SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
International
OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 50 |
Exact Solutions of Convection Diffusion Equation by Modified
F-Expansion Method
Priyanka M. Patel1
, Vikas H. Pradhan2
1, 2
(S.V. National Institute of Technology, Surat-395007, India)
I. Introduction
It is well known that nonlinear partial differential equations (NLPDEs) play a major role in describing
many phenomena arising in many fields of sciences and engineering. The investigation of exact solutions of
NLPDEs plays an important role in the study of nonlinear physical phenomena. In recent years, direct search for
exact solutions to NLPDE has become more and more attractive partly due to availability of computer symbolic
system like Mathematica or Maple which allows us to perform some complicated and tedious algebraic
calculation on computer. Different methods have been invented to obtain exact solutions of NLPDEs, such as
homotopy perturbation method [3], homotopy analysis method [9,14], variational iteration method [11], tanh
method [17] and so on. In the recent past F- expansion method [19,21] was proposed to construct exact solutions
of NLPDEs. This method was later further extended in different manners, like the generalized F-expansion
method [20], modified F-expansion method [6,7,8], improve F-expansion method [18], etc. in this study, the
modified F-expansion method is used.
The objective of this paper is to apply modified F-expansion method to construct the exact travelling wave
solutions of the following nonlinear convection-diffusion equation [10,12,15] for two cases.
   m n
t xx x
u u u  (1)
This equation arises in many physical phenomena for different values of m and n . For example,
   , 1,2m n  eq.(1) converted into classic Burgers’ equation [1,13,14,16] which has many application in gas
dynamics, traffic flow, shock wave phenomena etc. Eq.(1) also arises in theory of infiltration of water under
gravity through a homogeneous and isotropic porous medium for 1n m  [4]. In the case of
   , 4,3m n  , eq.(1) models the flow of a thin viscous sheet on an inclined bed [5]. Act as a foam drainage
equation for    , 3 2,2m n  [8].
II. Outline Of The Modified F-Expansion Method
In this section, the description of the method is given.
Consider a given nonlinear partial differential equation with independent variables ,x t and dependent variable
u ,
 , , , , ,.... 0t xx xt ttP u u u u u  (2)
Generally speaking, the left-hand side of eq.(2) is a polynomial in u and its various partial derivatives. The
main points of the modified F-expansion method for solving eq.(2) are as follows:
[1]. Seek travelling wave solutions to eq.(2) by taking
   ,u x t u  where  h x vt   (3)
Abstract: In this paper, the modified F-expansion method is proposed for constructing more than one
exact solutions of nonlinear convection diffusion equation with the aid of symbolic computation
Mathematica. By using this method, some new exact travelling wave solutions of the convection diffusion
equation are successfully obtained. These exact solutions include the soliton-like solutions, trigonometric
function solutions and rational solutions. Also, it is shown that the proposed method is efficient for
solving nonlinear partial differential equations arising in mathematical physics.
Keywords: convection diffusion equation, modified F-expansion method, travelling wave solutions
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 51 |
where 0h  and v are constants to be determined, inserting eq.(3) into eq.(2) yields an ordinary differential
equation (ODE) for  u 
 ' ''
, , ,... 0P u u u  (4)
where prime denotes the derivative with respect to  .
[2]. Suppose that  u  can be expressed as
   
N
i
i
i N
u a F 

  where 0Na  (5)
where  ,..., 1,0,1,....ia i N N   are all constants to be determined and  F  satisfies following Riccati
equation
     ' 2
F A BF CF     (6)
where , ,A B C are constants and N is a integer which can be determined by considering the homogeneous
balance between the governing nonlinear term(s) and highest order derivative of  u  in eq.(4) and
(i) when  pN
q
 is fraction, let    p q
u w 
(ii) when N is negative integer, let    N
u w 
By using (i) and (ii), we change eq.(4) into another ODE for  w  whose balancing number will be a positive
integer.
[3]. Substitute eq.(5) into eq.(4) and using eq.(6) then left-hand side of eq.(4) can be converted into a finite
series in  p
F  ,  ,...., 1,0,1,...,p N N   . Equating each coefficient of  p
F  to zero yields a
system of algebraic equations.
[4]. Solve the system of algebraic equations probably with the aid of Mathematica, , ,ia h v can be expressed by
, ,A B C . Substituting these results into eq.(5), we can obtain the general form of travelling wave solutions to
eq.(4).
[5]. From the general form of travelling wave solutions listed in appendix, we can give a series of soliton-like
solutions, trigonometric function solutions and rational solutions of eq.(2).
III. Implementation Of The Method
To solve eq.(1), following two cases are considered:
Case [I]: 1n m 
Case [II]: 2 1, 1n m m  
Case [I]: 1n m 
Considering n m in eq.(1), we get
   m m
t xx x
u u u  (7)
Let us start our analysis by using the transformation,
   ,u x t u  where  h x vt   (8)
where 0h  and v are constants to be determined later. Substituting eq.(8) into eq.(7), we get ODE
   
2' 2 2 ' 2 1 '' 1 '
1 0m m m
hvu h m m u u h mu u hmu u  
     (9)
where prime denotes differentiation with respect to  . Balancing the orders of
'
u and
1 ''m
u u
in eq.(9), we
have
1
1
N
m
 

. Now, we use    
1
1m
u w 


 in eq.(9), we get ODE in the following form,
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 52 |
 
 
2' 1 ' '' '2 1
0
1
m m
vww hw w mhw mw
m

   

(10)
Balancing the orders of
'
ww and
''
w in eq.(10), we get 1N  . So we can write solution of eq.(7) in the form,
   
1
1
, m
u x t w 


 where      1
0 1 1w a a F a F  
   (11)
Substituting eq.(11) into eq.(10) and using eq.(6), the left-hand side of eq.(10) can be converted into a finite
series in  p
F  ,  4, 3, 2, 1,0,1,2,3,4p      . Equating each coefficient of  p
F  to zero, we
obtained the following set of algebraic equations with the aid of Mathematica:
 
 
 
2 2 2 2 2
4 2 2 31 1
1 1
2 2 2
3 2 2 2 1 1
0 1 1 1
2 3
0 1 1
2 2
2 2 2 2 2 1
0 1 0 1 1 1 1
2
1
2
: 2 0
1 1
2 4
: 2 3
1 1
2 0
: 3 2
1
2
A hma A hm a
F A hma Aa v
m m
ABhma ABhm a
F A hma a Ama ABhma
m m
Aa a v Ba v
B hma
F Ama a ABhma a Bma B hma AChma
m
AChma



  
 
  
  
 
 
    

    
 
    
 
  
    


 
2 2 2 2 2 2
21 1 1 1
1 1
2 2
2 2 3 21 1
0 1 0 1 1 1 1
2
1 2 2 2 1
0 1 0 1 0 1 1 1
2 2
1
1 1
2 4 2
2
1 1 1 1
4
2 0
1
2
: 2
1
4 4
4
1
B hm a AChm a A hma a
A hma a
m m m m
A hm a a
Aa a v Ba a v Ca v Aa a v
m
BChma
F Bma a B hma a AChma a Cma BChma
m
BChm a ABh
ABhma a
m

  


   
 
    


   
   
     

    

  

 
2
21 1 1 1
0 1
2 2
0 1 1 1
2 2 2 2 2
0 1 1
0 1 0 1 0 1 0 1
2 2 2
2 1 1 1 1 1 1
1 1 1 1
2 2
1 1
8
1 1
2 0
2
:
1 1
2 4 4
2 4
1 1 1
8
1
ma a ABhm a a
Ba a v
m m
Ca a v Ba a v
C hma C hm a
F Cma a BChma a Am a a ABhma a
m m
B hma a AChma a B hm a a
B hma a AChma a
m m m
AChm a a A
m

 

 
 
 
  
 

 
 
  
    
 
    
  
 

 
 
2 2 2 2
2 2 21 1
0 1 0 1 1 1
2
1 1
1 2 1 1
0 1 0 1 0 1 1 1
2 2 2 2
2 2 21 1 1 1
1 1 0 1
2 2
0 1 1 1
2
2
1 1
0
4
: 2 4
1
8 2 4
1 1 1
2 0
:
hma A hm a
Ca a v Aa a v Ca a v
m m
Aa a v
BChma a
F Bma a B hma a AChma a BChma a
m
BChm a a ABhma ABhm a
Ama ABhma Ba a v
m m m
Aa a v Ba a v
F


