C011141018

IOSR Journals
IOSR JournalsInternational Organization of Scientific Research (IOSR)

Volume 11, Issue 1 Ver. IV (Jan. – Feb. 2016)

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)
e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 1 Ver. IV (Jan. – Feb. 2016), PP 10-18
www.iosrjournals.org
DOI: 10.9790/1676-11141018 www.iosrjournals.org 10 | Page
Analysis of Hybrid Energy System
Mojtaba Abbasi,
Tomsk Polytechnic University
Abstract: This paper focuses on response analysis of Microgrid which consists of wind turbines, photovoltaic
panels, with Hybrid DC and AC Buses. In grid-connected operation, voltage of DC bus is kept steady by the
inverter. Energy Management System controls hybrid storage system to release or absorb power with the
strategies according to grid condition, state of charge of batteries and super-capacitor, electricity price and so
on. In islanded operation, voltage of DC bus is controlled by storage system and amplitude and frequency of AC
Bus voltage are regulated by parallel inverters with voltage-frequency or droop control strategy. In this work,
different control strategies in grid-connected and islanded operation are described which can keep power
balanced and AC/DC bus stable. A test case of Permanent Magnet Synchronous Generator connected to a
rectifier and inverter has been simulated in MATLAB/Simulink environment and from the results it can be
shown that the voltages of AC and DC buses have been maintained steadily. The output voltage from PV
modules is lifted using boost converter and given to maximum power point tracking system. The output is
connected in parallel with the input from wind system to a common inverter and given to a common load. The
desired outputs, power, voltage and current of AC side is observed and maintained within rated values.
I. Introduction
Now more and more photovoltaic panels and wind turbines are integrated into grid, whose power
fluctuation will lead to grid instability. Microgrid system is one of the solutions. There are many benefits of
Microgrid including little pollution, higher reliability, better quality of power supply, and higher efficiency. This
research presents hybrid DC- and AC-bus Microgrid system, which can be established in a country or island.
To avoid global warming, the consumption of fossil fuels must be reduced. Hence, the installation of
renewable energy power production plants has become a burning issue not only for isolated islands but also all
over the world. Among various renewable energy systems, photovoltaic power generation systems (PV systems)
and wind power source are expected to play an important role as a clean electricity power source in meeting
future electricity demands. Photovoltaic (PV) power as an alternative energy resource has been becoming
feasible due to Enormous research and development works being conducted. The use of Photovoltaic (PV)
generators in isolated sites, where conventional generation is not practical, can pose a problem because PV
output power depends on weather conditions and cell temperature, making it an uncontrollable source.
Furthermore, it is not available during the night. We consider resolving this problem by installing a hybrid
system using an alternative wind energy source along with the PV array. Solar arrays provide dc power.
Hence power from a solar array cannot be directly added to an isolated power utility for using directly
in residential, industrial or commercial applications. We require a DC-DC converter to step up the dc voltage
from the panel and then an inverter to convert the dc into ac power which can be fed to the utility. A
Photovoltaic (PV) system‟s power output is not constant and fluctuates depending on weather conditions
(variations in irradiation and temperature). Therefore we also require a Maximum Power Point tracker (MPPT)
along with the DC-DC converter in order to obtain the maximum power output from the Solar Photovoltaic
(PV) array. In the hybrid system a wind power generators along with PV generators feeds the utilities loads.
The response of the hybrid system following common disturbances such as solar insulation variations
and load changes have to be is investigated for analyzing the effects fluctuating power causes in the isolated
power utility. This study is essential for devising a method for leveling the fluctuations in a PV system's power
output when large output power from several PV systems has to be penetrated in the utility.
II. Hybrid Power System
A. Isolated Power Utility
This research presents hybrid DC- and AC-bus Microgrid system, as shown in Fig 1, which can be established
in a country or island.
There are many units in the system which can be used in a house of a country. All the renewable
energy generations and storage devices in the house are connected to DC bus with different converters which
can supply power to local DC loads. Inverters are used to transfer power between AC and DC buses. Common
and sensitive loads can be connected to AC bus with different coupling points. If there are some faults happened
in utility grid, Microgrid system can work in islanded operation. In worse condition, if renewable energy
generations can‟t supply enough power for local
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 11 | Page
Figure 1 Microgrid systems with hybrid DC and AC buses
Loads and state of charge of storage devices are in low level, Microgrid could cut common loads to
keep supplying power to sensitive loads. In hybrid DC- and AC-bus Microgrid system, fewer inverters are
needed. So control strategy for parallel inverters is easier in islanded operation. And DC loads can be connected
to DC bus directly without rectifier. Also the system can isolate individual units if there is something wrong in
the unit.
B. Pv-Wind Hybrid Power System
The PV-Wind hybrid system model consisting of a wind turbine, PV power generation systems, and a
load is shown in detail in Fig. 2,
Fig. 2 Isolated hybrid power system model.
One unit of the Microgrid system is established in the lab as shown in Figure 2. It consists of a wind
turbine, photovoltaic panels, batteries series connected and super-capacitor. The stability of DC- and AC-bus
voltage is very important. When Microgrid system is connected to the utility grid, the amplitude of DC-bus
voltage (200V) is regulated by the inverter, and voltage of AC bus is the same with the utility grid. However
when the Microgrid works in islanded operation, DC-bus voltage must be regulated by renewable energy
generations and storage devices, and the voltage and frequency of AC bus are controlled with voltage-frequency
or droop control strategy of parallel inverters
III. Modeling Of Pv Array
A. Modeling Of Pv Cell
The equivalent circuit of the ideal PV cell is shown in Fig 3. The ideal PV cell be modulate as diode
parallel with a current source
Fig 3 Ideal PV Cell
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 12 | Page
Thebasic equation from the theory of semiconductors that mathematicallydescribes the I–V
characteristic of the ideal PV cellis
(1)
Where, (2)
Therefore, (3)
Where, Ipv,cellis the current generated by the incident light (it is directly proportional to the Sun
irradiation), Id is the Shockley diode equation, I0,cellis the reverse saturation or leakage current of the diode, q is
the electron charge (1.60217646 × 10−19 C), k is the Boltzmann constant (1.3806503 × 10−23 J/K), T (in
Kelvin) is the temperature of the p–n junction, and a is the diode ideality constant. The origin of I-V curve from
the equation (2) is shown in fig 4.
Fig 4 Origin of I-V equation of an Ideal PV cell
In addition to this modeling, the PV array is also modeled. With the help of this the amount of power
which is produced through the solar cell can be estimated in a clear manner.
Boost Converter
A. Modes Of Operation
In a boost converter, the output voltage is greater than the input voltage-hence the name “boost”. A
boost converter is shown in Fig 5.
Fig 5 Boost Converter Circuit
The circuit operation can be divided into two modes. Mode 1 begins when the MOSFET M1 is
switched on at t=0. The input current, which rises, flows through inductor L and MOSFET M1. Mode 2 begins
when the MOSFET M1 is switched off at t=t1. The current that was flowing through the MOSFET would now
flow through inductor L, capacitor C, load and Diode Dm. The inductor current falls until MOSFET M1 is turned
on again in the next cycle. The energy stored in the inductor L is transferred to the load. The equivalent circuits
for the two modes of operation are shown in Fig 6.
Fig 6. Equivalent Circuits
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 13 | Page
The waveforms for voltages and currents are shown in Fig 7 for continuous load current, assuming that
the current rises or falls linearly.
Fig 7 Current and Voltage waveforms
Assuming that the inductor current rises linearly from I1 to I2 in time t1,
(4)
(5)
and the inductor current falls linearly from I2 to I1 in time t2,
(6)
or (7)
Where, ∆I = I2-I1 is the peak-to-peak ripple current of inductor L.
From equations (5) and (7),
(8)
Substituting t1=kT and t2= (1-k)T yields the average output voltage,
(9)
Which gives
(10)
Assuming a lossless circuit, VsIs = VaIa and the average input current is
(11)
The switching period T can be found from
(12)
And this gives the peak-to-peak ripple current:
(13)
When the MOSFET is on, the capacitor supplies the load current for t=t1. The average capacitor current
during the time t1 is Ic=Ia and the peak-to-peak ripple voltage of the capacitor is
Substituting t1 = (Va – Vs)/(Vaf),
(14)
B. Inverter In A Pv System
The principle of a stand-alone inverter used in a PV-Diesel hybrid system can be explained with
reference to the single-phase equivalent shown in Fig 8.The inverter has a full-bridge configuration realized
using four power electronic switches (MOSFET or IGBTs) S1, S4. In this scheme, the diagonally opposite
switches (S1, S4) and (S2, S3) are switched using sinusoidal pulse-width modulated gate pulses. The inverter
produces sinusoidal output voltage. The inductors X1, X2 and the ac capacitor C2 filter out the high-switch-
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 14 | Page
frequency components from the output waveform.
Fig. 8 Inverter in a PV system
Most inverter topologies use a low-frequency (50 or 60 Hz) transformer to step up the inverter output
voltage. In this scheme, the diesel generator and the converter are connected in parallel to supply the load. The
