed in plastic or metal tubes. 4. Ampoules: Ampoules are made of special type of neutral glass having low m.p. so that it can be heat sealed at low temperature.
  • 7. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 6 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 5. Vials: Used for storing multi dose indictable preparation. The needle is passed through the rubber closure, the drug is drawn out. The rubber plug automatically seals the hole. Thus contamination of bacteria is checked. 6. Polyethene packets for infusion fluid: These flexible bags or packets are made of PVC, polyethylene or polypropylene. 7. Glass bottles for i.v. fluids: Previously glass bottles with big rubber stoppers were used. Materials used for the making of containers The following materials are used for the construction of containers and closure 1. Glass: a) Type I ( Neutral or Borosilicate Glass) b) Type II ( Treated Soda-lime glass) c) Type III ( Soda-lime glass) d) Type IV- General Purpose soda lime glass e) NP—soda glass (non parenteral usage) f) Coloured glass g) Neutral glass 2. Metals: a) Tin b) Iron c) Aluminium d) Lead. 3. Plastics: a) Thermosetting resins : (i) Phenolics (ii) Urea b) Thermoplastic resins: (i) Polyethylene (ii) Polypropylene (iii) Polyvinylchloride (PVC) (iv) Polystyrene (v) Polycarbonate (vi) Polyamide (Nylon) (vii) Acrylic multipolymers (viii) Polyethylene terephthalate (PET) 4. Rubber: a) Natural rubber b) Neoprene rubber c) Butyl rubber. 5. Fibrous material 6. Films, foils and laminates Glass and Glass Containers Glass has been widely used as a drug packaging material. Glass is composed of sand, soda ash, limestone, & cullet. Si, Al, Na, K, Ca, Mg, Zn & Ba are generally used into preparation of glass.
  • 8. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 7 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Advantages 1. They have good protection power as they are impermeable to atmospheric gases and moisture with a proper closure system. 2. They are relatively non-reactive (depending on the grade chosen). 3. They can be used on high speed packaging lines. 4. They can be easily labeled. 5. They are usually transparent. 6. Colored glass especially amber, can protect the photosensitive medicaments from light during their storage. 7. They are hygienic and suitable for sterilization; as they can withstand the variation in temperature and pressure during sterilization. 8. They are neutral after proper treatment. 9. They do not deteriorate with age. 10. They are economical and easily available in various shapes and sizes. Disadvantages 1. Glass is fragile so easily broken. 2. They are heavier in comparison to plastic containers. 3. Release alkali to aqueous preparation. 4. They may crack when subjected to sudden changes of temperature. 5. Some containers can impart alkalinity and insoluble flakes to the formulations. 6. Transparent glasses gives passage to UV-light which may damage the photosensitive drugs Flaking During flaking the alkali is extracted from the surface of the glass containers and a silica rich layer is formed which sometimes gets detached from the surface and can be seen in the contents in the form of shining flakes. This is a serious problem, especially in parenteral preparations. Fig; Flacking Fig: Weathering Weathering Weathering is a common problem with glass containers in which sometimes moisture condensed on the surface of glass container, can extract some weakly bonded alkali, leaving behind a white deposit of alkali carbonate. Further condensation of moisture will lead to the formation of an alkaline weathering.
  • 9. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 8 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. To prevent weathering, the deposited white layer of alkali carbonates should be removed as early as possible by washing the containers with dilute solution of acid and then washing thoroughly with water. Types of glass 1. Type I ( Neutral or Borosilicate Glass) 2. Type II ( Treated Soda-lime glass) 3. Type III ( Soda-lime glass) 4. Type IV- General Purpose soda lime glass 5. NP—soda glass (non-parenteral usage) 6. Colored glass 7. Neutral glass 1. Type I-Borosilicate glass: Highly resistant and chemically inert glass. Alkali‟s and earth cations of glass are replaced by boron and/or aluminum and zinc. These are used to contain strong acids and alkalis. 2. Type II-Treated soda-lime glass: These are more chemically inert than Type I glass. The glass surface is de-alkalized by “Sulfur treatment” which prevents blooming/weathering from bottles. 3. Type III- Regular soda lime glass: Untreated soda lime glass with average chemical resistance. 4. Type IV- General Purpose soda lime glass: Glass is not used for parenterals, used only for products intended to be used orally or topically. Type of glass Main Constituents Properties Uses Type-I Borosilicate glass e.g. Pyrex, Borosil SiO2  80% B2O3  12 Al2O3 - 2% Na2O+CaO - 6%  Has high melting point so can withstand high temperature  Resistant to chemical substances  Reduced leaching action  Laboratory glass apparatus  For injections and  For water for injection. Type-II Treated soda- lime glass Made of soda lime glass. The surface of which is treated with acidic gas like SO2 (i.e. dealkalised) at elevated temperature (5000 C) and moisture.  The surface of the glass is fairly resistant to attack by water for a period of time.  Sulfur treatment neutralizes the alkaline oxides on the surface, thereby rendering the glass more chemically resistant.  Used for alkali sensitive products  Infusion fluids, blood & plasma.  Large volume container Type-III Regular soda- lime glass SiO2 Na2O CaO  It contains high concentration of alkaline oxides and imparts alkalinity to aqueous substances  Flakes separate easily.  May crack due to sudden change of temperature.  For all solid dosage forms (e.g. tablets, powders)  For oily injections  Not to be used for aqueous injection  Not to be used for alkali-sensitive drugs.