 





   
 
 
    

     
  
  

 
2 2 2
2 1 1 1 1
0 1 0 1 1 1
2 2 2 2 2 2
2 2 2 2 1 1 1
1 1 1
2 2
2 2 2 31
0 1 0 1 1 1 1
3 2 2 2 1
0 1 1 1
2 4
3 2
1 1
2 2
2
1 1 1
4
2 0
1
2
: 2 3
C hma a C hm a a
Cma a BChma a C hma a
m m
B hma AChma B hm a
Bma B hma AChma
m m m
AChm a
Ca a v Ba a v Ca a v Aa v
m
BChma
F C hma a Cma BChma
 



   
 
     
  
     

   
 
2 2 2
1
2 3
0 1 1
2 2 2 2 2
4 2 2 31 1
1 1
4
1 1
2 0
2
: 2 0
1 1
BChm a
m m
Ca a v Ba v
C hma C hm a
F C hma Ca v
m m






















































  
  


       
(12)
Solving the above algebraic equations by Mathematica, we considered different cases as follows:
Case 1: 0A  , we have
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 53 |
 0 1 1 1
1
0, 0, ,
1
Chm
a a a a v
a m
    

(13)
Case 2: 0B  , we have
0 1
0 0 1 1 1
0 1
2
, 0, ,
2
Chma ma
a a a a a v
a a


    (14)
Using cases 1,2 and appendix, we obtained the following exact generalized solutions of eq.(7)
Soliton-like solutions:
(1) 0, 1, 1A B C   
Assuming,
1m
h
m

 in eq.(13), we get
0 1 1 1
1
1
0, 0, ,a a a a v
a
    (15)
From appendix and eq.(15), we have
 
1
1
1 1
1
1 1 1 1
, tanh
2 2 2
m
m
u x t a x t
m a


     
            
(16)
(2) 0, 1, 1A B C   
Assuming,
1m
h
m

  in eq.(13), we get
0 1 1 1
1
1
0, 0, ,a a a a v
a
    (17)
From appendix and eq.(17), we have
 
1
1
2 1
1
1 1 1 1
, coth
2 2 2
m
m
u x t a x t
m a


     
            
(18)
The solution given by eq.(18) and that obtained in [2], shows good agreement.
(3) 1, 0, 1A B C   
Assuming, 0 1a a and
1
2
m
h
m

 in eq.(14), we get
0 1 1 1 1
1
1
, 0, ,
2
a a a a a v
a
    (19)
From appendix and eq.(19), we have
 
1
1
3 1 1
1
1 1
, tanh
2 2
m
m
u x t a a x t
m a


    
     
    
(20)
Again assuming 0 1a a  and
1
2
m
h
m

  in eq.(14), we get
0 1 1 1 1
1
1
, 0, ,
2
a a a a a v
a
      (21)
From appendix and eq.(21), we have
 
1
1
4 1 1
1
1 1
, coth
2 2
m
m
u x t a a x t
m a


    
      
    
(22)
(4)
1 1
, 0,
2 2
A B C   
Assuming, 0 1a a and
1m
h
m

 in eq.(14), we get
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 54 |
0 1 1 1 1
1
1
, 0, ,
2
a a a a a v
a
    (23)
From appendix and eq.(23), we have
 
1
1
5 1 1
1 1
1 1 1 1
, coth csc
2 2
m
m m
u x t a a x t h x t
m a m a


          
                      
(24)
 
1
1
6 1 1
1 1
1 1 1 1
, tanh sec
2 2
m
m m
u x t a a x t i h x t
m a m a


          
                      
(25)
Trigonometric function solutions:
(5)
1 1
, 0,
2 2
A B C  
Assuming, 0 1a ia  and
1m
h
im

 in eq.(14), we get
0 1 1 1 1
1
, 0, ,
2
i
a ia a a a v
a
     (26)
From appendix and eq.(26), we have
 
1
1
7 1 1
1 1
1 1
, sec tan
2 2
m
m i m i
u x t ia a x t x t
i m a i m a


          
                       
(27)
 
1
1
8 1 1
1 1
1 1
, csc cot
2 2
m
m i m i
u x t ia a x t x t
i m a i m a


          
                       
(28)
(6) 1 1
, 0,
2 2
A B C    
Assuming, 0 1a ia  and
1m
h
im

  in eq.(14), we get
0 1 1 1 1
1
, 0, ,
2
i
a ia a a a v
a
     (29)
From appendix and eq.(29), we have
 
1
1
9 1 1
1 1
1 1
, sec tan
2 2
m
m i m i
u x t ia a x t x t
i m a i m a


          
                       
(30)
 
1
1
10 1 1
1 1
1 1
, csc cot
2 2
m
m i m i
u x t ia a x t x t
i m a i m a


          
                       
(31)
Case [II]: 2 1, 1n m m  
We consider 2 1n m  in eq.(1), we get,
   2 1m m
t xx x
u u u 
  , 1m  . (32)
Differentiating eq.(32) with respect to x we have following partial differential equation,
     
22 1 2 2
1 2 1 0m m m
t x x x xu m m u u mu u m u u  
      (33)
Suppose the solution of eq.(33) is of the form
   ,u x t u  where  h x vt   (34)
where 0h  and v are constants to be determined. Substituting eq.(34) into eq.(33), we get ODE,
     
2( 1) ' 1 ' '' 1 '
1 2 1 0m m
vu u m m hu u mhu m u u   
      (35)
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 55 |
where prime denotes differentiation with respect to  . Now, balancing the order of
1 'm
u u
with
''
u in eq.(35),
we obtained integer
1
1
N
m


. Again we use the transformation    
1
1m
u w 
 into the eq.(35), we get
following ODE
   
21 ' 1 ' '' '1
2 1 0
1
v w w m hw w mhw m ww
m
  
     
 
(36)
According to homogeneous balance between
'
ww and
''
w , we have 1N  . So we can write solution of
eq.(32) in the following form,
   
1
1m
u w 
 where      1
0 1 1w a a F a F  
   (37)
Substituting eq.(37) into eq.(36) and using eq.(6), the left-hand side of eq.(36) can be converted into a finite
series in  p
F  , ( 4, 3, 2, 1,0,1,2,3,4p      ). Equating each coefficient of  p
F  to zero yields the
following set of algebraic equations:
 
 
 
2 2
4 2 2 3 31
1 1 1
2
3 2 2 21
0 1 1 0 1
2 3 3
0 1 1 1
2 2 2 2 2 2
0 1 0 1 0 1 1 1
2 2 2
1 1
0
: 2 2 0
1
2
: 2 3 2
1
4 2 0
: 3 2 2
2
2
1 1
A hma
F A hma Aa Ama
m
ABhma
F A hma a ABhma Aa a
m
Ama a Ba Bma
F ABhma a Aa a Ama a B hma AChma
B hma AChma
Ba
m m



 
  
 
  
  

    
 
    

   

   
    
  
 
 
2 2 3 3
1 0 1 1 1
2
2 2 21 1
1 1 1 1 1 1 1
1 2 2 2 2
0 1 0 1 0 1 0 1 1
2
2 21 1 1
0 1 0 1 1 1
2
1 1
4 2
2
2 2 0
1
: 2 2
2 4
2 4 4
1 1
2
a Bma a Ca Cma
A hma a
A hma a Aa a Ama a Aa v
m
F B hma a AChma a Ba a Bma a BChma
BChma ABhma a
Ca a Cma a ABhma a
m m
Ba a B

   

   

    
 
  

  
     

    
    
 
 
 
 
2
1 1 1
2 2
0 2 2 21
0 1 0 1 0 1 0 1 0 1
2
2 2 1 1 1 1
0 1 1 1 1 1
2 2
2 2 2 21
1 1 1 1 1 1 1 1 1 1
1
0
: 2
1
2 4
2 2 4
1 1
2 2 0
1
:
ma a Ba v
C hma
F BChma a Ca a Cma a ABhma a Aa a
m
B hma a AChma a
Ama a B hma a AChma a
m m
A hma
Ca a Cma a Aa a Ama a Ca v Aa v
m
F B