voltage sources, diesel and inverter, are separated by the link inductor Xm. The bidirectional power flow
between inverter and the diesel generator can be established. The power flow through the link inductor, Xm, is
Sm = Vm Im (15)
Pm= (VmVcsinXm (16)
Qm=(Vm/Xm)(VmVccos
Whereis the phase angle between the two voltages. From Eq.(16), it can be seen that the power supplied by
the inverter can be controlled by controlling the phase angle. The PWM pulses separately control the
amplitude of the converter voltage, Vc, while the phase angle with respect to the diesel voltage is varied for power
flow.
Wind Turbine
The synchronous generator is currently used in WECS, especially in law power for battery charging,
for example. But the use of PMSG in high power generation is recent. It‟s facilitated by the technologic progress
realized in power electronics and permanent magnet materials used in generator rotors. The use of PMSG allows
to eliminate the gearbox and to operate at variable and low speed; which is adequate with wind speed nature.
Variable speed operation of wind energy conversion system contributes to decrease the mechanical
stress and acoustic noise and offers possibility to control of active and reactive powers; the PMSG is connected
to the grid via two power electronics converters with an intermediate DC link bus. The generator side converter
is controlled via hysteresis regulation of generator currents with zero direct current; in order to obtain a maximal
torque for a minimal current.
The MPPT algorithm is used to determinate the optimal rotational speed reference for any value of
wind speed under the nominal regime in order to maximizing power captured by the wind turbine. The grid side
converter is controlled by pulse width modulation (PWM) obtained from proportional integral (PI) regulation of
currents sanded to the electrical grid. The DC link voltage is kept at constant value with a DC/DC converter and
PI regulation of DC voltage at its reference. Power limitation for high wind speed values is achieved by varying
the blade angle (Pitch control) which corresponds to decrease in power coefficient.
Figure 9. Control diagram of wind turbine
The speed reference allows to maximizing the power captured by the wind (MPPT strategy) is given
by:
(18)
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 15 | Page
When the wind speed reached the nominal value, the pitch angle regulation (based on fuzzy logic
algorithm) enter in operation in order to decrease the power coefficient. The simplified representation of wind
turbine control diagram is shown in Figure 9.
Grid Connected Operation
Micro grid works in grid-connected operation. In this case, the wind and solar generators should work
in Maximum Power Point Tracking (MPPT) strategy to get higher energy efficiency. In order to reduce the
influence of fluctuation to utility grid, energy storage system should be controlled to supply the power
difference between renewable energy generations and loads.Fig 10.
Pstorage = Pbatt + Psc
= Pwind + Psolar – P load (19)
 Pstorage is the total power of storage system including batteries and super-capacitor.
 Pbattand Psc are power released from battery and super-capacitor resp
 Pwind is generated by wind turbine.
 Psolar is generated by photovoltaic panels.
 Pload is power absorbed by DC and AC loads.
Figure 10. Power Flow in the system
In grid-connected operation voltage of DC bus is controlled by inverter and amplitude and frequency of
AC-Bus voltage are the same with utility grid. When power from renewable energy generations is fluctuant or
loads change quickly, hybrid storage system including batteries and super-capacitor must absorb or release
power difference very fast. According to the character of different storage devices, high frequency power is
released or absorbed by super-capacitor
Simulation Results
Integration Of Pv Array With Boost Converter And Pwm Inverter
The integrated circuit for simulation of PV array, boost converter and PWM inverter with MPPT is
shown Fig 11, the voltage and current output waveforms are shown in Fig.12 and the power output shown in Fig
13.
Fig 11. Integrated PV array – boost converter – PWM inverter circuit
Fig 12. PWM Inverter output voltage and current
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 16 | Page
Fig 13. PWM Inverter output power
Step change in insulation was mentioned in literature as the source of power fluctuations. Fig
14.shows the integrated circuit for simulation of a step change in insulation from 800 W/sq.m. to 1000 W/sq.m.
The output waveforms are also shown.
Fig 14. Integrated circuit for simulation of a step change in insulation
Fig 15. Step change in insulation
The step change in insulation is shown in fig 15.. Here the insulation changes from 800 to 1000 at the
5th
second.
Fig 16. Integrated circuit power output for a step change in insulation
Fig 16. Shows the change in current and voltage waveforms. Followed by the step change in insulation
at the 5th
second the voltage and current magnitude increases.
Figure 17. Integrated circuit voltage and current output for a step change in insulation
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 17 | Page
Fig 17.Shows the variation of power after the step change in insulation.
Integration Of Wind And Solar
Figure18.Integration of wind and solar
The power obtained from the solar and the wind energy conversion systems are given to an inverter as
shown in Fig 18.
Figure 19. Output voltage and current of pv-wind
The voltage and current waveforms obtained at the inverter ends are shown in Fig 19.
Figure 20. Combined output power of two PV plants and wind turbine
IV. Conclusion
This paper aims at implementing a PV Wind, hybrid system connected to an isolated power utility. The
basic concepts of solar array, DC-DC boost converter, PWM inverter, Wind turbine are discussed. The modeling
methods of all components of the hybrid system are described. Simulation studies are done for the standard test
conditions using MATLAB/Simulink. The response of a PV - Wind hybrid system connected to an isolated
power utility following common disturbances such as solar insulation variations and wind speed change and
load changes were simulated to understand the power fluctuation caused.
The results of the simulation are analyzed to understand the significance of the power fluctuation
caused, so that a method for leveling the fluctuations in a PV system's power output when large output power
from several PV systems has to be penetrated in the utility could be defined.
Analysis Of Hybrid Energy System
DOI: 10.9790/1676-11141018 www.iosrjournals.org 18 | Page
References
[1]. Joe-Air Jiang, Tsong-Liang Huang, Ying-Tung Hsiao, Chia-Hong Chen, „Maximum Power Tracking for Photovoltaic Power
Systems‟, Tamkang Journal of Science and Engineering, vol. 8, no 2, pp. 147-153, 2005.
[2]. Marcelo Gradella Villalva, Jonas Rafael Gazoli, and Ernesto Ruppert Filho, „Comprehensive Approach to Modeling and Simulation
of Photovoltaic Arrays‟, IEEE Transactions on Power Electronics, vol.24, no. 5, 2009.
[3]. Muhammad H. Rashid, „Power Electronics Circuits, Devices, And Applications‟, Third Edition, Prentice Hall of India Pvt. Ltd.
[4]. Kundur, „Power System Stability and Control‟, McGraw-Hill,Inc, 1994.
[5]. Bhadra, S.N., Kastha, D., Banerjee, S., „Wind Electrical Systems‟, Oxford University Press.
[6]. Fitzgerald, A.E., Kingsley, C., „Electric Machinery‟, McGraw-Hill,Inc.
[7]. Roy, S., Malik, O. P. and Hope G. S., “An adaptive control scheme for speed control of diesel driven power plants”, IEEE
Transactions on Energy Conversion, Vol.6., No.4, 1991.
[8]. Kuang, B., Wang, Y. and Tan, Y.L., “An H∞ Controller Design for Diesel Engine Systems”, IEEE Transactions on Industry
Applications, Vol., No., 2000.
[9]. Augustine, D. W. and Kumar, K.S. P., “A method for self-tuning a PID controller for control of small to medium sized diesel
engines”, IEEE International Conference on System Engineering, P.85-88 1-3 Aug. 1991.
[10]. Ashari M., Nayar C.V., Islam S., “Steady-state performance of a grid interactive voltage source inverter”, IEEE Power Engineering
Society Summer Meeting, 2001. Vol. 1, P.650 -655 July 2001
[11]. Nayar C.V., Ashari M., Keerthipala, W.W.L., “A grid-interactive photovoltaic uninterruptible power supply system using battery
storage and a back up diesel generator, IEEE Transaction on Energy Conversion, Vol.15, Issue 3, Ps. 348 - 353, Sept. 2000 .
[12]. Bilbao, E.; Gaztanaga, H. Mir, L. Etxeberria-Otadui, I. Milo, A. “Design and development of a supercapacitor-based microgrid
dynamic support system,” in Power Electronics and Applications, 2009. EPE '09. 13th European Conference on, 2009, pp. 1-10.
[13]. Boroyevich, D. and Cvetkovic, I., “Future Electronic Power Distribution Systems– A contemplative view,” Optimization of
Electrical and Electronic Equipment (OPTIM), 2010 12th International Conference on, pp. 1369-1380.
[14]. C. Abbey, G. Joos, ”Supercapacitor Energy Storage for Wind Energy Applications”, IEEE Trans. Ind. Electron., vol.43, iss.3,
pp.769-776, May 2007
[15]. Erickson, M.J. and Lasseter, R.H.: “Integration of battery energy storage element in a CERTS microgrid”, Energy Conversion
Congress and Exposition, 2010, pp. 2570-2577
[16]. Taljan, M. Fowler, C. Cañizares, G. Verbič: Hydrogen storage for mixed wind–nuclear power plants in the context of a Hydrogen
Economy, Hydrogen Energy, vol. 33, iss 17, pp. 4463-4475, Sep. 2008.
[17]. Kanchev, H., Lu, D., Francois, B. and Lazarov, V.: “Smart monitoring of a microgrid including gas turbines and a dispatched PV-
based active generator for energy management and emissions reduction”, Innovative Smart Grid Technologies Conference Europe
(ISGT Europe), 2010 IEEE PES, pp. 1-8.
[18]. R. Cardenas et al: Control Strategies For Power Smoothing using a Flywheel Driven by a Sensorless Vector-Controlled Induction
Machine Operating in a Wide Speed Range, IEEE Trans. Ind. Electron., vol 51, pp. 603 - 614, 2004.
[19]. R. Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, “Droop control of converter-interfaced microsources in rural
distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, October 2010.
[20]. R.Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, “Droop control of converter-interfaced microsources in rural
distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, October 2010
[21]. D. Salomonsson, L. Söder, and A. Sannino, “An adaptive control system for a DC microgrid for data centers,” IEEE Trans. Ind.
Appl., vol. 44, no. 6, pp. 1910-1917, November/ December. 2008.