  • 10. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 9 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Type of glass Main Constituents Properties Uses Type NP Non-parenteral glass or General purpose soda- lime glass.  For oral and  Topical purpose  Not for ampoules. Neutral Glass SiO2  72-75% B2O3  7-10% Al2O3  6% Na2O  6-8% K2O  0.5  2% BaO  2-4%  They are softer and can easily be moulded  Good resistance to autoclaving  Resistant to alkali- preparations (with pH upto 8)  Lower cost than borosilicate  Small vials (<25 ml)  Large transfusion bottles Neutral Tubing for Ampoules SiO2  67% B2O3  7.5% Al2O3  8.5% Na2O  8.7% K2O  4% CaO  4% MgO  0.3%  In comparison to neutral glass its melting point is less. After filling the glass ampoules are sealed by fusion and therefore the glass must be easy to melt.  Ampoules for injection. Coloured glass Glass + iron oxide  Produce amber colour glass  Can resist radiation from 290 400 450nm UV Visible  For photosensitive products. Metal and metal containers Metals are used for construction of containers. The metals commonly used for this purpose are aluminium, tin plated steel, stainless steel, tin and lead. Advantages 1. They are sturdy. ( 2. They are impermeable to light, moisture and gases. 3. They can be made into rigid unbreakable containers by impact extrusion. 4. They are light in weight as compared to glass containers. 5. Labels can be printed directly on to their surface. Disadvantages 1. They are expensive. 2. They react with certain chemicals 3. They may shed metal particles into the pharmaceutical product. COLLAPSIBLE TUBES METAL The collapsible metal tube is an attractive container that permits controlled amounts to be dispensed easily, with good enclosure, and adequate protection of the product. It is light in weight and unbreakable and lends itself to high speed automatic filling operations. Most commonly used are tin, aluminium and lead.
  • 11. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 10 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. TIN Advantages: I. This metal is very resistant to chemical attack. II. Readily coats a number of the metals e.g. tin-coated lead tubes combine the softness of lead with the inertness of tin and for this reason it was formerly used for packaging fluoride toothpaste. Disadvantage: Tin is the most expensive metal among tin, lead, aluminium and iron. Uses: I. Tin containers are preferred for foods, like milk powder containers are coated with tin. II. Currently, some eye ointment still packaged in pure tin ointment tubes. ALUMINIUM Advantages: I. Aluminium is a light metal-hence the shipment cost of the product is less. II. They provide attractiveness of tin at somewhat lower cost. III. The surface of aluminium reacts with atmospheric oxygen to form a thin, tough, coherent, transparent coating of oxide, of atomic thickness, which protects the metal from further oxidation. Disadvantages: I. Any substance that reacts with the oxide coating can cause corrosion e.g. products with the oxide coating can cause corrosion e.g. products of high or low pH, some complexing agents etc. II. As a result of corrosion process H2 may evolve. Uses: I. Aluminium ointment tubes. II. Screw caps III. Aluminium strips for strip-packaging of tablet, capsules etc. Sometimes internally lacquered aluminium containers are used to stop the reaction with the content. LEAD Advantages: I. Lowest cost of all the metals used in pharmaceutical containers. II. Soft metal. Disadvantage: Lead when taken internally there is risk of lead poisoning. So lead containers and tubes should always have internal lining of inert metal or polymer. Use: With lining lead tubes are used for such product as fluoride tooth paste.
