SlideShare a Scribd company logo
1 of 40
Download to read offline
International Journal of Modern Engineering Research (IJMER)
                www.ijmer.com            Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645

        Von Neumann Entropy in Quantum Computation and Sine qua
        non Relativistic Parameters- a Gesellschaft-Gemeinschaft Model
            1
             Dr. K. N. Prasanna Kumar, 2Prof. B. S. Kiranagi, 3 Prof. C. S. Bagewadi
 1
   Post doctoral researcher, Dr KNP Kumar has three PhD’s, one each in Mathematics, Economics and Political science
  and a D.Litt. in Political Science, Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India
2
  UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India
       3
         Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu university,
                                       Shankarghatta, Shimoga district, Karnataka, India


 ABSTRACT: Von Neumann Entropy and computational complexity theory is a branch of the theory of
computation in theoretical computer science and mathematics that focuses on classifying computational problems according
to their inherent difficulty, and relating those classes to each other. In this context, a computational problem is understood to
be a task that is in principle amenable to being solved by a computer (which basically means that the problem can be stated
by a set of mathematical instructions). Informally, a computational problem consists of problem instances and solutions
to these problem instances. For example, primality testing is the problem of determining whether a given number is prime or
not. The instances of this problem are natural numbers, and the solution to an instance is yes or no based on whether the
number is prime or not.A problem is regarded as inherently difficult if its solution requires significant resources, whatever
the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these
problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity
measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a
circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of
computational complexity theory is to determine the practical limits on what computers can and cannot do. Closely
related fields in theoretical computer science are analysis of algorithms and computability theory. A key distinction
between analysis of algorithms and computational complexity theory is that the former is devoted to analyzing the amount of
resources needed by a particular algorithm to solve a problem, whereas the latter asks a more general question about all
possible algorithms that could be used to solve the same problem. More precisely, it tries to classify problems that can or
cannot be solved with appropriately restricted resources. In turn, imposing restrictions on the available resources is what
distinguishes computational complexity from computability theory: the latter theory asks what kind of problems can, in
principle, be solved algorithmically. Low-energy excitations of one-dimensional spin-orbital models which consist of spin
waves, orbital waves, and joint spin-orbital excitations. Among the latter we identify strongly entangled spin-orbital bound
states which appear as peaks in the von Neumann entropy (vNE) spectral function introduced in this work. The strong
entanglement of bound states is manifested by a universal logarithmic scaling of the vNE with system size, while the vNE of
other spin-orbital excitations saturates. We suggest that spin-orbital entanglement can be experimentally explored by the
measurement of the dynamical spin-orbital correlations using resonant inelastic x-ray scattering, where strong spin-orbit
coupling associated with the core hole plays a role. Distinguish ability of States and von Neumann Entropy have been
studied by Richard Jozsa, Juergen Schlienz.Consider an ensemble of pure quantum states |psi_j>, j=1,...,n taken with
prior probabilities p_j respectively. It has been shown that it is possible to increase all of the pair wise overlaps
|<psi_j|psi_j>| i.e. make each constituent pair of the states more parallel (while keeping the prior probabilities the same),
in such a way that the von Neumann entropy S is increased, and dually, make all pairs more orthogonal while decreasing S.
This phenomenon cannot occur for ensembles in two dimensions but that it is a feature of almost all ensembles of three
states in three dimensions. It is known that the von Neumann entropy characterizes the classical and quantum information
capacities of the ensemble and we argue that information capacity in turn, is a manifestation of the distinguish ability of the
signal states. Hence our result shows that the notion of distinguish ability within an ensemble is a global property that
cannot be reduced to considering distinguish ability of each constituent pair of states.

Key words: Von Neumann entropy, Quantum computation, Governing equations

                                                        Introduction

Von Neumann entropy
In quantum statistical mechanics, von Neumann entropy, named after John von Neumann, is the extension of
classical entropy concepts to the field of quantum mechanics. John von Neumann rigorously established the mathematical
framework for quantum mechanics in his work Mathematische Grundlagen der Quantenmechanik In it, he provided a theory
of measurement, where the usual notion of wave-function collapse is described as an irreversible process (the so-called von
Neumann or projective measurement).

The density matrix was introduced, with different motivations, by von Neumann and by Lev Landau. The motivation that
inspired Landau was the impossibility of describing a subsystem of a composite quantum system by a state vector. On the
                                                    www.ijmer.com                                                    1977 | Page
International Journal of Modern Engineering Research (IJMER)
               www.ijmer.com             Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645
other hand, von Neumann introduced the density matrix in order to develop both quantum statistical mechanics and a theory
of quantum measurements. The density matrix formalism was developed to extend the tools of classical statistical mechanics
to the quantum domain. In the classical framework, we compute the partition function of the system in order to evaluate all
possible thermodynamic quantities. Von Neumann introduced the density matrix in the context of states and operators in a
Hilbert space. The knowledge of the statistical density matrix operator would allow us to compute all average quantities in a
conceptually similar, but mathematically different way. Let us suppose we have a set of wave functions |Ψ ⟩ which depend
parametrically on a set of quantum numbers                        . The natural variable which we have is the amplitude with
which a particular wavefunction of the basic set participates in the actual wavefunction of the system. Let us denote the
square of this amplitude by                          . The goal is to turn this quantity p into the classical density function in
phase space. We have to verify that p goes over into the density function in the classical limit, and that it
hasergodic properties. After checking that                            is a constant of motion, an ergodic assumption for the
probabilities                         makes p a function of the energy only .