Recomendados

Optimized Power Flows in Microgrid with and without Distributed Energy Storag... von
Optimized Power Flows in Microgrid with and without Distributed Energy Storag...Optimized Power Flows in Microgrid with and without Distributed Energy Storag...
Optimized Power Flows in Microgrid with and without Distributed Energy Storag...Power System Operation
138 views11 Folien
Energy Storage Management in Grid Connected Solar Photovoltaic System von
Energy Storage Management in Grid Connected Solar Photovoltaic SystemEnergy Storage Management in Grid Connected Solar Photovoltaic System
Energy Storage Management in Grid Connected Solar Photovoltaic SystemIJERA Editor
323 views5 Folien
Modeling and Simulation of Grid Connected PV Generation System Using Matlab/S... von
Modeling and Simulation of Grid Connected PV Generation System Using Matlab/S...Modeling and Simulation of Grid Connected PV Generation System Using Matlab/S...
Modeling and Simulation of Grid Connected PV Generation System Using Matlab/S...International Journal of Power Electronics and Drive Systems
22 views10 Folien
IRJET - Optimal Scheduling of Solar Wind Bio-Mass Systems and Evaluating the ... von
IRJET - Optimal Scheduling of Solar Wind Bio-Mass Systems and Evaluating the ...IRJET - Optimal Scheduling of Solar Wind Bio-Mass Systems and Evaluating the ...
IRJET - Optimal Scheduling of Solar Wind Bio-Mass Systems and Evaluating the ...IRJET Journal
5 views5 Folien
Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t... von
Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t...Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t...
Mathematical Modelling of PV Module With multilevel 3-Ø inverter using SPWM t...IOSR Journals
594 views11 Folien
IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea... von
IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea...IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea...
IRJET- Simulation and Analysis of Photovoltaic Solar System for Different Wea...IRJET Journal
21 views4 Folien

Más contenido relacionado

Was ist angesagt?