  • 12. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 11 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. IRON Advantages: Iron as such is not used for pharmaceutical packaging, large qualities of tin-coated steel, popularly called „tin‟, combines the strength of steel with the corrosion resistance of tin. Disadvantages: If an aqueous liquid can penetrate a pinhole or other fault in the layer of tin, which is virtually a short-circuited galvanic cell is set up and the intense chemical reaction which results brings about rapid corrosion of underlying steel. As a further measure the tin surface is lacquered. Uses: Screw caps and aerosol cans. Plastic and plastic containers Plastics may be defined as any group of substances, of natural or synthetic origins, consisting chiefly of polymers of high molecular weight that can be moulded into a shape or form by heat and pressure. Advantages 1. They are light in weight than glass and can be handled easily. 2. They are poor conductor of heat. 3. They have sufficient mechanical strength. 4. They can be transported easily. 5. Extremely resistant to breakage. 6. They are available in various shapes and sizes. 7. They are resistant to inorganic chemicals. 8. They have good protection power. 9. Flexible. 10. Variety of sizes and shapes. 11. Essentially chemically inert, strong, rigid, high quality, various designs. Disadvantages 1. All are permeable to some degree to moisture, oxygen, carbon dioxide etc. 2. Most exhibit electrostatic attraction. 3. Allow penetration of light rays unless pigmented black etc. 4. Poor printing, thermostatic charge. 5. They cannot withstand heat without softening or distorting.( ,) 6. They may interact with certain chemical to cause softening or distortion. 7. They may absorb chemical substances, such as preservatives for solution. 8. Over all they are prone to possible extraction, interaction, adsorption, absorption, lightness and hence poor physical stability. Other possible negative features include: 1. Stress cracking: a phenomenon related to low density polythene and certain stress cracking agents such as wetting agents, detergents and some volatile oils; 2. Panelling or cavitation: whereby a container shows inward distortion or partial collapse owing to absorption of gases from the headspace, absorption causing swelling of the plastic, or dimpling following a steam autoclaving operation.
  • 13. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 12 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 3. Crazing: a surface reticulation which can occur particularly with polystyrene and certain chemical substances (isopropyl myristate first causes crazing, which ultimately reaches a state of total embrittlement and disintegration). 4. Poor key of print: certain plastics, such as the polyolefins, need pre-treating before ink will key. Additives that migrate to the surface of the plastic may also cause printing problems. 5. Poor impact resistance: both polystyrene and PVC have poor impact resistance. This can be improved by the inclusion of impact modifiers, such as rubber in the case of polystyrene and methyl methacrylate butadiene styrene for PVC. However, both increase the permeability of each. Classes of plastics There are two classes of plastics, reflecting the behavior with respect to individual or repeated exposure to heating and cooling.  Thermoplastics Capable of being shaped after initial heating (On heating, they soften to a viscous fluid) and solidifying by cooling. Resistant to breakage and cheap to produce and providing the right plastics are chosen will provide the necessary protection of the product in an attractive containers. E.g. Polyethylene, polypropylene, polyvinylchloride, polystyrene, nylon (polyamide), polycarbonate, acrylic multipolymers, polyethylene terephthalate etc.  Thermosets When heated, they may become flexible but they do not become liquid; usually their shape is retained right up to the temperature of decomposition. Because of a high degree of cross-linking they are usually hard and brittle at room temperature. During heating such materials form permanent crosslinks between the linear chains, resulting in solidification and loss of plastic flow. E.g. Phenolic, urea and melamine are representative of thermosets. Examples of Plastics Poly ethylene: This is used as high and low density polyethylene Low density polyethylene (LDPE) is preferred plastic for squeeze bottles. High density poly ethylene (HDPE) is less permeable to gases and more resistant to oils, chemicals and solvents. It is widely used in bottles for solid dosage forms. Polyvinylchloride (PVC): Used as rigid packaging material and main component of intravenous bags. Poly Propylene: It has good resistance to cracking when flexed. Suitable for use in closures, tablet containers and intravenous bottles. Polystyrene: It is also used for jars for ointments and creams with low water content.