After this procedure, one finally arrives at the density matrix formalism when seeking a form where
 is invariant with respect to the representation used. In the form it is written, it will only yield the correct expectation values
for quantities which are diagonal with respect to the quantum numbers                           .
Expectation values of operators which are not diagonal involve the phases of the quantum amplitudes. Suppose we encode
the quantum numbers                           into the single index or . Then our wave function has the form


The expectation value of an operator      which is not diagonal in these wave functions, so


The role, which was originally reserved for the quantities,         is thus taken over by the density matrix of the system S.



Therefore        reads as

The invariance of the above term is described by matrix theory. A mathematical framework was described where the
expectation value of quantum operators, as described by matrices, is obtained by taking the trace of the product of the
density operator and an operator (Hilbert scalar product between operators). The matrix formalism here is in the
statistical mechanics framework, although it applies as well for finite quantum systems, which is usually the case, where the
state of the system cannot be described by a pure state, but as a statistical operator of the above form. Mathematically, is
a positive, semi definite Hermitian matrix with unit trace


Given the density matrix ρ, von Neumann defined the entropy as
Which is a proper extension of the Gibbs entropy (up to a factor    ) and the Shannon entropy to the quantum case. To
compute S(ρ) it is convenient (see logarithm of a matrix) to compute the Eigen decomposition of
The von Neumann entropy is then given by



Since, for a pure state, the density matrix is idempotent, ρ=ρ2, the entropy S(ρ) for it vanishes. Thus, if the system is finite
(finite dimensional matrix representation), the entropy (ρ) quantifies the departure of the system from a pure state. In other
words, it codifies the degree of mixing of the state describing a given finite system. Measurement decohere a quantum
system into something noninterfering and ostensibly classical; so, e.g., the vanishing entropy of a pure state |Ψ⟩ =
(|0⟩+|1⟩)/√2, corresponding to a density matrix
                       increases to S=ln 2 =0.69 for the measurement outcome mixture
                        As the quantum interference information is erased.

Properties
Some properties of the von Neumann entropy:
S(ρ) is only zero for pure states.
S (ρ) is maximal and equal to          for a maximally mixed state, being the dimension of the Hilbert space.
S (ρ) is invariant under changes in the basis of , that is,                     , with U a unitary transformation.
S (ρ) is concave, that is, given a collection of positive numbers     which sum to unity (                  ) and density
operators , we have


                                                    www.ijmer.com                                                     1978 | Page
International Journal of Modern Engineering Research (IJMER)
               www.ijmer.com             Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645


S (ρ) is additive for independent systems. Given two density matrices                  describing independent systems A and B,
we have                                                .
S(ρ) strongly sub additive for any three systems A, B, and C:
                                                             .
This automatically means that S(ρ) is sub additive:

Below, the concept of subadditivity is discussed, followed by its generalization to strong Subadditivity.

Subadditivity
If          are the reduced density matrices of the general state         , then

This right hand inequality is known as subadditivity. The two inequalities together are sometimes known as the triangle
inequality. They were proved in 1970 by Huzihiro Araki andElliott H. Lieb While in Shannon's theory the entropy of a
composite system can never be lower than the entropy of any of its parts, in quantum theory this is not the case, i.e., it is
possible that                  while                 and                .

Intuitively, this can be understood as follows: In quantum mechanics, the entropy of the joint system can be less than the
sum of the entropy of its components because the components may be entangled. For instance, the Bell state of two spin-
1/2's,                             , is a pure state with zero entropy, but each spin has maximum entropy when considered
individually. The entropy in one spin can be "cancelled" by being correlated with the entropy of the other. The left-hand
inequality can be roughly interpreted as saying that entropy can only be canceled by an equal amount of entropy.
If system      and system     have different amounts of entropy, the lesser can only partially cancel the greater, and some
entropy must be left over. Likewise, the right-hand inequality can be interpreted as saying that the entropy of a composite
system is maximized when its components are uncorrelated, in which case the total entropy is just a sum of the sub-
entropies. This may be more intuitive in the phase space, instead of Hilbert space, representation, where the Von Neumann
entropy amounts to minus the expected value of the βˆ—-logarithm of the Wigner function up to an offset shift.

Strong Subadditivity
The von Neumann entropy is also strongly sub additive. Given three Hilbert spaces,                   ,

This is a more difficult theorem and was proved in 1973 by Elliott H. Lieb and Mary Beth Ruskai using a matrix inequality
of Elliott H. Lieb proved in 1973. By using the proof technique that establishes the left side of the triangle inequality above,
one can show that the strong subadditivity inequality is equivalent to the following inequality.

When          , etc. are the reduced density matrices of a density matrix          . If we apply ordinary subadditivity to the left
side of this inequality, and consider all permutations of                , we obtain the triangle inequality for         : Each of
the three numbers                                             is less than or equal to the sum of the other two.