Comparison study of lead-acid and lithium-ıon batteries for solar photovoltai... von
Comparison study of lead-acid and lithium-ıon batteries for solar photovoltai...Comparison study of lead-acid and lithium-ıon batteries for solar photovoltai...
Comparison study of lead-acid and lithium-ıon batteries for solar photovoltai...International Journal of Power Electronics and Drive Systems
32 views14 Folien
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ... von
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...IRJET Journal
33 views10 Folien
Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr... von
Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr...Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr...
Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr...IJECEIAES
34 views10 Folien
IJSETR-VOL-2-ISSUE-7-1526-1530 von
IJSETR-VOL-2-ISSUE-7-1526-1530IJSETR-VOL-2-ISSUE-7-1526-1530
IJSETR-VOL-2-ISSUE-7-1526-1530Vijay Kannan
218 views5 Folien
Filter Based Solar Power Generation System with a Seven Level Inverter von
Filter Based Solar Power Generation System with a Seven Level InverterFilter Based Solar Power Generation System with a Seven Level Inverter
Filter Based Solar Power Generation System with a Seven Level InverterIJMTST Journal
94 views4 Folien
Simulation of grid connected photovoltaic system using MATLAB/ Simulink von
Simulation of grid connected photovoltaic system using MATLAB/ SimulinkSimulation of grid connected photovoltaic system using MATLAB/ Simulink
Simulation of grid connected photovoltaic system using MATLAB/ SimulinkIJAEMSJORNAL
57 views6 Folien

Was ist angesagt?(20)

A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ... von IRJET Journal
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
A New Simulation Approach of 3-Φ Transformer-less Grid Connected PV Inverter ...
IRJET Journal33 views
Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr... von IJECEIAES
Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr...Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr...
Parallel Operation of Current-Source Inverter for Low-Voltage High-Current Gr...
IJECEIAES34 views
IJSETR-VOL-2-ISSUE-7-1526-1530 von Vijay Kannan
IJSETR-VOL-2-ISSUE-7-1526-1530IJSETR-VOL-2-ISSUE-7-1526-1530
IJSETR-VOL-2-ISSUE-7-1526-1530
Vijay Kannan218 views
Filter Based Solar Power Generation System with a Seven Level Inverter von IJMTST Journal
Filter Based Solar Power Generation System with a Seven Level InverterFilter Based Solar Power Generation System with a Seven Level Inverter
Filter Based Solar Power Generation System with a Seven Level Inverter
IJMTST Journal94 views
Simulation of grid connected photovoltaic system using MATLAB/ Simulink von IJAEMSJORNAL
Simulation of grid connected photovoltaic system using MATLAB/ SimulinkSimulation of grid connected photovoltaic system using MATLAB/ Simulink
Simulation of grid connected photovoltaic system using MATLAB/ Simulink
IJAEMSJORNAL57 views
A Three Phase Multi Level Converter for grid Connected PV System von IAES-IJPEDS
A Three Phase Multi Level Converter for grid Connected PV SystemA Three Phase Multi Level Converter for grid Connected PV System
A Three Phase Multi Level Converter for grid Connected PV System
IAES-IJPEDS76 views
A. attou ajbas issn 1991-8178-pv mppt von Attou
A. attou ajbas issn 1991-8178-pv mpptA. attou ajbas issn 1991-8178-pv mppt
A. attou ajbas issn 1991-8178-pv mppt
Attou664 views
Simulation of various DC-DC converters for photovoltaic system von IJECEIAES
Simulation of various DC-DC converters for photovoltaic systemSimulation of various DC-DC converters for photovoltaic system
Simulation of various DC-DC converters for photovoltaic system
IJECEIAES65 views
14 9737 lightning paper id 0005 edit septian von IAESIJEECS
14 9737 lightning paper id 0005 edit septian14 9737 lightning paper id 0005 edit septian
14 9737 lightning paper id 0005 edit septian
IAESIJEECS24 views
A Flexible AC Distribution System for a Microgrid with a Photovoltaic System ... von IJMTST Journal
A Flexible AC Distribution System for a Microgrid with a Photovoltaic System ...A Flexible AC Distribution System for a Microgrid with a Photovoltaic System ...
A Flexible AC Distribution System for a Microgrid with a Photovoltaic System ...
IJMTST Journal211 views
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi... von IJERA Editor
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...
A Novel Approach on Photovoltaic Technologies for Power Injection in Grid Usi...
IJERA Editor189 views
Enhancement of Voltage Stability by using Fuel Cell as Shunt Compensator von IRJET Journal
Enhancement of Voltage Stability by using Fuel Cell as Shunt CompensatorEnhancement of Voltage Stability by using Fuel Cell as Shunt Compensator
Enhancement of Voltage Stability by using Fuel Cell as Shunt Compensator
IRJET Journal28 views
Performance Analysis of DC Micro Grid with PV-Fuel Cell Hybrid Generation von IJMREMJournal
Performance Analysis of DC Micro Grid with PV-Fuel Cell Hybrid GenerationPerformance Analysis of DC Micro Grid with PV-Fuel Cell Hybrid Generation
Performance Analysis of DC Micro Grid with PV-Fuel Cell Hybrid Generation
IJMREMJournal31 views
Operational performance of a PV generator feeding DC shunt and induction moto... von IJECEIAES
Operational performance of a PV generator feeding DC shunt and induction moto...Operational performance of a PV generator feeding DC shunt and induction moto...
Operational performance of a PV generator feeding DC shunt and induction moto...
IJECEIAES20 views
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ... von EECJOURNAL
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...
Drive Applications of Fuzzy Logic Controlled Interleaved Boost Converter for ...
EECJOURNAL24 views
Performance Investigation of Grid Connected Photovoltaic System Modelling Bas... von IJECEIAES
Performance Investigation of Grid Connected Photovoltaic System Modelling Bas...Performance Investigation of Grid Connected Photovoltaic System Modelling Bas...
Performance Investigation of Grid Connected Photovoltaic System Modelling Bas...
IJECEIAES9 views

Destacado

Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso... von
Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso...Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso...
Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso...IOSR Journals
355 views5 Folien
FPGA Based Implementation of Electronic Safe Lock von
FPGA Based Implementation of Electronic Safe LockFPGA Based Implementation of Electronic Safe Lock
FPGA Based Implementation of Electronic Safe LockIOSR Journals
348 views5 Folien
Designing and Performance Evaluation of 64 QAM OFDM System von
Designing and Performance Evaluation of 64 QAM OFDM SystemDesigning and Performance Evaluation of 64 QAM OFDM System
Designing and Performance Evaluation of 64 QAM OFDM SystemIOSR Journals
239 views9 Folien
Enhance the Throughput of Wireless Network Using Multicast Routing von
Enhance the Throughput of Wireless Network Using Multicast RoutingEnhance the Throughput of Wireless Network Using Multicast Routing
Enhance the Throughput of Wireless Network Using Multicast RoutingIOSR Journals
422 views7 Folien
Polymer Concrete Made With Recycled Glass Aggregates, Flyash and Metakaolin von
Polymer Concrete Made With Recycled Glass Aggregates, Flyash and MetakaolinPolymer Concrete Made With Recycled Glass Aggregates, Flyash and Metakaolin
Polymer Concrete Made With Recycled Glass Aggregates, Flyash and MetakaolinIOSR Journals
493 views7 Folien
Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara... von
Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara...Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara...
Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara...IOSR Journals
491 views7 Folien

Destacado(20)

Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso... von IOSR Journals
Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso...Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso...
Enhanced Mobile Node Tracking With Received Signal Strength in Wireless Senso...
IOSR Journals355 views
FPGA Based Implementation of Electronic Safe Lock von IOSR Journals
FPGA Based Implementation of Electronic Safe LockFPGA Based Implementation of Electronic Safe Lock
FPGA Based Implementation of Electronic Safe Lock
IOSR Journals348 views
Designing and Performance Evaluation of 64 QAM OFDM System von IOSR Journals
Designing and Performance Evaluation of 64 QAM OFDM SystemDesigning and Performance Evaluation of 64 QAM OFDM System
Designing and Performance Evaluation of 64 QAM OFDM System
IOSR Journals239 views
Enhance the Throughput of Wireless Network Using Multicast Routing von IOSR Journals
Enhance the Throughput of Wireless Network Using Multicast RoutingEnhance the Throughput of Wireless Network Using Multicast Routing
Enhance the Throughput of Wireless Network Using Multicast Routing
IOSR Journals422 views
Polymer Concrete Made With Recycled Glass Aggregates, Flyash and Metakaolin von IOSR Journals
Polymer Concrete Made With Recycled Glass Aggregates, Flyash and MetakaolinPolymer Concrete Made With Recycled Glass Aggregates, Flyash and Metakaolin
Polymer Concrete Made With Recycled Glass Aggregates, Flyash and Metakaolin
IOSR Journals493 views
Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara... von IOSR Journals
Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara...Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara...
Static and Dynamic Behavior of Reinforced Concrete Framed Building: A Compara...
IOSR Journals491 views
Performance Analysis and Comparative Study of Cognitive Radio Spectrum Sensin... von IOSR Journals
Performance Analysis and Comparative Study of Cognitive Radio Spectrum Sensin...Performance Analysis and Comparative Study of Cognitive Radio Spectrum Sensin...
Performance Analysis and Comparative Study of Cognitive Radio Spectrum Sensin...
IOSR Journals251 views
Parametric Studies on Detergent Using Low Cost Sorbent von IOSR Journals
Parametric Studies on Detergent Using Low Cost SorbentParametric Studies on Detergent Using Low Cost Sorbent
Parametric Studies on Detergent Using Low Cost Sorbent
IOSR Journals272 views
Design of MEMS capacitive accelerometer with different perforated proof- mass... von IOSR Journals
Design of MEMS capacitive accelerometer with different perforated proof- mass...Design of MEMS capacitive accelerometer with different perforated proof- mass...
Design of MEMS capacitive accelerometer with different perforated proof- mass...
IOSR Journals266 views

Similar a C011141018

International Journal of Engineering Research and Development von
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
283 views8 Folien
I010416376 von
I010416376I010416376
I010416376IOSR Journals
129 views14 Folien
MPPT & Power Factor Control for Grid Connected PV Systems with Fuzzy Logic Co... von
MPPT & Power Factor Control for Grid Connected PV Systems with Fuzzy Logic Co...MPPT & Power Factor Control for Grid Connected PV Systems with Fuzzy Logic Co...
MPPT & Power Factor Control for Grid Connected PV Systems with Fuzzy Logic Co...International Journal of Power Electronics and Drive Systems
7 views9 Folien
Comparison of PV panels MPPT techniques applied to solar water pumping system von
Comparison of PV panels MPPT techniques applied to solar water pumping systemComparison of PV panels MPPT techniques applied to solar water pumping system
Comparison of PV panels MPPT techniques applied to solar water pumping systemInternational Journal of Power Electronics and Drive Systems
24 views10 Folien
Frequency control in a microgrid including controllable load von
Frequency control in a microgrid including controllable loadFrequency control in a microgrid including controllable load
Frequency control in a microgrid including controllable loadIAEME Publication
658 views10 Folien
Modeling and Simulation of a Photovoltaic Field for 13 KW von
Modeling and Simulation of a Photovoltaic Field for 13 KW Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW IJECEIAES
17 views11 Folien

Similar a C011141018(18)

International Journal of Engineering Research and Development von IJERD Editor
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor283 views
Frequency control in a microgrid including controllable load von IAEME Publication
Frequency control in a microgrid including controllable loadFrequency control in a microgrid including controllable load
Frequency control in a microgrid including controllable load
IAEME Publication658 views
Modeling and Simulation of a Photovoltaic Field for 13 KW von IJECEIAES
Modeling and Simulation of a Photovoltaic Field for 13 KW Modeling and Simulation of a Photovoltaic Field for 13 KW
Modeling and Simulation of a Photovoltaic Field for 13 KW
IJECEIAES17 views
Design_and_Investigation_of_FRT_Schemes_for_Three-Phase_Grid-Tied_PV_System.pdf von Engnr Kami Zeb
Design_and_Investigation_of_FRT_Schemes_for_Three-Phase_Grid-Tied_PV_System.pdfDesign_and_Investigation_of_FRT_Schemes_for_Three-Phase_Grid-Tied_PV_System.pdf
Design_and_Investigation_of_FRT_Schemes_for_Three-Phase_Grid-Tied_PV_System.pdf
Engnr Kami Zeb4 views
Iaetsd integration of distributed solar power generation von Iaetsd Iaetsd
Iaetsd integration of distributed solar power generationIaetsd integration of distributed solar power generation
Iaetsd integration of distributed solar power generation
Iaetsd Iaetsd290 views
Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP... von IJECEIAES
Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP...Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP...
Modeling and Simulation of Fuzzy Logic based Maximum Power Point Tracking (MP...
IJECEIAES272 views
Implementation Of A High-Efficiency, High-Lifetime, And Low-Cost Converter Us... von irjes
Implementation Of A High-Efficiency, High-Lifetime, And Low-Cost Converter Us...Implementation Of A High-Efficiency, High-Lifetime, And Low-Cost Converter Us...
Implementation Of A High-Efficiency, High-Lifetime, And Low-Cost Converter Us...
irjes577 views
Multilevel Inverters for PV Applications von Ehab Al hamayel
Multilevel Inverters for PV ApplicationsMultilevel Inverters for PV Applications
Multilevel Inverters for PV Applications
Ehab Al hamayel4.6K views
Z - Source Multi Level Inverter Based PV Generation System von IJERA Editor
Z - Source Multi Level Inverter Based PV Generation SystemZ - Source Multi Level Inverter Based PV Generation System
Z - Source Multi Level Inverter Based PV Generation System
IJERA Editor598 views
Hysteresis-based Voltage and Current Control Techniques for Grid Connected So... von IJECEIAES
Hysteresis-based Voltage and Current Control Techniques for Grid Connected So...Hysteresis-based Voltage and Current Control Techniques for Grid Connected So...
Hysteresis-based Voltage and Current Control Techniques for Grid Connected So...
IJECEIAES9 views
Standalone photovoltaic array fed induction motor driven water pumping system von IJECEIAES
Standalone photovoltaic array fed induction motor driven  water pumping system Standalone photovoltaic array fed induction motor driven  water pumping system
Standalone photovoltaic array fed induction motor driven water pumping system
IJECEIAES44 views
A Novel Analog Circuit Design For Maximum Power Point Tracking Of Photovoltai... von Kayla Jones
A Novel Analog Circuit Design For Maximum Power Point Tracking Of Photovoltai...A Novel Analog Circuit Design For Maximum Power Point Tracking Of Photovoltai...
A Novel Analog Circuit Design For Maximum Power Point Tracking Of Photovoltai...
Kayla Jones3 views
Performance Analysis of CSI Based PV system During LL and TPG faults von IOSR Journals
Performance Analysis of CSI Based PV system During LL and TPG faultsPerformance Analysis of CSI Based PV system During LL and TPG faults
Performance Analysis of CSI Based PV system During LL and TPG faults
IOSR Journals346 views
Modeling and Simulation of Solar Photovoltaic System von ijtsrd
Modeling and Simulation of Solar Photovoltaic SystemModeling and Simulation of Solar Photovoltaic System
Modeling and Simulation of Solar Photovoltaic System
ijtsrd579 views