  • 14. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 13 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Drug-Plastic Consideration A packaging must protect the drug without altering the composition of the product until the last dose is removed. Drug plastic considerations have been divided into five separate categories:- (1) Permeation, (2) leaching, (3) sorption, (4) chemical reaction, and (5) alteration in the physical properties of plastics or products. 1. PERMEATION The transmission of gases, vapours or liquids through plastic packaging materials can have an adverse effect on the shelf-life of a drug. I. Permeation of water vapour and O2 through the plastic wall into the drug can cause a problem if the dosage form is sensitive to hydrolysis and oxidation. Temperature and humidity influences the permeability of oxygen and water. e.g. Nylons are hydrophilic in nature, and are poor barrier for water while hydrophobic materials as polyethylene provide much better barriers. II. Formulations containing volatile ingredients may change when stored in plastic containers due to the permeation of one or two ingredients through the walls of the containers. Often, the aroma of cosmetic products become objectionable and the taste of medicinal products changes. III. Certain w/o emulsions cannot be stored in a hydrophobic plastic bottle, since there is a tendency for the oil phase to migrate and diffuse into the plastic. 2. LEACHING Additives those are added in the plastics may leach into the content. Particular dyes may migrate into a parenteral solution and cause a toxic effect. Release of a constituent from the plastic container to the drug product may lead to drug contamination, may catalyse some reaction in the solution - decomposing the drug. 3. SORPTION This process involves the removal of constituents from the drug product by the packaging material. Drug substances of high potency are administered in small doses. In this case losses due to sorption may significantly affect the therapeutic efficacy of the preparation. A common problem is the loss of preservatives. These agents exert their activity at low concentration, and their loss through sorption may be great enough to leave a product unprotected against microbial growth. Factors influencing the characteristics of sorption from products are: i. chemical structure of the solute, ii. pH, iii. solvent system, iv. concentration of solute, v. temperature, vi. time of contact and vii. area of contact. 4. CHEMICAL REACTIVITY Certain ingredients that are used in plastic formulations may react chemically with one or more components of a drug. Ingredients in the formulation may react with the plastic. Even micro-quantities of chemically incompatible substances can alter the appearance of the plastic or the drug product. 5. MODIFICATION The physical and chemical alteration of the packaging material by the drug product is called modification. Deformation in polyethylene containers is often caused by permeation of gases and vapours from the environment or by loss of content through the container walls. i. Oils have a softening effect on polyethylene and PVC. ii. Fluorinated hydrocarbons attack polyethylene and PVC. In some cases the content may extract the plasticizers, antioxidant or stabilizer, thus changing the flexibility of the package. iii. Plasticizers when extracted by some solvents renders the wall stiff.
  • 15. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 14 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Rubber Natural rubber consists of long chain polymers of isoprene units linked together in the cis-position. Its most important source is the tree Hevea braziliensis from which a latex, containing 30 to 40% of rubber in colloidal suspension, exudes when shallow cuts are made in the bark. The main types of rubber used for pharmaceutical products include natural rubber, neoprene, nitrile, butyl, chlorobutyl, bromobutyl and silicone rbber. Categories of Rubbers Mainly two types of rubbers are used 1. Natural rubber: Suitable for multiple use closures for injectable products as rubber reseals after multiple insertion of needle. Disadvantages: i. It doesn't well tolerate multiple autoclaving; whereby they become brittle and leads to relative degree of extractable material in presence of additives. ii. Risk of product absorption on or in to a rubber. iii. It has certain degree of moisture & gas permeation. 2. Synthetic rubber: Have fewer additives and thus fewer extractable and tends to experience less sorption of product ingredients. Disadvantages: I. They are less suitable for repeated insertions of needle because they tend to fragment II. Sometimes the core pushes small particles of the rubber in to the product. e.g. Silicone, butyl, bromobutyl, chlorobutyl etc. Examples of Rubbers BUTYL RUBBER These are copolymers of isobutylene with 1-3% of isoprene or butadiene. Advantages I. After vulcanization butyl rubber possesses virtually no double bond, consequently they are most resistant to aging and chemical attack. II. Permeability to water vapour and air is very low. III. Water absorption is very low. IV. They are relatively cheaper compared to other synthetic rubbers. Disadvantages I. Slow decomposition takes place above 1300°C. II. Oil and solvent resistance is not very good. NITRILE RUBBER Advantages: I. Oil resistant due to polar nitrile group. II. Heat resistant. Disadvantage Absorption of bactericide and leaching of extractives are considerable.
  • 16. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 15 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. CHLOROPRENE RUBBERS (NEOPRENE) These are polymers of 1:4 chloprene. Advantages I. Due to the presence of Cl group close to the double bond, resistant to oxidation. II. This rubber is more polar hence oil resistant. III. Heat stability is good (up to 1500°C). IV. Water absorption and permeability are less than for natural rubbers. SILICONE RUBBERS Advantages I. Heat resistance (up to 2500°C). II. Extremely low absorption and permeability of water. III. Excellent aging characteristics due to their saturated chemical structures. IV. Poor tensile strength. Disadvantages I. They are very expensive. II. experience permeability to moisture and gas Fibrous Materials The fibrous materials are the important part of pharmaceutical packaging.  Fibrous materials include: Papers, Labels, Cartons, Bags, Outers, Trays for Shrink Wraps, Layer Boards On Pallets, etc.  The Applications as well as Advantages of Cartons include:  Increases display area  Provides better stacking for display of stock items  Assembles leaflets  Provides physical protection especially to items like metal collapsible tubes.  Fiberboard outers either as solid or corrugated board also find substantial application for bulk shipments. Regenerated cellulose film, trade names Cellophane & Rayophane, is used for either individual cartons or to assemble a no. of cartons. Films, Foils & Laminates Regenerated cellulose film based on viscose ( chemical used for manufacturing of rayon) & laminating two or more types of films, cellulose coatings, foil and paper play different roles such as supportive, barrier, heat seal & decorative. For Example: Aluminum foil even in the thinnest gauges offers the best barrier properties, which are not approached even by the most impermeable plastics. Plastics, as either films or coatings, can be used for decoration, flexibility, to provide various barrier properties, heat seal ability, see-through properties (i.e. transparency), and to protect the other plies within the lamination. Metallization a relatively new process whereby particles of metal are laid down onto a surface under vacuum, can significantly improve the barrier properties of a material but these do not approach the properties of a pure foil.