 

  
 
 
    
 
     

    
 
       


 
2 2 2
0 1 0 1 0 1 0 1 1 1
2
2 2 2 21 1 1
1 0 1 0 1 1 1
2
1 1 1
2
2 2 2 2 2 21 1
0 1 0 1 0 1 1 1 1
2 2
2 1
1
2 2 4
4 2
2 4
1 1
2 0
2
: 3 2 2
1
2
hma a AChma a Ba a Bma a BChma a
BChma a ABhma
ABhma Aa a Ama a Ba a
m m
Bma a Ba v
C hma a
F BChma a Ca a Cma a C hma a B hma
m
B hma
AChma







   
     
 
  
     

 
 
 
2
2 2 21
0 1 0 1 1 1
2 3 3
1 1 1 1 1
2
3 2 2 2 2 31
0 1 1 0 1 0 1 1
3
1
2 2
4 2 2 3 31
1 1 1
2
2 4
1 1
2 2 0
2
: 2 3 2 4
1
2 0
: 2 2 0
1
AChma
Ba a Bma a Ca a
m m
Cma a Aa Ama Ca v
BChma
F C hma a BChma Ca a Cma a Ba
m
Bma
C hma
F C hma Ca Cma
m































   
 
    
     

 
    



























(38)
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 56 |
Solving the above algebraic equations by Mathematica, we considered different cases as follows:
Case 1: 0A  , we have
   
2 2 2
0 1 1 2
, 0, ,
2 1 1 4 1
Bhm C hm B h m
a a a v
m m m
     
  
(39)
Assuming,
1
2
m
h
m
 
  
 
in eq.(39), we get,
2
0 1 1, 0, 2 ,a B a a C v B      (40)
Case 2: 0B  , we have
 
2 2
0 1 1 2
0, 0, ,
1 1
C hm AC h m
a a a v
m m
     
 
(41)
Assuming, (1)
1
2
m
h
m
 
  
 
(2)
1m
h
m

 and (3)
1m
h
m

  respectively in eq.(41), we get,
(1) 0 1 10, 0, 2 , 4a a a C v AC      (42)
(2) 0 1 10, 0, ,a a a C v AC      (43)
(3) 0 1 10, 0, ,a a a C v AC     (44)
Case 3: 0A B  , we have
0 1 10, 0, , 0
1
C hm
a a a v
m
    

(45)
Using cases 1 to 3 and appendix, we obtained the following exact generalized travelling wave solutions of
eq.(32).
Soliton-like solutions:
(1) 0, 1, 1A B C    , from eq.(40) and appendix, we have
   
1
1
1
1
, tanh
m
m
u x t x t
m

   
     
(46)
(2) 0, 1, 1A B C    , from eq.(40) and appendix, we have
   
1
1
2
1
, coth
m
m
u x t x t
m

   
     
(47)
(3)
1 1
, 0,
2 2
A B C    , from eq.(42) and appendix, we have
 
 
 
 
 
1
1
3
2 1 2 1
, coth csc
m
m m
u x t x t h x t
m m

      
       
     
(48)
 
 
 
 
 
1
1
4
2 1 2 1
, tanh sec
m
m m
u x t x t i h x t
m m

      
       
     
(49)
(4) 1, 0, 1A B C    , from eq.(43) and appendix, we have same solutions given by eq.(46) and eq.(47).
Trigonometric function solutions :
(5)
1 1
, 0,
2 2
A B C   , from eq.(44) and appendix, we have
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 57 |
 
1
1
5
1 1 1
, sec tan
2 4 4
m
m t m t
u x t x x
m m

           
            
         
(50)
 
1
1
6
1 1 1
, csc cot
2 4 4
m
m t m t
u x t x x
m m

           
            
         
(51)
(6)
1 1
, 0,
2 2
A B C     , from eq.(44) and appendix, we have
 
1
1
7
1 1 1
, sec tan
2 4 4
m
m t m t
u x t x x
m m

           
           
         
(52)
 
1
1
8
1 1 1
, csc cot
2 4 4
m
m t m t
u x t x x
m m

           
           
         
(53)
(7) 1, 0, 1A B C   , from eq.(44) and appendix, we have
   
1
1
9
1
, tan
m
m
u x t x t
m

   
      
(54)
(8) 1, 0, 1A B C     , from eq.(44) and appendix, we have
   
1
1
10
1
, cot
m
m
u x t x t
m

   
     
(55)
Rational solution :
(9) 0, 0, 0A B C   , from eq.(45) and appendix, we have
 
1
1
11
1
,
1
m
C hm
u x t
m C h x b

   
   
    
(56)
where b is an arbitrary constant.
The solutions given by eq.(46), eq.(47), eq.(54) and eq.(55) obtained by modified F-expansion method and those
obtained in [12,15], shows good agreement.
IV. Conclusion
In this paper, the modified F-expansion method is implemented to produce new exact travelling wave
solutions of the convection diffusion equation. The used method is straightforward and concise. Moreover, the
obtained solutions satisfy given convection diffusion equation and reveal that this method is promising
mathematical tool because it can provide a different class of new travelling wave solutions which may be of
important significance for the explanation of some relevant physical problems in mathematical physics and
engineering.
Appendix: Relations between values of ( , ,A B C ) and corresponding  F  in Riccati equation
     ' 2
F A B F C F    
A B C  F 
0 1 1
1 1
tanh
2 2 2
 
  
 
0 1 1
1 1
coth
2 2 2
 
  
 
Exact solutions of convection diffusion equation by modified F-expansion method
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 58 |
1
2
0
1
2
    coth csch  ,    tanh seci h 
1 0 1  tanh  ,  coth 
1
2
0
1
2
   sec tan  ,    csc cot 
1
2
 0
1
2
    sec tan  ,    csc cot 
 1 1 0  1 1  tan  ,  cot 
0 0 0
1
C b


(b is an arbitrary constant)
REFERENCES
[1]. Abassy T. A. et al. (2007). The solution of Burgers and good Boussinesq equations using adm-pade technique, Chaos,
Solitons and Fractals 32, 1008-1026.
[2]. Asgari A. et al. (2011). A generalized analytical solution for a nonlinear infiltration equation using the exp-function
method, Sci. Irani. A 18, 28-35.
[3]. Aslanov A. (2011). Homotopy perturbation method for solving wave-like nonlinear equations with initial-boundary
conditions, Discrete Dyn. in Nature and Soci. 2011, 1-10.
[4]. Bear J. (1972). Dynamics of fluids in porous media, Elsevier, New York.
[5]. Buckmaster J. (1977). Viscous sheets advancing over dry beds, J. Fluid Mech. 81, 735-756.
[6]. Cai G. et al. (2006). A modified F-expansion method for solving braking soliton equation”, Int. J. nonlinear Sci. 2,
122-128.
[7]. Cai G., Wang Q. (2007). A modified F-expansion method for solving nonlinear PDEs, J. of Inform. and Comput. Sci.
2, 03-16.
[8]. Darvishi M. T. et al. (2012), Traveling wave solutions for foam drainage equation by modified F-expansion method,
Food and Public Health 2, 06-10.
[9]. Ghotbi A. R. et al. (2011). Infiltration in unsaturated soils an analytical approach, Comput. and Geotech. 38, 777-782.
[10]. Grundy R. E. (1983). Asymptotic solution of a model nonlinear convective-diffusion equation, IMA J. Appl. Math. 31,
121-137.
[11]. He J-H. (1999). Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. of Non.
Mech. 34, 699-708.
[12]. Hearns J. and Van Gorder R. A. (2012). Classical implicit travelling wave solutions for a quasilinear convection-
diffusion equation, New Astro. 17, 705-710.
[13]. Kutluay S. et al. (1999). Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite
difference methods, J. of Comput. and App. Maths. 103, 251-261.
[14]. Rashidi M. M. et al. (2009). Approximate solutions for the Burger and regularized long wave equations by means of
the homotopy analysis method, Non. Sci. and Num. Simul. 14, 708-717.
[15]. Vanaja V. (2009). Exact solutions of a nonlinear diffusion-convection equation, Phy. Scrip. 80,01-07.
[16]. Wazwaz A. M. (2009), Partial differential equations and solitary waves theory, Springer
[17]. Wazwaz A. M. (2005). Travelling wave solutions for generalized forms of Burgers, Burgers-Kdv and Burgers-Huxley
equations, App. Math. and Comput. 169,639-656.
[18]. Zhang J L. et al. (2006). The improved F-expansion method and its applications, Phys. Lett. A 350,103-109.
[19]. Zhang J-F. et al. (2005). Variable-coefficient F-expansion method and its application to nonlinear Schrodinger
equation, Opt. Commun. 252, 408-421.
[20]. Zhang S. and Xia T. (2006). A generalized F-expansion method and new exact solutions of Konopelchenko-
Dubrovsky equations, Appl. Math. Comput. 183,1190-1200.
[21]. Zhao Y-M. (2013). F-expansion method and its application for finding new exact solutions to the Kudryashov-
Sinelshchikov equation J. of Appl. Math. 2013,01-07.