Más de IOSR Journals

A011140104 von
A011140104A011140104
A011140104IOSR Journals
1.2K views4 Folien
M0111397100 von
M0111397100M0111397100
M0111397100IOSR Journals
747 views4 Folien
L011138596 von
L011138596L011138596
L011138596IOSR Journals
732 views12 Folien
K011138084 von
K011138084K011138084
K011138084IOSR Journals
602 views5 Folien
J011137479 von
J011137479J011137479
J011137479IOSR Journals
603 views6 Folien
I011136673 von
I011136673I011136673
I011136673IOSR Journals
511 views8 Folien

Último

virtual reality.pptx von
virtual reality.pptxvirtual reality.pptx
virtual reality.pptxG036GaikwadSnehal
11 views15 Folien
Web Dev - 1 PPT.pdf von
Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdfgdsczhcet
55 views45 Folien
Kyo - Functional Scala 2023.pdf von
Kyo - Functional Scala 2023.pdfKyo - Functional Scala 2023.pdf
Kyo - Functional Scala 2023.pdfFlavio W. Brasil
165 views92 Folien
handbook for web 3 adoption.pdf von
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdfLiveplex
19 views16 Folien
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors von
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensorssugiuralab
15 views15 Folien
Attacking IoT Devices from a Web Perspective - Linux Day von
Attacking IoT Devices from a Web Perspective - Linux Day Attacking IoT Devices from a Web Perspective - Linux Day
Attacking IoT Devices from a Web Perspective - Linux Day Simone Onofri
15 views68 Folien

Último(20)

Web Dev - 1 PPT.pdf von gdsczhcet
Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdf
gdsczhcet55 views
handbook for web 3 adoption.pdf von Liveplex
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdf
Liveplex19 views
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors von sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab15 views
Attacking IoT Devices from a Web Perspective - Linux Day von Simone Onofri
Attacking IoT Devices from a Web Perspective - Linux Day Attacking IoT Devices from a Web Perspective - Linux Day
Attacking IoT Devices from a Web Perspective - Linux Day
Simone Onofri15 views
HTTP headers that make your website go faster - devs.gent November 2023 von Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn19 views
DALI Basics Course 2023 von Ivory Egg
DALI Basics Course  2023DALI Basics Course  2023
DALI Basics Course 2023
Ivory Egg14 views
Business Analyst Series 2023 - Week 3 Session 5 von DianaGray10
Business Analyst Series 2023 -  Week 3 Session 5Business Analyst Series 2023 -  Week 3 Session 5
Business Analyst Series 2023 - Week 3 Session 5
DianaGray10209 views
Empathic Computing: Delivering the Potential of the Metaverse von Mark Billinghurst
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
Mark Billinghurst470 views
The details of description: Techniques, tips, and tangents on alternative tex... von BookNet Canada
The details of description: Techniques, tips, and tangents on alternative tex...The details of description: Techniques, tips, and tangents on alternative tex...
The details of description: Techniques, tips, and tangents on alternative tex...
BookNet Canada121 views
STPI OctaNE CoE Brochure.pdf von madhurjyapb
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdf
madhurjyapb12 views
Lilypad @ Labweek, Istanbul, 2023.pdf von Ally339821
Lilypad @ Labweek, Istanbul, 2023.pdfLilypad @ Labweek, Istanbul, 2023.pdf
Lilypad @ Labweek, Istanbul, 2023.pdf
Ally3398219 views
From chaos to control: Managing migrations and Microsoft 365 with ShareGate! von sammart93
From chaos to control: Managing migrations and Microsoft 365 with ShareGate!From chaos to control: Managing migrations and Microsoft 365 with ShareGate!
From chaos to control: Managing migrations and Microsoft 365 with ShareGate!
sammart939 views
Piloting & Scaling Successfully With Microsoft Viva von Richard Harbridge
Piloting & Scaling Successfully With Microsoft VivaPiloting & Scaling Successfully With Microsoft Viva
Piloting & Scaling Successfully With Microsoft Viva
1st parposal presentation.pptx von i238212
1st parposal presentation.pptx1st parposal presentation.pptx
1st parposal presentation.pptx
i2382129 views