  • 17. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 16 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. In the newer technology Co-Extrusion a number of plastic plies are extruded in combination to produce cheaper laminations. Uses of films, foils, laminations:  Strip packs  Blister packs  Sachets  Diaphragm seals for bottles  Liners for boxes either attached or loose bag-in-box systems & bags. Foil blisters: When sealed with a metal foil-cover, the blister can provide a hermetic pack i.e. an isolated system, which excludes any exchange of gases between the product & surrounding atmosphere. Both blister and strip packs appear to offer a reasonable degree of child resistance; particularly if the materials are opaque (opinion based on actual recorded poisonings or accidents). Alu-alu foil is the best pharmaceutical packaging film for tablets, capsules, which is taking place of PVC film. Characteristics: 1. Applicable to tablets, capsules, pills, etc. 2. It's a good substitute for PVC sheet. 3. No cracking, delamination or pinholes. 4. It has the quite good blocking properties effectively protecting drugs from water vapor, oxygen and ultraviolet. 5. It is particularly suitable for packing moisture-sensitive drugs or those sold in the hot and humid areas. 6. Taking out a part of the drugs from the drug boards without any impact on other well-packaged drugs. 7. It is used by cold-moulding packaging machines where it is easily shaped by changing the mold. 8. Nice appearance can upgrade drug's image Tamper Resistant Packaging A tamper resistant package is provided with an indicator or barrier before entering the package, so that if this indicator or barrier is broken, the buyer immediately gets the evidence that the product has been opened or tampered. Especially over the counter products require tamper resistant packaging. The following packages are approved by FDA as tamper resistant packaging systems: 1. Film wrappers 2. Blister package 3. Strip package 4. Bubble pack 5. Shrink seals and bands 6. Foils, paper or plastic pouches 7. Bottle seals 8. Tape seals 9. Breakable caps 10. Sealed tubes 11. Aerosol containers 12. Sealed cartons.
  • 18. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 17 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 1. Film Wrapper Film wrapper can be categorized into: I. End-folded wrapper: This is formed by passing the product into a sheet of overwrapping film, which forms the film around the product and folds the edges in a gift-wrap fashion. The folded areas are heat sealed by passing against a heated bar. Materials: Cellophane coated in both side by heat sealable polyvinylidene chloride (PDVC) or nitrocellulose-PDVC provides durable moisture barrier. Polypropylene coated with heat sealable acrylic coating or polypropylene is added with heat sealable modifiers. II. Fin seal wrapper The seals are formed by crimping the film together and sealing together the two inside surfaces of the film, producing a „fin‟-seal. In this case heated bars never comes in contact with the package, hence much greater and more consistent sealing pressure can be applied and consequently better sealing integrity can be accomplished. Materials: Polyethylene or Surlyn (Du Pont‟s Ionomer resin) III. Shrink wrapper In this type of packaging the product is packed within a thermoplastic film that has been stretched and oriented during its manufacture and that has the property of reverting back to its unstretched dimensions once the molecular structure is „unfrozen‟ by application of heat. As the film unwinds on the over-wrapping machine, a pocket is formed in the center fold of the sheet, into which the product is inserted. An L-shaped sealer seals the remainder of the overwrap and trims off the excess film. Materials: Heat shrinkable grades of polypropylene, polyethylene and polyvinylchloride (PVC). 2. Blister package Discussed in details later. 3. Strip package 4. Bubble pack The bubble pack can be made in several ways but is usually formed by sandwiching the product between a thermoformable, extensible or heat-shrinkable plastic film and a rigid backing material. This is generally accomplished by heat-softenting the plastic film and vaccum drawing a pocket into the film in a manner similar to the formation of a blister in a blister pack-age. 5. Shrink Banding The heat-shrinkable polymer is manufactured as an extruded orienred tube in a diameter slightly larger than the cap and neck ring of the bottle to be sealed. The heat-shrinkable material is supplied to the bottle as a printed, collapsed tube, either pre-cut to a specified length or in roll from for an automated person.
  • 19. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 18 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 6. Foil, Paper or Plastic Pouches The flexible pouch is a packaging concept capable of providing not only a package that is temper- resistant but also a package with a high degree of environmental protection. A flexible pouch is usually formed during the product filling operation.