Uses
The von Neumann entropy is being extensively used in different forms (conditional entropies, relative entropies, etc.) in the
framework of quantum information theory. Entanglement measures are based upon some quantity directly related to the von
Neumann entropy. However, there have appeared in the literature several papers dealing with the possible inadequacy of
the Shannon information measure, and consequently of the von Neumann entropy as an appropriate quantum generalization
of Shannon entropy. The main argument is that in classical measurement the Shannon information measure is a natural
measure of our ignorance about the properties of a system, whose existence is independent of measurement.

Conversely, quantum measurement cannot be claimed to reveal the properties of a system that existed before the
measurement was made. This controversy has encouraged some authors to introduce the non-additivity property of Tsallis
entropy (a generalization of the standard Boltzmann–Gibbs entropy) as the main reason for recovering a true quantal
information measure in the quantum context, claiming that non-local correlations ought to be described because of the
particularity of Tsallis entropy.

THE SYSTEM IN QUESTION IS:
1.    Von Neumann Entropy And Quantum Entanglement
2.    Velocity Field Of The Particle And Wave Function
3.    Matter Presence In Abundance And Break Down Of Parity Conservation
4.    Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms
5.    Decoherence And Computational Complexity
6.    Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits



                                                    www.ijmer.com                                                     1979 | Page
International Journal of Modern Engineering Research (IJMER)
             www.ijmer.com            Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645
VON NEUMANN ENTROPY AND QUANTUM ENTANGLEMENT: MODULE ONE
NOTATION :
𝐺13 : Category One Of Quantum Entanglement
𝐺14 : Category Two Of Quantum Entanglement
𝐺15 : Category Three Of Quantum Entanglement
𝑇13 : Category One Of Von Neumann Entropy
𝑇14 : Category Two Of Von Neumann Entropy
𝑇15 : Category Three Of Von Neumann Entropy
                                                            -
WAVE FUNCTIONS AND VELOCITY FIELD OF THE PARTICLES: MODULE TWO
𝐺16 : Category One Of Velocity Field Of The Particles
𝐺17 : Category Two Of The Velocity Field Of The Particles
𝐺18 : Category Three Of The Velocity Field Of The Particles
𝑇16 : Category One Of Wave Functions Concomitant To The Velocity Fields
𝑇17 :Category Two Of Wave Functions Corresponding To Category Two Of Velocity Field
𝑇18 : Category Three Of Wave Functions-

BREAK DOWN OF PARITY CONSERVATION AND ABUNDANCE OF MATTER PRESCENCE: MODULE
THREE:

𝐺20 : Category One Of Systems Where There Is Break Down Of Parity Conservation
𝐺21 : Category Two Of Systems Where There Is Break Down In Parity Conservation
𝐺22 : Category Three Of Systems Where There Is Break Down Of Parity Conservation
𝑇20 : Category Three Of Systems Where There Is Break Down Of Parity Conservation
𝑇21 : Category One Of Systems Where There Is Abundance Of Matter
𝑇22 : Category Two Of Systems Where There Is Abundance Of Matter
𝐺24 : Category Three Of Systems Where There Is Abundance Of Matter

EFFICIENCY OF QUANTUM ALGORITHMS AND DISSIPATION IN QUANTUM COMPUTATION MODULE
NUMBERED FOUR:
𝐺25 : Category Two Of Efficiency Of Quantum Algorithms
𝐺26 : Category Three Of efficiency Of Quantum Algorithms
𝐺24 : Category One Of Efficiency Of Quantum Algorithms
𝑇24 : Category Three Of Dissipation In Quantum Computation
𝑇25 : Category One Of Systems With Efficiency In Quantum Algorithm
𝑇26 : Category Two Of Systems With Quantum Algorithm Of Efficiency (Different From Category One)

COMPUTATIONAL COMPLEXITY AND DECOHERENCE MODULE NUMBERED FIVE
𝐺28 : Category One Of Computational Complexity
𝐺29 :Category Two Of Computational Complexity
𝐺30 : Category Three Of Computational Complexity
𝑇28 : Category One Of Decoherence
𝑇29 : Category Two Of Decoherence
𝑇30 : Category Three Of Decoherence

DIFFERENT POSSSIBLE INPUTS (QUBITS) AND QUANTUM SUPERPOSITION OF OUTPUTS MODULE
NUMBERED SIX
 𝐺32 : Category One Of Different Possible Qubits Inputs
 𝐺33 : Category Two Of Different Possible Qubits Inputs
 𝐺34 : Category Three Of Different Possible Qubits Inputs
T32 : Category One Of Coherent Superposition Of Outputs
 𝑇33 : Category Two Of Coherent Superposition Of Outputs
T34 : Category Three Of Coherent Superposition Of Outputs

ACCENTUATION COEFFCIENTS OF THE HOLISTIC SYSTEM
Von Neumann Entropy And Quantum Entanglement
Velocity Field Of The Particle And Wave Function
Matter Presence In Abundance And Break Down Of Parity Conservation
Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms
Decoherence And Computational Complexity
Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits

                                               www.ijmer.com                                             1980 | Page
International Journal of Modern Engineering Research (IJMER)
                              www.ijmer.com                     Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645
            1                 1             1              1                   1                 1
  π‘Ž13           ,   π‘Ž14         ,     π‘Ž15      ,   𝑏13       ,       𝑏14         ,        𝑏15         π‘Ž16 2 , π‘Ž17 2 , π‘Ž18 2
            2                 2             2              3                   3                 3
  𝑏16           ,   𝑏17         ,    𝑏18      :    π‘Ž20       ,       π‘Ž21         ,        π‘Ž22        , 𝑏20 3 , 𝑏21 3 , 𝑏22 3
            4                 4             4              4                   4                 4
  π‘Ž24           ,   π‘Ž25          ,    π‘Ž26      ,   𝑏24       ,       𝑏25         ,        𝑏26      , 𝑏28 5 , 𝑏29 5 , 𝑏30 5 ,
            5                 5             5              6                   6                 6
  π‘Ž28           ,   π‘Ž29         ,     π‘Ž30      ,   π‘Ž32        ,       π‘Ž33         ,        π‘Ž34      , 𝑏32 6 , 𝑏33 6 , 𝑏34 6

DISSIPATION COEFFCIENTS:
   β€²                β€²                 β€²     1       β€²            β€²                      β€²         1         β€²           β€²
  π‘Ž13       1
                 , π‘Ž14        1
                                   , π‘Ž15         , 𝑏13     1
                                                              , 𝑏14            1
                                                                                     , 𝑏15               , π‘Ž16   2
                                                                                                                     , π‘Ž17   2
                                                                                                                                 , aβ€²18   2
                                                                                                                                              ,      β€²
                                                                                                                                                    𝑏16       2      β€²
                                                                                                                                                                  , 𝑏17       2      β€²
                                                                                                                                                                                  , 𝑏18       2
     β€²          3     β€²           3     β€²       3     β€²     3      β€²               3      β€²          3
, π‘Ž20             , π‘Ž21             , π‘Ž22         , 𝑏20        , 𝑏21                  , 𝑏22
   β€²        4      β€²          4      β€²      4      β€²       4       β€²           4         β€²        4         β€²    5      β€²    5      β€²     5        β€²      5      β€²        5      β€²        5
  π‘Ž24           , π‘Ž25             , π‘Ž26         , 𝑏24          , 𝑏25                 , 𝑏26               , 𝑏28       , 𝑏29       , 𝑏30            π‘Ž28         , π‘Ž29           , π‘Ž30               ,
   β€²        6      β€²          6      β€²      6      β€²       6      β€²            6        β€²        6
  π‘Ž32           , π‘Ž33             , π‘Ž34         , 𝑏32          , 𝑏33                , 𝑏34
                                                                                                                     -
GOVERNING EQUATIONS:OF THE                                                                       SYSTEM                  VONNEUMANN                       ENTROPY                    AND              QUANTUM
ENTANGLEMENT
The differential system of this model is now -
𝑑 𝐺13                    β€²          β€²β€²
  𝑑𝑑
      = π‘Ž13 1 𝐺14 βˆ’ π‘Ž13 1 + π‘Ž13 1 𝑇14 , 𝑑                                                        𝐺13 -
𝑑 𝐺14                     1                  β€²     1      β€²β€²            1
        = π‘Ž14                     𝐺13 βˆ’     π‘Ž14        + π‘Ž14                       𝑇14 , 𝑑       𝐺14 -
  𝑑𝑑
𝑑 𝐺15                     1                   β€²    1      β€²β€²               1
        = π‘Ž15                     𝐺14 βˆ’      π‘Ž15       + π‘Ž15                        𝑇14 , 𝑑       𝐺15 -
  𝑑𝑑
𝑑 𝑇13                 1                      β€²     1            β€²β€²     1
        = 𝑏13                  𝑇14 βˆ’        𝑏13        βˆ’       𝑏13             𝐺, 𝑑          𝑇13 -
  𝑑𝑑
𝑑 𝑇14                 1                      β€²     1      β€²β€²           1
  𝑑𝑑
        = 𝑏14                  𝑇13 βˆ’        𝑏14        βˆ’ 𝑏14                   𝐺, 𝑑          𝑇14 -
𝑑 𝑇15                 1                      β€²     1            β€²β€²     1
        = 𝑏15                  𝑇14 βˆ’        𝑏15        βˆ’       𝑏15                 𝐺, 𝑑       𝑇15 -
 𝑑𝑑
       β€²β€²       1
+     π‘Ž13            𝑇14 , 𝑑 = First augmentation factor -
       β€²β€²       1
βˆ’     𝑏13            𝐺, 𝑑 = First detritions factor -