C011141018

  • 1. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 1 Ver. IV (Jan. – Feb. 2016), PP 10-18 www.iosrjournals.org DOI: 10.9790/1676-11141018 www.iosrjournals.org 10 | Page Analysis of Hybrid Energy System Mojtaba Abbasi, Tomsk Polytechnic University Abstract: This paper focuses on response analysis of Microgrid which consists of wind turbines, photovoltaic panels, with Hybrid DC and AC Buses. In grid-connected operation, voltage of DC bus is kept steady by the inverter. Energy Management System controls hybrid storage system to release or absorb power with the strategies according to grid condition, state of charge of batteries and super-capacitor, electricity price and so on. In islanded operation, voltage of DC bus is controlled by storage system and amplitude and frequency of AC Bus voltage are regulated by parallel inverters with voltage-frequency or droop control strategy. In this work, different control strategies in grid-connected and islanded operation are described which can keep power balanced and AC/DC bus stable. A test case of Permanent Magnet Synchronous Generator connected to a rectifier and inverter has been simulated in MATLAB/Simulink environment and from the results it can be shown that the voltages of AC and DC buses have been maintained steadily. The output voltage from PV modules is lifted using boost converter and given to maximum power point tracking system. The output is connected in parallel with the input from wind system to a common inverter and given to a common load. The desired outputs, power, voltage and current of AC side is observed and maintained within rated values. I. Introduction Now more and more photovoltaic panels and wind turbines are integrated into grid, whose power fluctuation will lead to grid instability. Microgrid system is one of the solutions. There are many benefits of Microgrid including little pollution, higher reliability, better quality of power supply, and higher efficiency. This research presents hybrid DC- and AC-bus Microgrid system, which can be established in a country or island. To avoid global warming, the consumption of fossil fuels must be reduced. Hence, the installation of renewable energy power production plants has become a burning issue not only for isolated islands but also all over the world. Among various renewable energy systems, photovoltaic power generation systems (PV systems) and wind power source are expected to play an important role as a clean electricity power source in meeting future electricity demands. Photovoltaic (PV) power as an alternative energy resource has been becoming feasible due to Enormous research and development works being conducted. The use of Photovoltaic (PV) generators in isolated sites, where conventional generation is not practical, can pose a problem because PV output power depends on weather conditions and cell temperature, making it an uncontrollable source. Furthermore, it is not available during the night. We consider resolving this problem by installing a hybrid system using an alternative wind energy source along with the PV array. Solar arrays provide dc power. Hence power from a solar array cannot be directly added to an isolated power utility for using directly in residential, industrial or commercial applications. We require a DC-DC converter to step up the dc voltage from the panel and then an inverter to convert the dc into ac power which can be fed to the utility. A Photovoltaic (PV) system‟s power output is not constant and fluctuates depending on weather conditions (variations in irradiation and temperature). Therefore we also require a Maximum Power Point tracker (MPPT) along with the DC-DC converter in order to obtain the maximum power output from the Solar Photovoltaic (PV) array. In the hybrid system a wind power generators along with PV generators feeds the utilities loads. The response of the hybrid system following common disturbances such as solar insulation variations and load changes have to be is investigated for analyzing the effects fluctuating power causes in the isolated power utility. This study is essential for devising a method for leveling the fluctuations in a PV system's power output when large output power from several PV systems has to be penetrated in the utility. II. Hybrid Power System A. Isolated Power Utility This research presents hybrid DC- and AC-bus Microgrid system, as shown in Fig 1, which can be established in a country or island. There are many units in the system which can be used in a house of a country. All the renewable energy generations and storage devices in the house are connected to DC bus with different converters which can supply power to local DC loads. Inverters are used to transfer power between AC and DC buses. Common and sensitive loads can be connected to AC bus with different coupling points. If there are some faults happened in utility grid, Microgrid system can work in islanded operation. In worse condition, if renewable energy generations can‟t supply enough power for local
  • 2. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 11 | Page Figure 1 Microgrid systems with hybrid DC and AC buses Loads and state of charge of storage devices are in low level, Microgrid could cut common loads to keep supplying power to sensitive loads. In hybrid DC- and AC-bus Microgrid system, fewer inverters are needed. So control strategy for parallel inverters is easier in islanded operation. And DC loads can be connected to DC bus directly without rectifier. Also the system can isolate individual units if there is something wrong in the unit. B. Pv-Wind Hybrid Power System The PV-Wind hybrid system model consisting of a wind turbine, PV power generation systems, and a load is shown in detail in Fig. 2, Fig. 2 Isolated hybrid power system model. One unit of the Microgrid system is established in the lab as shown in Figure 2. It consists of a wind turbine, photovoltaic panels, batteries series connected and super-capacitor. The stability of DC- and AC-bus voltage is very important. When Microgrid system is connected to the utility grid, the amplitude of DC-bus voltage (200V) is regulated by the inverter, and voltage of AC bus is the same with the utility grid. However when the Microgrid works in islanded operation, DC-bus voltage must be regulated by renewable energy generations and storage devices, and the voltage and frequency of AC bus are controlled with voltage-frequency or droop control strategy of parallel inverters III. Modeling Of Pv Array A. Modeling Of Pv Cell The equivalent circuit of the ideal PV cell is shown in Fig 3. The ideal PV cell be modulate as diode parallel with a current source Fig 3 Ideal PV Cell
  • 3. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 12 | Page Thebasic equation from the theory of semiconductors that mathematicallydescribes the I–V characteristic of the ideal PV cellis (1) Where, (2) Therefore, (3) Where, Ipv,cellis the current generated by the incident light (it is directly proportional to the Sun irradiation), Id is the Shockley diode equation, I0,cellis the reverse saturation or leakage current of the diode, q is the electron charge (1.60217646 × 10−19 C), k is the Boltzmann constant (1.3806503 × 10−23 J/K), T (in Kelvin) is the temperature of the p–n junction, and a is the diode ideality constant. The origin of I-V curve from the equation (2) is shown in fig 4. Fig 4 Origin of I-V equation of an Ideal PV cell In addition to this modeling, the PV array is also modeled. With the help of this the amount of power which is produced through the solar cell can be estimated in a clear manner. Boost Converter A. Modes Of Operation In a boost converter, the output voltage is greater than the input voltage-hence the name “boost”. A boost converter is shown in Fig 5. Fig 5 Boost Converter Circuit The circuit operation can be divided into two modes. Mode 1 begins when the MOSFET M1 is switched on at t=0. The input current, which rises, flows through inductor L and MOSFET M1. Mode 2 begins when the MOSFET M1 is switched off at t=t1. The current that was flowing through the MOSFET would now flow through inductor L, capacitor C, load and Diode Dm. The inductor current falls until MOSFET M1 is turned on again in the next cycle. The energy stored in the inductor L is transferred to the load. The equivalent circuits for the two modes of operation are shown in Fig 6. Fig 6. Equivalent Circuits
  • 4. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 13 | Page The waveforms for voltages and currents are shown in Fig 7 for continuous load current, assuming that the current rises or falls linearly. Fig 7 Current and Voltage waveforms Assuming that the inductor current rises linearly from I1 to I2 in time t1, (4) (5) and the inductor current falls linearly from I2 to I1 in time t2, (6) or (7) Where, ∆I = I2-I1 is the peak-to-peak ripple current of inductor L. From equations (5) and (7), (8) Substituting t1=kT and t2= (1-k)T yields the average output voltage, (9) Which gives (10) Assuming a lossless circuit, VsIs = VaIa and the average input current is (11) The switching period T can be found from (12) And this gives the peak-to-peak ripple current: (13) When the MOSFET is on, the capacitor supplies the load current for t=t1. The average capacitor current during the time t1 is Ic=Ia and the peak-to-peak ripple voltage of the capacitor is Substituting t1 = (Va – Vs)/(Vaf), (14) B. Inverter In A Pv System The principle of a stand-alone inverter used in a PV-Diesel hybrid system can be explained with reference to the single-phase equivalent shown in Fig 8.The inverter has a full-bridge configuration realized using four power electronic switches (MOSFET or IGBTs) S1, S4. In this scheme, the diagonally opposite switches (S1, S4) and (S2, S3) are switched using sinusoidal pulse-width modulated gate pulses. The inverter produces sinusoidal output voltage. The inductors X1, X2 and the ac capacitor C2 filter out the high-switch-