Weitere ähnliche Inhalte

Was ist angesagt?

Serie de fourier
Serie de fourierSerie de fourier
Serie de fourierJenny D.
 
Rvw Decimals And Equations Jeopardy Review
Rvw   Decimals And Equations Jeopardy ReviewRvw   Decimals And Equations Jeopardy Review
Rvw Decimals And Equations Jeopardy Reviewnickromero76
 
Ecuacion diferencial de la forma u=ax+bx+c
Ecuacion diferencial de la forma u=ax+bx+cEcuacion diferencial de la forma u=ax+bx+c
Ecuacion diferencial de la forma u=ax+bx+cEduardo Pila
 
ANALISIS RIIL 1 2.1 ROBERT G BARTLE
ANALISIS RIIL 1 2.1 ROBERT G BARTLEANALISIS RIIL 1 2.1 ROBERT G BARTLE
ANALISIS RIIL 1 2.1 ROBERT G BARTLEMuhammad Nur Chalim
 
Formulas Integrales
Formulas IntegralesFormulas Integrales
Formulas IntegralesEduardo Pila
 
Geometry Section 4-4 1112
Geometry Section 4-4 1112Geometry Section 4-4 1112
Geometry Section 4-4 1112Jimbo Lamb
 
New Two-Step Method with Fifth-Order Convergence for Solving Nonlinear Equations
New Two-Step Method with Fifth-Order Convergence for Solving Nonlinear EquationsNew Two-Step Method with Fifth-Order Convergence for Solving Nonlinear Equations
New Two-Step Method with Fifth-Order Convergence for Solving Nonlinear Equationsinventionjournals
 
Venn diagrams 2&3 circles with sets
Venn diagrams 2&3 circles with setsVenn diagrams 2&3 circles with sets
Venn diagrams 2&3 circles with setsAyaan Alam
 
Siddhesh karekar roll no. 02
Siddhesh karekar roll no. 02Siddhesh karekar roll no. 02
Siddhesh karekar roll no. 02prasad karekar
 
Geometry Section 4-2
Geometry Section 4-2Geometry Section 4-2
Geometry Section 4-2Jimbo Lamb
 
October 28, 2013
October 28, 2013October 28, 2013
October 28, 2013khyps13
 
5.4 use medians and altitudes
5.4 use medians and altitudes5.4 use medians and altitudes
5.4 use medians and altitudesdetwilerr
 
Geometry Section 6-2 1112
Geometry Section 6-2 1112Geometry Section 6-2 1112
Geometry Section 6-2 1112Jimbo Lamb
 
Geometry Section 6-4 1112
Geometry Section 6-4 1112Geometry Section 6-4 1112
Geometry Section 6-4 1112Jimbo Lamb
 
TOC 8 | Derivation, Parse Tree & Ambiguity Check
TOC 8 | Derivation, Parse Tree & Ambiguity CheckTOC 8 | Derivation, Parse Tree & Ambiguity Check
TOC 8 | Derivation, Parse Tree & Ambiguity CheckMohammad Imam Hossain
 
RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...
RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...
RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...YogeshIJTSRD
 
Lesson 14: Equation of a Circle
Lesson 14: Equation of a CircleLesson 14: Equation of a Circle
Lesson 14: Equation of a CircleKevin Johnson
 

Was ist angesagt? (20)

Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
 
Logo paper
Logo paperLogo paper
Logo paper
 
Rvw Decimals And Equations Jeopardy Review
Rvw   Decimals And Equations Jeopardy ReviewRvw   Decimals And Equations Jeopardy Review
Rvw Decimals And Equations Jeopardy Review
 
Ecuacion diferencial de la forma u=ax+bx+c
Ecuacion diferencial de la forma u=ax+bx+cEcuacion diferencial de la forma u=ax+bx+c
Ecuacion diferencial de la forma u=ax+bx+c
 
ANALISIS RIIL 1 2.1 ROBERT G BARTLE
ANALISIS RIIL 1 2.1 ROBERT G BARTLEANALISIS RIIL 1 2.1 ROBERT G BARTLE
ANALISIS RIIL 1 2.1 ROBERT G BARTLE
 
Formulas Integrales
Formulas IntegralesFormulas Integrales
Formulas Integrales
 
Geometry Section 4-4 1112
Geometry Section 4-4 1112Geometry Section 4-4 1112
Geometry Section 4-4 1112
 
New Two-Step Method with Fifth-Order Convergence for Solving Nonlinear Equations
New Two-Step Method with Fifth-Order Convergence for Solving Nonlinear EquationsNew Two-Step Method with Fifth-Order Convergence for Solving Nonlinear Equations
New Two-Step Method with Fifth-Order Convergence for Solving Nonlinear Equations
 
Coding
CodingCoding
Coding
 
Venn diagrams 2&3 circles with sets
Venn diagrams 2&3 circles with setsVenn diagrams 2&3 circles with sets
Venn diagrams 2&3 circles with sets
 
Siddhesh karekar roll no. 02
Siddhesh karekar roll no. 02Siddhesh karekar roll no. 02
Siddhesh karekar roll no. 02
 
Geometry Section 4-2
Geometry Section 4-2Geometry Section 4-2
Geometry Section 4-2
 
October 28, 2013
October 28, 2013October 28, 2013
October 28, 2013
 
5.4 use medians and altitudes
5.4 use medians and altitudes5.4 use medians and altitudes
5.4 use medians and altitudes
 
Geometry Section 6-2 1112
Geometry Section 6-2 1112Geometry Section 6-2 1112
Geometry Section 6-2 1112
 
TOC 6 | CFG Design
TOC 6 | CFG DesignTOC 6 | CFG Design
TOC 6 | CFG Design
 
Geometry Section 6-4 1112
Geometry Section 6-4 1112Geometry Section 6-4 1112
Geometry Section 6-4 1112
 
TOC 8 | Derivation, Parse Tree & Ambiguity Check
TOC 8 | Derivation, Parse Tree & Ambiguity CheckTOC 8 | Derivation, Parse Tree & Ambiguity Check
TOC 8 | Derivation, Parse Tree & Ambiguity Check
 
RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...
RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...
RP 165 Solving Some Special Classes of Standard Cubic Congruence of Composite...
 