GOVERNING EQUATIONS OF THE SYSTEM VELOCITY FIELD OF THE PARTICLE AND WAVE
FUNCTION:
The differential system of this model is now -
𝑑 𝐺16                    β€²          β€²β€²
  𝑑𝑑
      = π‘Ž16 2 𝐺17 βˆ’ π‘Ž16 2 + π‘Ž16 2 𝑇17 , 𝑑 𝐺16 -
𝑑 𝐺17                     2                  β€²     2      β€²β€²            2
        = π‘Ž17                     𝐺16 βˆ’     π‘Ž17        + π‘Ž17                       𝑇17 , 𝑑       𝐺17 -
  𝑑𝑑
𝑑 𝐺18                     2                  β€²     2            β€²β€²      2
 𝑑𝑑
        = π‘Ž18                     𝐺17 βˆ’     π‘Ž18        +       π‘Ž18                 𝑇17 , 𝑑       𝐺18 -
dT 16                     2                  β€²     2            β€²β€²     2
 dt
        = b16                 T17 βˆ’         b16        βˆ’       𝑏16                  𝐺19 , 𝑑           𝑇16 -
dT 17                     2          β€²             2      β€²β€²           2
 dt
        = b17                 T16 βˆ’ b17                βˆ’ 𝑏17                        𝐺19 , 𝑑 T17 -
dT 18                     2                  β€²     2            β€²β€²     2
 dt
        = b18                 T17 βˆ’         b18        βˆ’       b18                 G19 , t T18 -
+     aβ€²β€²
       16
                2
                    T17 , t = First augmentation factor -
       β€²β€²       2
βˆ’     b16            G19 , t = First detritions factor -

GOVERNING EQUATIONS:OF BREAK DOWN OF PARITY CONSERVATION AND MATTER ABUNDANCE:
The differential system of this model is now -
𝑑 𝐺20                     β€²         β€²β€²
      = π‘Ž20 3 𝐺21 βˆ’ π‘Ž20 3 + π‘Ž20 3 𝑇21 , 𝑑 𝐺20 -
  𝑑𝑑
𝑑 𝐺21                     3                   β€²    3      β€²β€²               3
  𝑑𝑑
        = π‘Ž21                     𝐺20 βˆ’      π‘Ž21       + π‘Ž21                       𝑇21 , 𝑑       𝐺21 -
𝑑 𝐺22                     3                   β€²    3             β€²β€²        3
        = π‘Ž22                     𝐺21 βˆ’      π‘Ž22       +        π‘Ž22                𝑇21 , 𝑑       𝐺22 -
  𝑑𝑑
𝑑 𝑇20                 3                      β€²     3            β€²β€²     3
  𝑑𝑑
        = 𝑏20                  𝑇21 βˆ’        𝑏20        βˆ’       𝑏20              𝐺23 , 𝑑          𝑇20 -
𝑑 𝑇21                 3                      β€²     3      β€²β€²           3
  𝑑𝑑
        = 𝑏21                  𝑇20 βˆ’        𝑏21        βˆ’ 𝑏21                    𝐺23 , 𝑑          𝑇21 -
𝑑 𝑇22                 3                      β€²     3            β€²β€²     3
 𝑑𝑑
        = 𝑏22                  𝑇21 βˆ’        𝑏22        βˆ’       𝑏22              𝐺23 , 𝑑          𝑇22 -
       β€²β€²       3
+     π‘Ž20            𝑇21 , 𝑑 = First augmentation factor -
       β€²β€²       3
βˆ’     𝑏20            𝐺23 , 𝑑 = First detritions factor -

GOVERNING EQUATIONS:OF DISSIPATION IN QUANTUM COMPUTATION AND EFFICIENCY OF
QUANTUM ALGORITHMS:
The differential system of this model is now -
𝑑 𝐺24                     β€²         β€²β€²
  𝑑𝑑
      = π‘Ž24 4 𝐺25 βˆ’ π‘Ž24 4 + π‘Ž24 4 𝑇25 , 𝑑 𝐺24 -


                                                                                                 www.ijmer.com                                                                                        1981 | Page
International Journal of Modern Engineering Research (IJMER)
                           www.ijmer.com                         Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645
𝑑 𝐺25                  4               β€²            4          β€²β€²             4
        = π‘Ž25               𝐺24 βˆ’     π‘Ž25                   + π‘Ž25                   𝑇25 , 𝑑       𝐺25 -
  𝑑𝑑
𝑑 𝐺26                  4               β€²        4                    β€²β€²       4
        = π‘Ž26               𝐺25 βˆ’     π‘Ž26                   +       π‘Ž26            𝑇25 , 𝑑    𝐺26 -
  𝑑𝑑
𝑑 𝑇24                  4              β€²         4          β€²β€²             4
  𝑑𝑑
        = 𝑏24               𝑇25 βˆ’    𝑏24                βˆ’ 𝑏24                       𝐺27 , 𝑑       𝑇24 -
𝑑 𝑇25                  4               β€²        4                   β€²β€²    4
        = 𝑏25               𝑇24 βˆ’     𝑏25               βˆ’          𝑏25              𝐺27 , 𝑑        𝑇25 -
  𝑑𝑑
𝑑 𝑇26                  4              β€²         4          β€²β€²             4
 𝑑𝑑
        = 𝑏26               𝑇25 βˆ’    𝑏26                βˆ’ 𝑏26                       𝐺27 , 𝑑       𝑇26 -
   β€²β€²       4
+ π‘Ž24              𝑇25 , 𝑑 = First augmentation factor-
   β€²β€²       4
βˆ’ 𝑏24                𝐺27 , 𝑑 = First detritions factor -