  • 5. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 14 | Page frequency components from the output waveform. Fig. 8 Inverter in a PV system Most inverter topologies use a low-frequency (50 or 60 Hz) transformer to step up the inverter output voltage. In this scheme, the diesel generator and the converter are connected in parallel to supply the load. The voltage sources, diesel and inverter, are separated by the link inductor Xm. The bidirectional power flow between inverter and the diesel generator can be established. The power flow through the link inductor, Xm, is Sm = Vm Im (15) Pm= (VmVcsinXm (16) Qm=(Vm/Xm)(VmVccos Whereis the phase angle between the two voltages. From Eq.(16), it can be seen that the power supplied by the inverter can be controlled by controlling the phase angle. The PWM pulses separately control the amplitude of the converter voltage, Vc, while the phase angle with respect to the diesel voltage is varied for power flow. Wind Turbine The synchronous generator is currently used in WECS, especially in law power for battery charging, for example. But the use of PMSG in high power generation is recent. It‟s facilitated by the technologic progress realized in power electronics and permanent magnet materials used in generator rotors. The use of PMSG allows to eliminate the gearbox and to operate at variable and low speed; which is adequate with wind speed nature. Variable speed operation of wind energy conversion system contributes to decrease the mechanical stress and acoustic noise and offers possibility to control of active and reactive powers; the PMSG is connected to the grid via two power electronics converters with an intermediate DC link bus. The generator side converter is controlled via hysteresis regulation of generator currents with zero direct current; in order to obtain a maximal torque for a minimal current. The MPPT algorithm is used to determinate the optimal rotational speed reference for any value of wind speed under the nominal regime in order to maximizing power captured by the wind turbine. The grid side converter is controlled by pulse width modulation (PWM) obtained from proportional integral (PI) regulation of currents sanded to the electrical grid. The DC link voltage is kept at constant value with a DC/DC converter and PI regulation of DC voltage at its reference. Power limitation for high wind speed values is achieved by varying the blade angle (Pitch control) which corresponds to decrease in power coefficient. Figure 9. Control diagram of wind turbine The speed reference allows to maximizing the power captured by the wind (MPPT strategy) is given by: (18)
  • 6. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 15 | Page When the wind speed reached the nominal value, the pitch angle regulation (based on fuzzy logic algorithm) enter in operation in order to decrease the power coefficient. The simplified representation of wind turbine control diagram is shown in Figure 9. Grid Connected Operation Micro grid works in grid-connected operation. In this case, the wind and solar generators should work in Maximum Power Point Tracking (MPPT) strategy to get higher energy efficiency. In order to reduce the influence of fluctuation to utility grid, energy storage system should be controlled to supply the power difference between renewable energy generations and loads.Fig 10. Pstorage = Pbatt + Psc = Pwind + Psolar – P load (19)  Pstorage is the total power of storage system including batteries and super-capacitor.  Pbattand Psc are power released from battery and super-capacitor resp  Pwind is generated by wind turbine.  Psolar is generated by photovoltaic panels.  Pload is power absorbed by DC and AC loads. Figure 10. Power Flow in the system In grid-connected operation voltage of DC bus is controlled by inverter and amplitude and frequency of AC-Bus voltage are the same with utility grid. When power from renewable energy generations is fluctuant or loads change quickly, hybrid storage system including batteries and super-capacitor must absorb or release power difference very fast. According to the character of different storage devices, high frequency power is released or absorbed by super-capacitor Simulation Results Integration Of Pv Array With Boost Converter And Pwm Inverter The integrated circuit for simulation of PV array, boost converter and PWM inverter with MPPT is shown Fig 11, the voltage and current output waveforms are shown in Fig.12 and the power output shown in Fig 13. Fig 11. Integrated PV array – boost converter – PWM inverter circuit Fig 12. PWM Inverter output voltage and current
  • 7. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 16 | Page Fig 13. PWM Inverter output power Step change in insulation was mentioned in literature as the source of power fluctuations. Fig 14.shows the integrated circuit for simulation of a step change in insulation from 800 W/sq.m. to 1000 W/sq.m. The output waveforms are also shown. Fig 14. Integrated circuit for simulation of a step change in insulation Fig 15. Step change in insulation The step change in insulation is shown in fig 15.. Here the insulation changes from 800 to 1000 at the 5th second. Fig 16. Integrated circuit power output for a step change in insulation Fig 16. Shows the change in current and voltage waveforms. Followed by the step change in insulation at the 5th second the voltage and current magnitude increases. Figure 17. Integrated circuit voltage and current output for a step change in insulation
  • 8. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 17 | Page Fig 17.Shows the variation of power after the step change in insulation. Integration Of Wind And Solar Figure18.Integration of wind and solar The power obtained from the solar and the wind energy conversion systems are given to an inverter as shown in Fig 18. Figure 19. Output voltage and current of pv-wind The voltage and current waveforms obtained at the inverter ends are shown in Fig 19. Figure 20. Combined output power of two PV plants and wind turbine IV. Conclusion This paper aims at implementing a PV Wind, hybrid system connected to an isolated power utility. The basic concepts of solar array, DC-DC boost converter, PWM inverter, Wind turbine are discussed. The modeling methods of all components of the hybrid system are described. Simulation studies are done for the standard test conditions using MATLAB/Simulink. The response of a PV - Wind hybrid system connected to an isolated power utility following common disturbances such as solar insulation variations and wind speed change and load changes were simulated to understand the power fluctuation caused. The results of the simulation are analyzed to understand the significance of the power fluctuation caused, so that a method for leveling the fluctuations in a PV system's power output when large output power from several PV systems has to be penetrated in the utility could be defined.
  • 9. Analysis Of Hybrid Energy System DOI: 10.9790/1676-11141018 www.iosrjournals.org 18 | Page References [1]. Joe-Air Jiang, Tsong-Liang Huang, Ying-Tung Hsiao, Chia-Hong Chen, „Maximum Power Tracking for Photovoltaic Power Systems‟, Tamkang Journal of Science and Engineering, vol. 8, no 2, pp. 147-153, 2005. [2]. Marcelo Gradella Villalva, Jonas Rafael Gazoli, and Ernesto Ruppert Filho, „Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays‟, IEEE Transactions on Power Electronics, vol.24, no. 5, 2009. [3]. Muhammad H. Rashid, „Power Electronics Circuits, Devices, And Applications‟, Third Edition, Prentice Hall of India Pvt. Ltd. [4]. Kundur, „Power System Stability and Control‟, McGraw-Hill,Inc, 1994. [5]. Bhadra, S.N., Kastha, D., Banerjee, S., „Wind Electrical Systems‟, Oxford University Press. [6]. Fitzgerald, A.E., Kingsley, C., „Electric Machinery‟, McGraw-Hill,Inc. [7]. Roy, S., Malik, O. P. and Hope G. S., “An adaptive control scheme for speed control of diesel driven power plants”, IEEE Transactions on Energy Conversion, Vol.6., No.4, 1991. [8]. Kuang, B., Wang, Y. and Tan, Y.L., “An H∞ Controller Design for Diesel Engine Systems”, IEEE Transactions on Industry Applications, Vol., No., 2000. [9]. Augustine, D. W. and Kumar, K.S. P., “A method for self-tuning a PID controller for control of small to medium sized diesel engines”, IEEE International Conference on System Engineering, P.85-88 1-3 Aug. 1991. [10]. Ashari M., Nayar C.V., Islam S., “Steady-state performance of a grid interactive voltage source inverter”, IEEE Power Engineering Society Summer Meeting, 2001. Vol. 1, P.650 -655 July 2001 [11]. Nayar C.V., Ashari M., Keerthipala, W.W.L., “A grid-interactive photovoltaic uninterruptible power supply system using battery storage and a back up diesel generator, IEEE Transaction on Energy Conversion, Vol.15, Issue 3, Ps. 348 - 353, Sept. 2000 . [12]. Bilbao, E.; Gaztanaga, H. Mir, L. Etxeberria-Otadui, I. Milo, A. “Design and development of a supercapacitor-based microgrid dynamic support system,” in Power Electronics and Applications, 2009. EPE '09. 13th European Conference on, 2009, pp. 1-10. [13]. Boroyevich, D. and Cvetkovic, I., “Future Electronic Power Distribution Systems– A contemplative view,” Optimization of Electrical and Electronic Equipment (OPTIM), 2010 12th International Conference on, pp. 1369-1380. [14]. C. Abbey, G. Joos, ”Supercapacitor Energy Storage for Wind Energy Applications”, IEEE Trans. Ind. Electron., vol.43, iss.3, pp.769-776, May 2007 [15]. Erickson, M.J. and Lasseter, R.H.: “Integration of battery energy storage element in a CERTS microgrid”, Energy Conversion Congress and Exposition, 2010, pp. 2570-2577 [16]. Taljan, M. Fowler, C. Cañizares, G. Verbič: Hydrogen storage for mixed wind–nuclear power plants in the context of a Hydrogen Economy, Hydrogen Energy, vol. 33, iss 17, pp. 4463-4475, Sep. 2008. [17]. Kanchev, H., Lu, D., Francois, B. and Lazarov, V.: “Smart monitoring of a microgrid including gas turbines and a dispatched PV- based active generator for energy management and emissions reduction”, Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES, pp. 1-8. [18]. R. Cardenas et al: Control Strategies For Power Smoothing using a Flywheel Driven by a Sensorless Vector-Controlled Induction Machine Operating in a Wide Speed Range, IEEE Trans. Ind. Electron., vol 51, pp. 603 - 614, 2004. [19]. R. Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, October 2010. [20]. R.Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, October 2010 [21]. D. Salomonsson, L. Söder, and A. Sannino, “An adaptive control system for a DC microgrid for data centers,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1910-1917, November/ December. 2008.