  • 20. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 19 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. 7. Bottle seal A bottle may be made temper-resistant by bonding an inner seal to the rim of the bottle in such a way that access to the product can only be attained by irreparably destroying the seal. Frequently used inner seals are glassine and foil laminates. 8. Tape Seals Tape sealing involves the application of a glued or pressure-sensitive tape or label around or over the closure of the package, which must be destroyed to gain access to the packaged product. The paper used most often is a high density lightweight paper with poor tear strength. 9. Breakable Caps Breakable closures come in many different designs. The roll-on cap design used in the past for carbonated beverages uses an aluminium shell, which is placed over the bottle neck during the capping operation. 10. Sealed Tubes Collapsible tubes used for packaging are constructed of metal, plastic or lamination of foil, paper and plastic. Metal tubes are still used for those products that require the high degree of barrier protection afforded by metal. 11. Aerosol containers The aerosol container used for pharmaceutical products is usually made of drawn aluminium. The inside of the container can be specially coated if product compatibility is a problem. A hydrocarbon propellant in its cooled liquid phase is added to the container along with the product, and a spray nozzle contained in a gasketed metal ferrule is crimped over the opening of the aerosol container. A length of polyethylene tube, called a dip-tube, is attached to the inside of the spray nozzle and dips into the product, drawing product into the spray nozzle when the sprayer is activated. The spray nozzles are usually metered to allow a specific dose to be dispersed with each spray. 12. Sealed Cartons Folding paperboard cartons have been used as a secondary package for OTC products for many years. The popularity of this packaging mode is based on both functional and marketing consideration. CLOSURES Closures are the devices by means of which containers can be opened and closed. Proper closing of the container is necessary because – It prevents loss of material by spilling or volatilization. – It avoids contamination of the product from dirt, microorganisms or insects. – It prevents deterioration of the product from the effect of the environment such as moisture, oxygen or carbon dioxide. Material used for closures The closures for containers meant for storage of pharmaceutical products are generally made from the following basic materials.  Cork  Glass  Plastic  Metal  Rubber
  • 21. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 20 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. • Cork: Cork is essentially a wood obtained from the bark of oak tree. It is used for the manufacture of stoppers for narrow mouth bottles. Fig: Cork • Glass: As compared to cork glass is an ideal material for stoppers but they do not provide leak proof closure as well as can easily slip out of the neck of the closure during transport and handling. • Plastic: As compared to cork, glass, rubber and metal Plastic closures are becoming popular day by day as they are unbreakable, light in weight and can be easily molded into various shapes and sizes. • Metal: Tin plate and aluminum are mostly commonly used for the manufacture of closures but aluminum is mostly used for this purpose. RUBBERS (Elastomers) Excellent material for forming seals, used to form closures such as bungs for vials or in similar applications such as gaskets in aerosol cans. Categories of Rubbers: Natural rubbers: Suitable for multiple use closures for injectable products as rubber reseals after multiple insertion of needle. Synthetic rubber: Have fewer additives and thus fewer extractable and tends to experience less sorption of product ingredients. Unit Dose packaging Blister Packing: In blister packing the unit dosage forms are enclosed in between transparent blisters and suitable backing material usually aluminum foil. Strip Packing: In strip packing the unit dosage of drugs are hermitically sealed in between strips of aluminum foil and/or plastic film. Blister package The blister package is formed by heat-softening a sheet of thermoplastic resin and vacuum drawing the soften sheet into a contoured mold. After cooling, the sheet is released from the mold and proceeds to the filling station of the packaging machine. The semi-rigid blister previously formed is filled with product and lidded with a heat-sealable backing material.
  • 22. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 21 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. The backing material may be of two types: (i) A push-through type or (ii) Peelable type. Materials The blister is prepared from polyvinylchloride (PVC) PVC / polyethylene combinations polypropylene polystyrene. For commercial reason and for machine performance the blisters on most unit dose packages are made of PVC. For moisture protection PVC may be laminated with polyvinylidene chloride (saran) or polychlorotrifluoroethylene (Aclar) films. Under extremely humid condition Aclar coated PVC is preferred. For push through type backing material aluminium foil coated with heat sealable coating is used. For peelable type backing material polyester or paper is used as a component of the backing lamination. This peelable type backing material is tamper proof and child resistant. Advantages of Blister Package: 1. Reduced costs and higher packaging speeds relative to other packaging materials. Blister packaging helps retain product integrity because drugs that are prepackaged in blisters are shielded from adverse conditions. 2. Opportunities for product contamination are minimal. 3. Each dose is identified by product name, lot number, and expiration date. 4. Blister packaging protects pharmaceuticals in the home better than bottles do. 5. Each tablet or capsule is individually protected from tampering until use. Types of pharmaceutical blister packaging machine Two basic types of pharmaceutical blister packaging machine exists Cold Forming Blistering machine: In the case of cold forming, an aluminum-based laminate film is simply pressed into a mold by means of a stamp. The aluminum will be elongated and maintain the formed shape. Advantage of cold form foil blisters is that the use of aluminum is offering a near complete barrier for water and oxygen, allowing an extended product expiry date. The disadvantages of cold form foil blisters are the slower speed of production compared to thermoforming and the lack of transparency of the package and the larger size of the blister card.