Lesson 14: Equation of a Circle
Lesson 14: Equation of a CircleLesson 14: Equation of a Circle
Lesson 14: Equation of a Circle
 

Andere mochten auch

Seperation technique
Seperation techniqueSeperation technique
Seperation techniqueSanchit Kumar
 
02 first order differential equations
02 first order differential equations02 first order differential equations
02 first order differential equationsvansi007
 
Education set for collecting and visualizing data using sensor system based ...
Education set for collecting and visualizing data using sensor  system based ...Education set for collecting and visualizing data using sensor  system based ...
Education set for collecting and visualizing data using sensor system based ...IJMER
 
Zigbee Based Wireless Sensor Networks for Smart Campus
Zigbee Based Wireless Sensor Networks for Smart CampusZigbee Based Wireless Sensor Networks for Smart Campus
Zigbee Based Wireless Sensor Networks for Smart CampusIJMER
 
High End Solution for Advanced Civil Engineering Projects
High End Solution for Advanced Civil Engineering ProjectsHigh End Solution for Advanced Civil Engineering Projects
High End Solution for Advanced Civil Engineering ProjectsIJMER
 
обдарована дитина
обдарована дитинаобдарована дитина
обдарована дитинаbograch
 
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )Popi Kaza
 
On Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesOn Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesIJMER
 
Www youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfeWww youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfeRancyna James
 
Ijmer 46060714
Ijmer 46060714Ijmer 46060714
Ijmer 46060714IJMER
 
ingeniería de arquitectura de facebook andrea serna estic 56
ingeniería de arquitectura de facebook andrea serna estic 56ingeniería de arquitectura de facebook andrea serna estic 56
ingeniería de arquitectura de facebook andrea serna estic 56andrea_matinfo56ETM
 
Av2641024104
Av2641024104Av2641024104
Av2641024104IJMER
 
Dq2644974501
Dq2644974501Dq2644974501
Dq2644974501IJMER
 
презентация август 2012
презентация август 2012презентация август 2012
презентация август 2012afedorchuk
 
презентация август 2012
презентация август 2012презентация август 2012
презентация август 2012afedorchuk
 
Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...
Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...
Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...IJMER
 
Bit Error Rate Analysis in WiMAX Communication at Vehicular Speeds using mod...
Bit Error Rate Analysis in WiMAX Communication at Vehicular  Speeds using mod...Bit Error Rate Analysis in WiMAX Communication at Vehicular  Speeds using mod...
Bit Error Rate Analysis in WiMAX Communication at Vehicular Speeds using mod...IJMER
 
Ec3212561262
Ec3212561262Ec3212561262
Ec3212561262IJMER
 

Andere mochten auch (20)

Seperation technique
Seperation techniqueSeperation technique
Seperation technique
 
02 first order differential equations
02 first order differential equations02 first order differential equations
02 first order differential equations
 
Education set for collecting and visualizing data using sensor system based ...
Education set for collecting and visualizing data using sensor  system based ...Education set for collecting and visualizing data using sensor  system based ...
Education set for collecting and visualizing data using sensor system based ...
 
Zigbee Based Wireless Sensor Networks for Smart Campus
Zigbee Based Wireless Sensor Networks for Smart CampusZigbee Based Wireless Sensor Networks for Smart Campus
Zigbee Based Wireless Sensor Networks for Smart Campus
 
High End Solution for Advanced Civil Engineering Projects
High End Solution for Advanced Civil Engineering ProjectsHigh End Solution for Advanced Civil Engineering Projects
High End Solution for Advanced Civil Engineering Projects
 
обдарована дитина
обдарована дитинаобдарована дитина
обдарована дитина
 
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ (ΕΙΣΑΓΩΓΗ ΞΕΝΟΦΩΝΤΑ )
 
On Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesOn Some Partial Orderings for Bimatrices
On Some Partial Orderings for Bimatrices
 
Www youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfeWww youtube com_watch_v_p_n_huv50kbfe
Www youtube com_watch_v_p_n_huv50kbfe
 
Ijmer 46060714
Ijmer 46060714Ijmer 46060714
Ijmer 46060714
 
ingeniería de arquitectura de facebook andrea serna estic 56
ingeniería de arquitectura de facebook andrea serna estic 56ingeniería de arquitectura de facebook andrea serna estic 56
ingeniería de arquitectura de facebook andrea serna estic 56
 
Av2641024104
Av2641024104Av2641024104
Av2641024104
 
Dq2644974501
Dq2644974501Dq2644974501
Dq2644974501
 
презентация август 2012
презентация август 2012презентация август 2012
презентация август 2012
 
презентация август 2012
презентация август 2012презентация август 2012
презентация август 2012
 
Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...
Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...
Comparison of Spatial Interpolation Techniques - A Case Study of Anantnag Dis...
 
Bit Error Rate Analysis in WiMAX Communication at Vehicular Speeds using mod...
Bit Error Rate Analysis in WiMAX Communication at Vehicular  Speeds using mod...Bit Error Rate Analysis in WiMAX Communication at Vehicular  Speeds using mod...
Bit Error Rate Analysis in WiMAX Communication at Vehicular Speeds using mod...
 
móbils amb internet
móbils amb internetmóbils amb internet
móbils amb internet
 
Ec3212561262
Ec3212561262Ec3212561262
Ec3212561262
 
Coca cola
Coca colaCoca cola
Coca cola
 

Ähnlich wie Exact Solutions of Convection Diffusion Equation by Modified F-Expansion Method

A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...inventy
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationinventy
 
Solution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linearSolution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linearAlexander Decker
 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...IJERA Editor
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdfaciijournal
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problemsaciijournal
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSaciijournal
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSaciijournal
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problemsaciijournal
 
Solitons Solutions to Some Evolution Equations by ExtendedTan-Cot Method
Solitons Solutions to Some Evolution Equations by ExtendedTan-Cot MethodSolitons Solutions to Some Evolution Equations by ExtendedTan-Cot Method
Solitons Solutions to Some Evolution Equations by ExtendedTan-Cot Methodijceronline
 
A0440109
A0440109A0440109
A0440109inventy
 
Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...
Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...
Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...Angie Miller
 
Exact solutions for weakly singular Volterra integral equations by using an e...
Exact solutions for weakly singular Volterra integral equations by using an e...Exact solutions for weakly singular Volterra integral equations by using an e...
Exact solutions for weakly singular Volterra integral equations by using an e...iosrjce
 
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...IJRES Journal
 
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...inventy
 

Ähnlich wie Exact Solutions of Convection Diffusion Equation by Modified F-Expansion Method (20)

ProjectAndersSchreiber
ProjectAndersSchreiberProjectAndersSchreiber
ProjectAndersSchreiber
 
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
A generalized bernoulli sub-ODE Method and Its applications for nonlinear evo...
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equation
 
Solution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linearSolution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linear
 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
 
1400 1411
1400 14111400 1411
1400 1411
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdf
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
Solitons Solutions to Some Evolution Equations by ExtendedTan-Cot Method
Solitons Solutions to Some Evolution Equations by ExtendedTan-Cot MethodSolitons Solutions to Some Evolution Equations by ExtendedTan-Cot Method
Solitons Solutions to Some Evolution Equations by ExtendedTan-Cot Method
 
A0440109
A0440109A0440109
A0440109
 
Dw34752755
Dw34752755Dw34752755
Dw34752755
 
H023078082
H023078082H023078082
H023078082
 
H023078082
H023078082H023078082
H023078082
 
Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...
Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...
Approximate Analytical Solutions Of Two Dimensional Transient Heat Conduction...
 
Exact solutions for weakly singular Volterra integral equations by using an e...
Exact solutions for weakly singular Volterra integral equations by using an e...Exact solutions for weakly singular Volterra integral equations by using an e...
Exact solutions for weakly singular Volterra integral equations by using an e...
 