GOVERNING EQUATIONS:OF THE SYSTEM DECOHERENCE AND COMPUTATIONAL COMPLEXITY:
The differential system of this model is now -
𝑑 𝐺28                     β€²         β€²β€²
      = π‘Ž28 5 𝐺29 βˆ’ π‘Ž28 5 + π‘Ž28 5 𝑇29 , 𝑑 𝐺28 -
  𝑑𝑑
𝑑 𝐺29                  5               β€²        5              β€²β€²         5
  𝑑𝑑
        = π‘Ž29               𝐺28 βˆ’     π‘Ž29                   + π‘Ž29                  𝑇29 , 𝑑    𝐺29 -
𝑑 𝐺30                  5               β€²        5              β€²β€²             5
        = π‘Ž30               𝐺29 βˆ’     π‘Ž30                   + π‘Ž30                  𝑇29 , 𝑑    𝐺30 -
  𝑑𝑑
𝑑 𝑇28                  5              β€²         5                   β€²β€²    5
  𝑑𝑑
        = 𝑏28               𝑇29 βˆ’    𝑏28                βˆ’          𝑏28              𝐺31 , 𝑑       𝑇28 -
𝑑 𝑇29                  5              β€²     5                       β€²β€²    5
  𝑑𝑑
        = 𝑏29               𝑇28 βˆ’    𝑏29                βˆ’          𝑏29             𝐺31 , 𝑑        𝑇29 -
𝑑 𝑇30                  5              β€²         5          β€²β€²             5
 𝑑𝑑
        = 𝑏30               𝑇29 βˆ’    𝑏30                βˆ’ 𝑏30                       𝐺31 , 𝑑       𝑇30 -
       β€²β€²   5
+     π‘Ž28          𝑇29 , 𝑑 = First augmentation factor -
       β€²β€²   5
βˆ’     𝑏28            𝐺31 , 𝑑 = First detritions factor -

GOVERNING EQUATIONS:COHERENT SUPERPOSITION OF OUTPUTS AND DIFFERENT POSSIBILITIES
OF QUBIT INPUTS
The differential system of this model is now -
𝑑 𝐺32                     β€²         β€²β€²
      = π‘Ž32 6 𝐺33 βˆ’ π‘Ž32 6 + π‘Ž32 6 𝑇33 , 𝑑 𝐺32 -
  𝑑𝑑
𝑑 𝐺33                  6               β€²        6              β€²β€²             6
        = π‘Ž33               𝐺32 βˆ’     π‘Ž33                   + π‘Ž33                  𝑇33 , 𝑑    𝐺33 -
  𝑑𝑑
𝑑 𝐺34                  6               β€²        6                    β€²β€²       6
  𝑑𝑑
        = π‘Ž34               𝐺33 βˆ’     π‘Ž34                   +       π‘Ž34            𝑇33 , 𝑑    𝐺34 -
𝑑 𝑇32                  6              β€²         6          β€²β€²             6
  𝑑𝑑
        = 𝑏32               𝑇33 βˆ’    𝑏32                βˆ’ 𝑏32                       𝐺35 , 𝑑       𝑇32 -
𝑑 𝑇33                  6              β€²         6                   β€²β€²    6
        = 𝑏33               𝑇32 βˆ’    𝑏33                βˆ’          𝑏33              𝐺35 , 𝑑       𝑇33 -
  𝑑𝑑
𝑑 𝑇34                  6              β€²         6                   β€²β€²    6
 𝑑𝑑
        = 𝑏34               𝑇33 βˆ’    𝑏34                βˆ’          𝑏34              𝐺35 , 𝑑       𝑇34 -
       β€²β€²   6
+     π‘Ž32          𝑇33 , 𝑑 = First augmentation factor -
       β€²β€²   6
βˆ’     𝑏32            𝐺35 , 𝑑 = First detritions factor -

CONCATENATED GOVERNING SYSTEMS OF THE HOLISTIC GLOBAL SYSTEM:
(1)  Von Neumann Entropy And Quantum Entanglement
(2)  Velocity Field Of The Particle And Wave Function
(3)  Matter Presence In Abundance And Break Down Of Parity Conservation
(4)  Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms
(5)  Decoherence And Computational Complexity

Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits-
                                           β€²            1        β€²β€²            1                     β€²β€²       2,2,                   β€²β€²     3,3,
𝑑 𝐺13                                     π‘Ž13                 + π‘Ž13                 𝑇14 , 𝑑       + π‘Ž16                𝑇17 , 𝑑    + π‘Ž20              𝑇21 , 𝑑
                       1
 𝑑𝑑
        = π‘Ž13               𝐺14 βˆ’                                                                                                                                𝐺13 -
                                        β€²β€²                   4,4,4,4,                        β€²β€²       5,5,5,5,                      β€²β€²    6,6,6,6,
                                     + π‘Ž24                                    𝑇25 , 𝑑     + π‘Ž28                      𝑇29 , 𝑑     + π‘Ž32                 𝑇33 , 𝑑
                                           β€²            1        β€²β€²            1                     β€²β€²       2,2,                   β€²β€²     3,3,
                                          π‘Ž14                 + π‘Ž14                 𝑇14 , 𝑑       + π‘Ž17                𝑇17 , 𝑑    + π‘Ž21              𝑇21 , 𝑑
𝑑 𝐺14                  1
 𝑑𝑑
        = π‘Ž14               𝐺13 βˆ’                            4,4,4,4,
                                                                                                                                                                 𝐺14 -
                                        β€²β€²                                                   β€²β€²        5,5,5,5,                     β€²β€²    6,6,6,6,
                                     + π‘Ž25                                    𝑇25 , 𝑑     + π‘Ž29                      𝑇29 , 𝑑     + π‘Ž33                 𝑇33 , 𝑑
                                           β€²            1        β€²β€²            1                     β€²β€²       2,2,                   β€²β€²     3,3,
𝑑 𝐺15                  1
                                          π‘Ž15                 + π‘Ž15                 𝑇14 , 𝑑       + π‘Ž18                𝑇17 , 𝑑    + π‘Ž22              𝑇21 , 𝑑
        = π‘Ž15               𝐺14 βˆ’                                                                                                                                𝐺15 -
 𝑑𝑑                                     β€²β€²                   4,4,4,4,                        β€²β€²       5,5,5,5,                      β€²β€²    6,6,6,6,
                                     + π‘Ž26                                    𝑇25 , 𝑑     + π‘Ž30                      𝑇29 , 𝑑     + π‘Ž34                 𝑇33 , 𝑑
                 β€²β€²    1                     β€²β€²             1                            β€²β€²   1
Where           π‘Ž13           𝑇14 , 𝑑 ,     π‘Ž14                    𝑇14 , 𝑑 ,            π‘Ž15         𝑇14 , 𝑑      are first augmentation coefficients for category 1, 2 and 3
    β€²β€²          2,2,                    β€²β€²                  2,2,                  β€²β€²                2,2,
 + π‘Ž16                     𝑇17 , 𝑑 , + π‘Ž17                           𝑇17 , 𝑑 , + π‘Ž18                          𝑇17 , 𝑑 are second augmentation coefficient for category 1, 2 and
3
                                                                                              www.ijmer.com                                                              1982 | Page
International Journal of Modern Engineering Research (IJMER)
                             www.ijmer.com                     Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645
    β€²β€²            3,3,                    β€²β€²          3,3,                        β€²β€²                     3,3,
 + π‘Ž20                       𝑇21 , 𝑑 , + π‘Ž21                         𝑇21 , 𝑑 , + π‘Ž22                                 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3
     β€²β€²          4,4,4,4,                        β€²β€²             4,4,4,4,                      β€²β€²                       4,4,4,4,
+ π‘Ž24                             𝑇25 , 𝑑   , + π‘Ž25                              𝑇25 , 𝑑 , + π‘Ž26                                        𝑇25 , 𝑑 are fourth augmentation coefficient for category 1,
2 and 3
     β€²β€²          5,5,5,5,                      β€²β€²            5,5,5,5,                    β€²β€²                         5,5,5,5,
 + π‘Ž28                            𝑇29 , 𝑑 , + π‘Ž29                           𝑇29 , 𝑑 , + π‘Ž30                                          𝑇29 , 𝑑       are fifth augmentation coefficient for category 1, 2
and 3
     β€²β€²          6,6,6,6,                      β€²β€²             6,6,6,6,                   β€²β€²                          6,6,6,6,
 + π‘Ž32                            𝑇33 , 𝑑 , + π‘Ž33                           𝑇33 , 𝑑 , + π‘Ž34                                           𝑇33 , 𝑑        are sixth augmentation coefficient for category 1, 2
and 3-
                                               β€²      1          β€²β€²          1                          β€²β€²             2,2,                          β€²β€²      3,3,
                                              𝑏13             βˆ’ 𝑏13                    𝐺, 𝑑          βˆ’ 𝑏16                          𝐺19 , 𝑑       – 𝑏20                   𝐺23 , 𝑑
𝑑 𝑇13                    1
          = 𝑏13               𝑇14 βˆ’            β€²β€²        4,4,4,4,                               β€²β€²           5,5,5,5,                              β€²β€²       6,6,6,6,                           𝑇13 -
    𝑑𝑑                                      βˆ’ 𝑏24                         𝐺27 , 𝑑            βˆ’ 𝑏28                              𝐺31 , 𝑑         βˆ’ 𝑏32                       𝐺35 , 𝑑