  • 23. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 22 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Example: ALU-ALU Machine Operation: The sequence involves; 1. Installing the Aluminium Foil, 2. Cold forming it into blister cavities via punch pins, 3. Loading the blister with the product, 4. Placing lidding material over the blister, 5. And heat-sealing the package. 6. Cutting into individual blisters Thermo-cold forming blistering machine: In the case of thermoforming, a plastic film or sheet is unwound from the reel and guided though a pre-heating station on the blister line. The temperature of the pre-heating plates (upper and lower plates) is such that the plastic will soften and become moldable. Example: ALU-Tropical Machine Operation: The sequence involves; 1. Heating the plastic, 2. Thermoforming it into blister cavities, 3. Loading the blister with the product, 4. Placing lidding material over the blister, 5. And heat-sealing the package. 6. Installing the aluminium foil 7. Cold forming it into blister Pouch & seal it on thermoformed blister to give extra protection, 8. Cutting into individual blisters 1. Bottom foil uncoiler 6. Cover foil uncoiler 11. Discharge conveyor 2. Cold forming station 7. Cooling & slitting 3. Feeding device 8. Draw Off 4. Empty checker 9. Punching 5. Sealing & Embossing 10. Waste foil coiler
  • 24. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 23 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Strip package A strip package is a form of unit dose packaging that is commonly used for package is formed by feeding two webs of a heat-sealable flexible film through either a heated crimping roller or heated reciprocating plates. The product is dropped into the pocket formed prior to forming the final set of seals. A continuous strip is formed, generally several packets wide. The strip packets are cut to the desired number of packets in length. The product usually has a seal around each tablet. The seal can be rectangular, or “picture-frame format” or can be contoured to the shape of the product. Since the sealing is usually accomplished between pressure rollers, a high degree of seal integrity is possible. Materials: High barrier materials e.g. foil laminations, saran-coated films. For higher barrier applications a paper/polyethylene/foil/polyethylene lamination is commonly used. When product visibility is important a heat-sealable cellophane or polyester can be used.
  • 25. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 24 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Fig: Strip Packaging Machine Quality Assurance Aspects of Packaging To ensure that patients and consumers receive high-quality drugs, the quality management system must take the following considerations into account if the required quality of packaging is to be obtained: The requirements of the national authorities and the relevant legislation The product The production process The manufacturers‟ internal policies (safety, marketing, etc.). Bad packaging which is the result of deficiencies in the quality assurance system for packaging can have serious consequences, and packaging defects can create problems that may result in drug recalls. Such defects may include breakage, and problems relating to printing or inks, or errors on labels and package inserts (patient information leaflets). The use of GMP and quality control will prevent the release of a defective medicinal product. Packaging processes and equipment need validation/qualification in the same way as any other part of processing within a pharmaceutical facility. Sampling and testing of packaging materials Sampling: Sampling is used; To check the correctness of the label, packaging material or container reference, as well as in the acceptance of consignments, Detecting adulteration of the medicinal product, obtaining a sample for retention, etc. The sampling procedure must take into account the homogeneity and uniformity of the material so as to ensure that the sample is representative of the entire batch. The sampling procedure should be described in a written protocol.