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
 
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
 

Mehr von IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...IJMER
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingIJMER
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreIJMER
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...IJMER
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...IJMER
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...IJMER
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...IJMER
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationIJMER
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless BicycleIJMER
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIJMER
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemIJMER
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesIJMER
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...IJMER
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningIJMER
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessIJMER
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersIJMER
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And AuditIJMER
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLIJMER
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyIJMER
 

Mehr von IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
 

Kürzlich hochgeladen

Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Sean Meyn
 
The relationship between iot and communication technology
The relationship between iot and communication technologyThe relationship between iot and communication technology
The relationship between iot and communication technologyabdulkadirmukarram03
 
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docxSUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docxNaveenVerma126
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid BodyAhmadHajasad2
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderjuancarlos286641
 
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecGuardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecTrupti Shiralkar, CISSP
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxLMW Machine Tool Division
 
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...soginsider
 
Design of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxDesign of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxYogeshKumarKJMIT
 
Gender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 ProjectGender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 Projectreemakb03
 
Mohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxMohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxKISHAN KUMAR
 
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfJulia Kaye
 
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....santhyamuthu1
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Bahzad5
 
ChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai searchChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai searchrohitcse52
 
How to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfHow to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfRedhwan Qasem Shaddad
 
Power System electrical and electronics .pptx
Power System electrical and electronics .pptxPower System electrical and electronics .pptx
Power System electrical and electronics .pptxMUKULKUMAR210
 

Kürzlich hochgeladen (20)

Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
 
The relationship between iot and communication technology
The relationship between iot and communication technologyThe relationship between iot and communication technology
The relationship between iot and communication technology
 
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docxSUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entender
 
Lecture 2 .pdf
Lecture 2                           .pdfLecture 2                           .pdf
Lecture 2 .pdf
 
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecGuardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
 
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
 
Lecture 2 .pptx
Lecture 2                            .pptxLecture 2                            .pptx
Lecture 2 .pptx
 
Présentation IIRB 2024 Marine Cordonnier.pdf
Présentation IIRB 2024 Marine Cordonnier.pdfPrésentation IIRB 2024 Marine Cordonnier.pdf
Présentation IIRB 2024 Marine Cordonnier.pdf
 
Design of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxDesign of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptx
 
Gender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 ProjectGender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 Project
 
Mohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxMohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptx
 
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
 
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)
 
ChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai searchChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai search
 
How to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfHow to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdf
 
Power System electrical and electronics .pptx
Power System electrical and electronics .pptxPower System electrical and electronics .pptx
Power System electrical and electronics .pptx
 

Exact Solutions of Convection Diffusion Equation by Modified F-Expansion Method

  • 1. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 50 | Exact Solutions of Convection Diffusion Equation by Modified F-Expansion Method Priyanka M. Patel1 , Vikas H. Pradhan2 1, 2 (S.V. National Institute of Technology, Surat-395007, India) I. Introduction It is well known that nonlinear partial differential equations (NLPDEs) play a major role in describing many phenomena arising in many fields of sciences and engineering. The investigation of exact solutions of NLPDEs plays an important role in the study of nonlinear physical phenomena. In recent years, direct search for exact solutions to NLPDE has become more and more attractive partly due to availability of computer symbolic system like Mathematica or Maple which allows us to perform some complicated and tedious algebraic calculation on computer. Different methods have been invented to obtain exact solutions of NLPDEs, such as homotopy perturbation method [3], homotopy analysis method [9,14], variational iteration method [11], tanh method [17] and so on. In the recent past F- expansion method [19,21] was proposed to construct exact solutions of NLPDEs. This method was later further extended in different manners, like the generalized F-expansion method [20], modified F-expansion method [6,7,8], improve F-expansion method [18], etc. in this study, the modified F-expansion method is used. The objective of this paper is to apply modified F-expansion method to construct the exact travelling wave solutions of the following nonlinear convection-diffusion equation [10,12,15] for two cases.    m n t xx x u u u  (1) This equation arises in many physical phenomena for different values of m and n . For example,    , 1,2m n  eq.(1) converted into classic Burgers’ equation [1,13,14,16] which has many application in gas dynamics, traffic flow, shock wave phenomena etc. Eq.(1) also arises in theory of infiltration of water under gravity through a homogeneous and isotropic porous medium for 1n m  [4]. In the case of    , 4,3m n  , eq.(1) models the flow of a thin viscous sheet on an inclined bed [5]. Act as a foam drainage equation for    , 3 2,2m n  [8]. II. Outline Of The Modified F-Expansion Method In this section, the description of the method is given. Consider a given nonlinear partial differential equation with independent variables ,x t and dependent variable u ,  , , , , ,.... 0t xx xt ttP u u u u u  (2) Generally speaking, the left-hand side of eq.(2) is a polynomial in u and its various partial derivatives. The main points of the modified F-expansion method for solving eq.(2) are as follows: [1]. Seek travelling wave solutions to eq.(2) by taking    ,u x t u  where  h x vt   (3) Abstract: In this paper, the modified F-expansion method is proposed for constructing more than one exact solutions of nonlinear convection diffusion equation with the aid of symbolic computation Mathematica. By using this method, some new exact travelling wave solutions of the convection diffusion equation are successfully obtained. These exact solutions include the soliton-like solutions, trigonometric function solutions and rational solutions. Also, it is shown that the proposed method is efficient for solving nonlinear partial differential equations arising in mathematical physics. Keywords: convection diffusion equation, modified F-expansion method, travelling wave solutions
  • 2. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 51 | where 0h  and v are constants to be determined, inserting eq.(3) into eq.(2) yields an ordinary differential equation (ODE) for  u   ' '' , , ,... 0P u u u  (4) where prime denotes the derivative with respect to  . [2]. Suppose that  u  can be expressed as     N i i i N u a F     where 0Na  (5) where  ,..., 1,0,1,....ia i N N   are all constants to be determined and  F  satisfies following Riccati equation      ' 2 F A BF CF     (6) where , ,A B C are constants and N is a integer which can be determined by considering the homogeneous balance between the governing nonlinear term(s) and highest order derivative of  u  in eq.(4) and (i) when  pN q  is fraction, let    p q u w  (ii) when N is negative integer, let    N u w  By using (i) and (ii), we change eq.(4) into another ODE for  w  whose balancing number will be a positive integer. [3]. Substitute eq.(5) into eq.(4) and using eq.(6) then left-hand side of eq.(4) can be converted into a finite series in  p F  ,  ,...., 1,0,1,...,p N N   . Equating each coefficient of  p F  to zero yields a system of algebraic equations. [4]. Solve the system of algebraic equations probably with the aid of Mathematica, , ,ia h v can be expressed by , ,A B C . Substituting these results into eq.(5), we can obtain the general form of travelling wave solutions to eq.(4). [5]. From the general form of travelling wave solutions listed in appendix, we can give a series of soliton-like solutions, trigonometric function solutions and rational solutions of eq.(2). III. Implementation Of The Method To solve eq.(1), following two cases are considered: Case [I]: 1n m  Case [II]: 2 1, 1n m m   Case [I]: 1n m  Considering n m in eq.(1), we get    m m t xx x u u u  (7) Let us start our analysis by using the transformation,    ,u x t u  where  h x vt   (8) where 0h  and v are constants to be determined later. Substituting eq.(8) into eq.(7), we get ODE     2' 2 2 ' 2 1 '' 1 ' 1 0m m m hvu h m m u u h mu u hmu u        (9) where prime denotes differentiation with respect to  . Balancing the orders of ' u and 1 ''m u u in eq.(9), we have 1 1 N m    . Now, we use     1 1m u w     in eq.(9), we get ODE in the following form,
  • 3. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 52 |     2' 1 ' '' '2 1 0 1 m m vww hw w mhw mw m       (10) Balancing the orders of ' ww and '' w in eq.(10), we get 1N  . So we can write solution of eq.(7) in the form,     1 1 , m u x t w     where      1 0 1 1w a a F a F      (11) Substituting eq.(11) into eq.(10) and using eq.(6), the left-hand side of eq.(10) can be converted into a finite series in  p F  ,  4, 3, 2, 1,0,1,2,3,4p      . Equating each coefficient of  p F  to zero, we obtained the following set of algebraic equations with the aid of Mathematica:       2 2 2 2 2 4 2 2 31 1 1 1 2 2 2 3 2 2 2 1 1 0 1 1 1 2 3 0 1 1 2 2 2 2 2 2 2 1 0 1 0 1 1 1 1 2 1 2 : 2 0 1 1 2 4 : 2 3 1 1 2 0 : 3 2 1 2 A hma A hm a F A hma Aa v m m ABhma ABhm a F A hma a Ama ABhma m m Aa a v Ba v B hma F Ama a ABhma a Bma B hma AChma m AChma                                                   2 2 2 2 2 2 21 1 1 1 1 1 2 2 2 2 3 21 1 0 1 0 1 1 1 1 2 1 2 2 2 1 0 1 0 1 0 1 1 1 2 2 1 1 1 2 4 2 2 1 1 1 1 4 2 0 1 2 : 2 1 4 4 4 1 B hm a AChm a A hma a A hma a m m m m A hm a a Aa a v Ba a v Ca v Aa a v m BChma F Bma a B hma a AChma a Cma BChma m BChm a ABh ABhma a m                                               2 21 1 1 1 0 1 2 2 0 1 1 1 2 2 2 2 2 0 1 1 0 1 0 1 0 1 0 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 8 1 1 2 0 2 : 1 1 2 4 4 2 4 1 1 1 8 1 ma a ABhm a a Ba a v m m Ca a v Ba a v C hma C hm a F Cma a BChma a Am a a ABhma a m m B hma a AChma a B hm a a B hma a AChma a m m m AChm a a A m                                              2 2 2 2 2 2 21 1 0 1 0 1 1 1 2 1 1 1 2 1 1 0 1 0 1 0 1 1 1 2 2 2 2 2 2 21 1 1 1 1 1 0 1 2 2 0 1 1 1 2 2 1 1 0 4 : 2 4 1 8 2 4 1 1 1 2 0 : hma A hm a Ca a v Aa a v Ca a v m m Aa a v BChma a F Bma a B hma a AChma a BChma a m BChm a a ABhma ABhm a Ama ABhma Ba a v m m m Aa a v Ba a v F                                       2 2 2 2 1 1 1 1 0 1 0 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 31 0 1 0 1 1 1 1 3 2 2 2 1 0 1 1 1 2 4 3 2 1 1 2 2 2 1 1 1 4 2 0 1 2 : 2 3 C hma a C hm a a Cma a BChma a C hma a m m B hma AChma B hm a Bma B hma AChma m m m AChm a Ca a v Ba a v Ca a v Aa v m BChma F C hma a Cma BChma                                  2 2 2 1 2 3 0 1 1 2 2 2 2 2 4 2 2 31 1 1 1 4 1 1 2 0 2 : 2 0 1 1 BChm a m m Ca a v Ba v C hma C hm a F C hma Ca v m m                                                                       (12) Solving the above algebraic equations by Mathematica, we considered different cases as follows: Case 1: 0A  , we have
  • 4. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 53 |  0 1 1 1 1 0, 0, , 1 Chm a a a a v a m       (13) Case 2: 0B  , we have 0 1 0 0 1 1 1 0 1 2 , 0, , 2 Chma ma a a a a a v a a       (14) Using cases 1,2 and appendix, we obtained the following exact generalized solutions of eq.(7) Soliton-like solutions: (1) 0, 1, 1A B C    Assuming, 1m h m   in eq.(13), we get 0 1 1 1 1 1 0, 0, ,a a a a v a     (15) From appendix and eq.(15), we have   1 1 1 1 1 1 1 1 1 , tanh 2 2 2 m m u x t a x t m a                      (16) (2) 0, 1, 1A B C    Assuming, 1m h m    in eq.(13), we get 0 1 1 1 1 1 0, 0, ,a a a a v a     (17) From appendix and eq.(17), we have   1 1 2 1 1 1 1 1 1 , coth 2 2 2 m m u x t a x t m a                      (18) The solution given by eq.(18) and that obtained in [2], shows good agreement. (3) 1, 0, 1A B C    Assuming, 0 1a a and 1 2 m h m   in eq.(14), we get 0 1 1 1 1 1 1 , 0, , 2 a a a a a v a     (19) From appendix and eq.(19), we have   1 1 3 1 1 1 1 1 , tanh 2 2 m m u x t a a x t m a                   (20) Again assuming 0 1a a  and 1 2 m h m    in eq.(14), we get 0 1 1 1 1 1 1 , 0, , 2 a a a a a v a       (21) From appendix and eq.(21), we have   1 1 4 1 1 1 1 1 , coth 2 2 m m u x t a a x t m a                    (22) (4) 1 1 , 0, 2 2 A B C    Assuming, 0 1a a and 1m h m   in eq.(14), we get