  • 26. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 25 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Testing programme: Quality control tests are intended to check the identity of the material concerned. Complete pharmacopoeial or analogous testing may also be carried out, as may special tests, where necessary. All written specifications for packaging materials and containers should include the nature, extent and frequency of routine tests. Routine tests vary according to the type of material and its immediate packaging, the use of the product, and the route of administration. Nevertheless, such tests usually include the following: visual inspection (cleanliness, defects) tests to identify the material dimensional tests physical tests chemical tests microbiological tests EVALUATION OF PACKAGING MATERIALS A. Test for hydrolytic resistance (limit of alkalinity) Because none of the glasses used for pharmaceutical containers is completely free from extractable alkali a test for its absence is impractical and limit tests must be used: 1. Crushed glass test This test is done on all types of glass containers except surface treated glass (i.e. Type-II, sulfured or siliconed surface). The container is crushed and sieved to produce uniform particle size of which a definite weight is taken. Control of particle size and weight of powder ensures that a constant surface area is exposed to the solution. The measured amount of glass powder is then taken in a resistant glass beaker, measured amount of distilled water was added, autoclaved for 1/2 an hour at 1210 C. The water was then cooled and filtered. Filtrate is titrated with standard H2SO4. 2. Whole container test In case of surface treated glass container the intact container is taken, filled with distilled water and exposed to the autoclaving condition. The extracts from several containers are pooled and titrated with standard HCl (according to I.P.) Type Description Test used Size (ml) Limits Volume of 0.05 N H2SO4 to neutralize the extract from 10g of glass (ml) I Highly resistant Borosilicate glass Crushed glass All 1.0 II Treated soda lime glass Whole Container 100 or less 0.7 0.2 III Soda -lime glass Crushed Glass Over 100 8.5 N.P. General purpose soda-lime glass Crushed glass All 15.0
  • 27. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 26 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. B. Metal containers for eye ointments (IP 66) Metal collapsible tubes comply with the following test for metal particles. According to IP 50 empty tubes are taken, filled with ointment base, sealed and kept and kept overnight. A metal bacteriological filter assembly fitted with a suitable filter paper and heated to the melting range of the ointment base. Ointment bases from all the tubes squeezed at a certain rate, pooled and passed through the heated filter under vacuum. The filter paper is washed with chloroform. The filter paper is dried and observed with magnifying glass under oblique light. The observations are noted as follows: Particles 1 mm and above Particles 0.5 mm to 1 mm Particles 0.2 mm to 0.5 mm Particles less than 0.2 mm 50 10 2 Nil Total score 62 The lot of tube passes the test if the total score is less than 100 points. If the score is above 150, the lot fails. If it is between 100 and 150 the test is repeated again with 50 more tubes. This time the lot will pass if total 100 tubes give 150 points. C. Plastic containers i) Leakage test Ten containers are filled with water, fitted with the closures and are kept inverted at room temperature for 24 hours. There should be no signs of leakage from any container. ii) Collapsibility test This test is applicable to containers which are to be squeezed in order to remove the contents. a container, by collapsing inwards during use, yield at least 90% of its nominal contents at the required rate of flow at ambient temperature. iii) Transparency test A 16-fold dilution of a standard suspension described in IP96 is prepared so as to give an absorbance at about 640 nm of 0.37 to 0.43. Five empty containers were filled to their nominal capacity suspension in each container is detectable when viewed through the containers, as compared with a container of the same type filled with water. iv) Water vapour permeability test Five containers are filled with nominal volume of water and heat sealed with aluminium foil- polyethylene laminate or other suitable seal. Each container is accurately weighed and allowed to stand for 14 days at a relative humidity of 60  5% and a temperature between 20 to 250 C. After 14 days it is weighed again. The loss in weight in each container is not more than 0.2%.
  • 28. Md. ImranNur Manik Md. ImranNur Manik Packaging Technology Prepared By: Md. Imran Nur Manik; M.Pharm. (R.U.) Page 27 manikrupharmacy@gmail.com; Lecturer; Department of Pharmacy; Primeasia University. Other tests This includes: *Tests for Barium, heavy metals, tin, zinc, etc. *Test on extracts *Test on extracts Specified volume of extracting medium is taken in it. Plastic of specified surface area is cut and extracted. With the extract following tests are carried out: 1. Appearance of the extract - must be colourless. 2. Light absorption 3. Non-volatile matter. 4. Residue on ignition. 5. Heavy metals 6. Buffering capacity 7. Oxidisable substances. *Bacteriological tests are carried out to determine the biological response of animals to plastics and other polymeric material by the injection or instillation of specific extracts from the material under test. Glass Transition Temperature (Tg) The maximum temperature below which a material become rigid, brittle solids and are said to be in ‘glassy-state’. In this condition they are not crystalline but are super cooled liquids of high viscosity. Above the glass temperature (Tg) thermoplastics soften and melt if heated to a considerably higher temperature than Tg. Other plastics are very highly cross-linked and for these thermosetting plastics Tg is so high that decomposition takes place before the material can soften and melt. BIBLIOGRAPHY Cooper and Gunn‟s “Tutorial Pharmacy”; Sixth Edition; Chapter 09; Pitman Medical Publishing co Ltd England. “Guidance for Industry Container Closure Systems for Packaging” Human Drugs and Biologics; Chemistry, Manufacturing, and Controls Documentation; U.S. Department of Health and Human Services Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER); May 1999 Liberman, Lachman and Kanig, “The Theory & Practice of Industrial Pharmacy” Third edition; chapter 24; Lea & Febiger, Philadelphia U.SA. M. E. Aulton “Pharmaceutics: the science of dosage form design” Second edition, Chapter 36; Churchill Livingstone.