  • 5. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 54 | 0 1 1 1 1 1 1 , 0, , 2 a a a a a v a     (23) From appendix and eq.(23), we have   1 1 5 1 1 1 1 1 1 1 1 , coth csc 2 2 m m m u x t a a x t h x t m a m a                                     (24)   1 1 6 1 1 1 1 1 1 1 1 , tanh sec 2 2 m m m u x t a a x t i h x t m a m a                                     (25) Trigonometric function solutions: (5) 1 1 , 0, 2 2 A B C   Assuming, 0 1a ia  and 1m h im   in eq.(14), we get 0 1 1 1 1 1 , 0, , 2 i a ia a a a v a      (26) From appendix and eq.(26), we have   1 1 7 1 1 1 1 1 1 , sec tan 2 2 m m i m i u x t ia a x t x t i m a i m a                                      (27)   1 1 8 1 1 1 1 1 1 , csc cot 2 2 m m i m i u x t ia a x t x t i m a i m a                                      (28) (6) 1 1 , 0, 2 2 A B C     Assuming, 0 1a ia  and 1m h im    in eq.(14), we get 0 1 1 1 1 1 , 0, , 2 i a ia a a a v a      (29) From appendix and eq.(29), we have   1 1 9 1 1 1 1 1 1 , sec tan 2 2 m m i m i u x t ia a x t x t i m a i m a                                      (30)   1 1 10 1 1 1 1 1 1 , csc cot 2 2 m m i m i u x t ia a x t x t i m a i m a                                      (31) Case [II]: 2 1, 1n m m   We consider 2 1n m  in eq.(1), we get,    2 1m m t xx x u u u    , 1m  . (32) Differentiating eq.(32) with respect to x we have following partial differential equation,       22 1 2 2 1 2 1 0m m m t x x x xu m m u u mu u m u u         (33) Suppose the solution of eq.(33) is of the form    ,u x t u  where  h x vt   (34) where 0h  and v are constants to be determined. Substituting eq.(34) into eq.(33), we get ODE,       2( 1) ' 1 ' '' 1 ' 1 2 1 0m m vu u m m hu u mhu m u u          (35)
  • 6. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 55 | where prime denotes differentiation with respect to  . Now, balancing the order of 1 'm u u with '' u in eq.(35), we obtained integer 1 1 N m   . Again we use the transformation     1 1m u w   into the eq.(35), we get following ODE     21 ' 1 ' '' '1 2 1 0 1 v w w m hw w mhw m ww m            (36) According to homogeneous balance between ' ww and '' w , we have 1N  . So we can write solution of eq.(32) in the following form,     1 1m u w   where      1 0 1 1w a a F a F      (37) Substituting eq.(37) into eq.(36) and using eq.(6), the left-hand side of eq.(36) can be converted into a finite series in  p F  , ( 4, 3, 2, 1,0,1,2,3,4p      ). Equating each coefficient of  p F  to zero yields the following set of algebraic equations:       2 2 4 2 2 3 31 1 1 1 2 3 2 2 21 0 1 1 0 1 2 3 3 0 1 1 1 2 2 2 2 2 2 0 1 0 1 0 1 1 1 2 2 2 1 1 0 : 2 2 0 1 2 : 2 3 2 1 4 2 0 : 3 2 2 2 2 1 1 A hma F A hma Aa Ama m ABhma F A hma a ABhma Aa a m Ama a Ba Bma F ABhma a Aa a Ama a B hma AChma B hma AChma Ba m m                                                    2 2 3 3 1 0 1 1 1 2 2 2 21 1 1 1 1 1 1 1 1 1 2 2 2 2 0 1 0 1 0 1 0 1 1 2 2 21 1 1 0 1 0 1 1 1 2 1 1 4 2 2 2 2 0 1 : 2 2 2 4 2 4 4 1 1 2 a Bma a Ca Cma A hma a A hma a Aa a Ama a Aa v m F B hma a AChma a Ba a Bma a BChma BChma ABhma a Ca a Cma a ABhma a m m Ba a B                                                   2 1 1 1 2 2 0 2 2 21 0 1 0 1 0 1 0 1 0 1 2 2 2 1 1 1 1 0 1 1 1 1 1 2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1 0 : 2 1 2 4 2 2 4 1 1 2 2 0 1 : ma a Ba v C hma F BChma a Ca a Cma a ABhma a Aa a m B hma a AChma a Ama a B hma a AChma a m m A hma Ca a Cma a Aa a Ama a Ca v Aa v m F B                                              2 2 2 0 1 0 1 0 1 0 1 1 1 2 2 2 2 21 1 1 1 0 1 0 1 1 1 2 1 1 1 2 2 2 2 2 2 21 1 0 1 0 1 0 1 1 1 1 2 2 2 1 1 2 2 4 4 2 2 4 1 1 2 0 2 : 3 2 2 1 2 hma a AChma a Ba a Bma a BChma a BChma a ABhma ABhma Aa a Ama a Ba a m m Bma a Ba v C hma a F BChma a Ca a Cma a C hma a B hma m B hma AChma                                    2 2 2 21 0 1 0 1 1 1 2 3 3 1 1 1 1 1 2 3 2 2 2 2 31 0 1 1 0 1 0 1 1 3 1 2 2 4 2 2 3 31 1 1 1 2 2 4 1 1 2 2 0 2 : 2 3 2 4 1 2 0 : 2 2 0 1 AChma Ba a Bma a Ca a m m Cma a Aa Ama Ca v BChma F C hma a BChma Ca a Cma a Ba m Bma C hma F C hma Ca Cma m                                                                                    (38)
  • 7. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 56 | Solving the above algebraic equations by Mathematica, we considered different cases as follows: Case 1: 0A  , we have     2 2 2 0 1 1 2 , 0, , 2 1 1 4 1 Bhm C hm B h m a a a v m m m          (39) Assuming, 1 2 m h m        in eq.(39), we get, 2 0 1 1, 0, 2 ,a B a a C v B      (40) Case 2: 0B  , we have   2 2 0 1 1 2 0, 0, , 1 1 C hm AC h m a a a v m m         (41) Assuming, (1) 1 2 m h m        (2) 1m h m   and (3) 1m h m    respectively in eq.(41), we get, (1) 0 1 10, 0, 2 , 4a a a C v AC      (42) (2) 0 1 10, 0, ,a a a C v AC      (43) (3) 0 1 10, 0, ,a a a C v AC     (44) Case 3: 0A B  , we have 0 1 10, 0, , 0 1 C hm a a a v m       (45) Using cases 1 to 3 and appendix, we obtained the following exact generalized travelling wave solutions of eq.(32). Soliton-like solutions: (1) 0, 1, 1A B C    , from eq.(40) and appendix, we have     1 1 1 1 , tanh m m u x t x t m            (46) (2) 0, 1, 1A B C    , from eq.(40) and appendix, we have     1 1 2 1 , coth m m u x t x t m            (47) (3) 1 1 , 0, 2 2 A B C    , from eq.(42) and appendix, we have           1 1 3 2 1 2 1 , coth csc m m m u x t x t h x t m m                       (48)           1 1 4 2 1 2 1 , tanh sec m m m u x t x t i h x t m m                       (49) (4) 1, 0, 1A B C    , from eq.(43) and appendix, we have same solutions given by eq.(46) and eq.(47). Trigonometric function solutions : (5) 1 1 , 0, 2 2 A B C   , from eq.(44) and appendix, we have
  • 8. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 57 |   1 1 5 1 1 1 , sec tan 2 4 4 m m t m t u x t x x m m                                     (50)   1 1 6 1 1 1 , csc cot 2 4 4 m m t m t u x t x x m m                                     (51) (6) 1 1 , 0, 2 2 A B C     , from eq.(44) and appendix, we have   1 1 7 1 1 1 , sec tan 2 4 4 m m t m t u x t x x m m                                    (52)   1 1 8 1 1 1 , csc cot 2 4 4 m m t m t u x t x x m m                                    (53) (7) 1, 0, 1A B C   , from eq.(44) and appendix, we have     1 1 9 1 , tan m m u x t x t m             (54) (8) 1, 0, 1A B C     , from eq.(44) and appendix, we have     1 1 10 1 , cot m m u x t x t m            (55) Rational solution : (9) 0, 0, 0A B C   , from eq.(45) and appendix, we have   1 1 11 1 , 1 m C hm u x t m C h x b               (56) where b is an arbitrary constant. The solutions given by eq.(46), eq.(47), eq.(54) and eq.(55) obtained by modified F-expansion method and those obtained in [12,15], shows good agreement. IV. Conclusion In this paper, the modified F-expansion method is implemented to produce new exact travelling wave solutions of the convection diffusion equation. The used method is straightforward and concise. Moreover, the obtained solutions satisfy given convection diffusion equation and reveal that this method is promising mathematical tool because it can provide a different class of new travelling wave solutions which may be of important significance for the explanation of some relevant physical problems in mathematical physics and engineering. Appendix: Relations between values of ( , ,A B C ) and corresponding  F  in Riccati equation      ' 2 F A B F C F     A B C  F  0 1 1 1 1 tanh 2 2 2        0 1 1 1 1 coth 2 2 2       
  • 9. Exact solutions of convection diffusion equation by modified F-expansion method | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 5| May. 2014 | 58 | 1 2 0 1 2     coth csch  ,    tanh seci h  1 0 1  tanh  ,  coth  1 2 0 1 2    sec tan  ,    csc cot  1 2  0 1 2     sec tan  ,    csc cot   1 1 0  1 1  tan  ,  cot  0 0 0 1 C b   (b is an arbitrary constant) REFERENCES [1]. Abassy T. A. et al. (2007). The solution of Burgers and good Boussinesq equations using adm-pade technique, Chaos, Solitons and Fractals 32, 1008-1026. [2]. Asgari A. et al. (2011). A generalized analytical solution for a nonlinear infiltration equation using the exp-function method, Sci. Irani. A 18, 28-35. [3]. Aslanov A. (2011). Homotopy perturbation method for solving wave-like nonlinear equations with initial-boundary conditions, Discrete Dyn. in Nature and Soci. 2011, 1-10. [4]. Bear J. (1972). Dynamics of fluids in porous media, Elsevier, New York. [5]. Buckmaster J. (1977). Viscous sheets advancing over dry beds, J. Fluid Mech. 81, 735-756. [6]. Cai G. et al. (2006). A modified F-expansion method for solving braking soliton equation”, Int. J. nonlinear Sci. 2, 122-128. [7]. Cai G., Wang Q. (2007). A modified F-expansion method for solving nonlinear PDEs, J. of Inform. and Comput. Sci. 2, 03-16. [8]. Darvishi M. T. et al. (2012), Traveling wave solutions for foam drainage equation by modified F-expansion method, Food and Public Health 2, 06-10. [9]. Ghotbi A. R. et al. (2011). Infiltration in unsaturated soils an analytical approach, Comput. and Geotech. 38, 777-782. [10]. Grundy R. E. (1983). Asymptotic solution of a model nonlinear convective-diffusion equation, IMA J. Appl. Math. 31, 121-137. [11]. He J-H. (1999). Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. of Non. Mech. 34, 699-708. [12]. Hearns J. and Van Gorder R. A. (2012). Classical implicit travelling wave solutions for a quasilinear convection- diffusion equation, New Astro. 17, 705-710. [13]. Kutluay S. et al. (1999). Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. of Comput. and App. Maths. 103, 251-261. [14]. Rashidi M. M. et al. (2009). Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method, Non. Sci. and Num. Simul. 14, 708-717. [15]. Vanaja V. (2009). Exact solutions of a nonlinear diffusion-convection equation, Phy. Scrip. 80,01-07. [16]. Wazwaz A. M. (2009), Partial differential equations and solitary waves theory, Springer [17]. Wazwaz A. M. (2005). Travelling wave solutions for generalized forms of Burgers, Burgers-Kdv and Burgers-Huxley equations, App. Math. and Comput. 169,639-656. [18]. Zhang J L. et al. (2006). The improved F-expansion method and its applications, Phys. Lett. A 350,103-109. [19]. Zhang J-F. et al. (2005). Variable-coefficient F-expansion method and its application to nonlinear Schrodinger equation, Opt. Commun. 252, 408-421. [20]. Zhang S. and Xia T. (2006). A generalized F-expansion method and new exact solutions of Konopelchenko- Dubrovsky equations, Appl. Math. Comput. 183,1190-1200. [21]. Zhao Y-M. (2013). F-expansion method and its application for finding new exact solutions to the Kudryashov- Sinelshchikov equation J. of Appl. Math. 2013,01-07.