                                               β€²     1           β€²β€²         1                           β€²β€²            2,2,                          β€²β€²       3,3,
𝑑 𝑇14
                                              𝑏14             βˆ’ 𝑏14                   𝐺, 𝑑           βˆ’ 𝑏17                       𝐺19 , 𝑑         – 𝑏21                   𝐺23 , 𝑑
                         1
    𝑑𝑑
          = 𝑏14               𝑇13 βˆ’                       4,4,4,4,
                                                                                                                                                                                               𝑇14 -
                                               β€²β€²                                               β€²β€²           5,5,5,5,                               β€²β€²      6,6,6,6,
                                            βˆ’ 𝑏25                          𝐺27 , 𝑑           βˆ’ 𝑏29                              𝐺31 , 𝑑          βˆ’ 𝑏33                       𝐺35 , 𝑑
                                               β€²      1          β€²β€²          1                          β€²β€²            2,2,                           β€²β€²      3,3,
𝑑 𝑇15                    1
                                              𝑏15             βˆ’ 𝑏15                    𝐺, 𝑑          βˆ’ 𝑏18                          𝐺19 , 𝑑       – 𝑏22                   𝐺23 , 𝑑
    𝑑𝑑
          = 𝑏15               𝑇14 βˆ’                                                                                                                                                            𝑇15 -
                                               β€²β€²        4,4,4,4,                               β€²β€²           5,5,5,5,                              β€²β€²       6,6,6,6,
                                            βˆ’ 𝑏26                         𝐺27 , 𝑑            βˆ’ 𝑏30                              𝐺31 , 𝑑         βˆ’ 𝑏34                       𝐺35 , 𝑑
         β€²β€²                   1                 β€²β€²             1                   β€²β€²                 1
Where βˆ’ 𝑏13                           𝐺, 𝑑 , βˆ’ 𝑏14                       𝐺, 𝑑 , βˆ’ 𝑏15                           𝐺, 𝑑 are first detrition coefficients for category 1, 2 and 3
           β€²β€²    2,2,                          β€²β€²    2,2,                                     β€²β€²      2,2,
βˆ’         𝑏16            𝐺19 , 𝑑 , βˆ’          𝑏17                   𝐺19 , 𝑑 , βˆ’              𝑏18                    𝐺19 , 𝑑         are second detrition coefficients for category 1, 2 and 3
   β€²β€²            3,3,                 β€²β€²             3,3,                        β€²β€²                   3,3,
βˆ’ 𝑏20                    𝐺23 , 𝑑 , βˆ’ 𝑏21                            𝐺23 , 𝑑 , βˆ’ 𝑏22                                  𝐺23 , 𝑑 are third detrition coefficients for category 1, 2 and 3
     β€²β€²          4,4,4,4,                   β€²β€²                4,4,4,4,                    β€²β€²                         4,4,4,4,
 βˆ’ 𝑏24                         𝐺27 , 𝑑 , βˆ’ 𝑏25                               𝐺27 , 𝑑 , βˆ’ 𝑏26                                          𝐺27 , 𝑑 are fourth detrition coefficients for category 1, 2
and 3
     β€²β€²          5,5,5,5,                   β€²β€²                 5,5,5,5,                      β€²β€²                       5,5,5,5,
 βˆ’ 𝑏28                         𝐺31 , 𝑑 , βˆ’ 𝑏29                                  𝐺31 , 𝑑 , βˆ’ 𝑏30                                        𝐺31 , 𝑑 are fifth detrition coefficients for category 1, 2 and
3
     β€²β€²          6,6,6,6,                   β€²β€²                 6,6,6,6,                      β€²β€²                       6,6,6,6,
 βˆ’ 𝑏32                         𝐺35 , 𝑑 , βˆ’ 𝑏33                                  𝐺35 , 𝑑 , βˆ’ 𝑏34                                        𝐺35 , 𝑑 are sixth detrition coefficients for category 1, 2 and
                                                      β€²         2       β€²β€²             2                           β€²β€²           1,1,                         β€²β€²          3,3,3
         𝑑𝐺16                                        π‘Ž16             + π‘Ž16                     𝑇17 , 𝑑          + π‘Ž13                         𝑇14 , 𝑑     + π‘Ž20                      𝑇21 , 𝑑
                              2
3               = π‘Ž16               𝐺17 βˆ’                                                                                                                                                               𝐺16 -
          𝑑𝑑                                      β€²β€²                4,4,4,4,4                           β€²β€²              5,5,5,5,5                            β€²β€²          6,6,6,6,6
                                               + π‘Ž24                                  𝑇25 , 𝑑        + π‘Ž28                                 𝑇29 , 𝑑        + π‘Ž32                            𝑇33 , 𝑑
                                                β€²     2           β€²β€²            2                        β€²β€²              1,1,                           β€²β€²        3,3,3
                                               π‘Ž17             + π‘Ž17                    𝑇17 , 𝑑       + π‘Ž14                           𝑇14 , 𝑑        + π‘Ž21                    𝑇21 , 𝑑
𝑑 𝐺17                    2
           = π‘Ž17              𝐺16 βˆ’                        4,4,4,4,4
                                                                                                                                                                                                     𝐺17 -
    𝑑𝑑                                         β€²β€²                                                 β€²β€²             5,5,5,5,5                             β€²β€²         6,6,6,6,6
                                            + π‘Ž25                            𝑇25 , 𝑑           + π‘Ž29                                  𝑇29 , 𝑑       + π‘Ž33                           𝑇33 , 𝑑
                                                β€²         2       β€²β€²             2                          β€²β€²               1,1,                          β€²β€²       3,3,3
𝑑 𝐺18                    2
                                               π‘Ž18             + π‘Ž18                       𝑇17 , 𝑑       + π‘Ž15                         𝑇14 , 𝑑          + π‘Ž22                    𝑇21 , 𝑑
           = π‘Ž18              𝐺17 βˆ’                                                                                                                                                                  𝐺18 -
    𝑑𝑑                                         β€²β€²             4,4,4,4,4                            β€²β€²               5,5,5,5,5                              β€²β€²     6,6,6,6,6
                                            + π‘Ž26                               𝑇25 , 𝑑         + π‘Ž30                                  𝑇29 , 𝑑          + π‘Ž34                        𝑇33 , 𝑑
         β€²β€²                   2                    β€²β€²                2                 β€²β€²                       2
Where + π‘Ž16                           𝑇17 , 𝑑 , + π‘Ž17                     𝑇17 , 𝑑 , + π‘Ž18                              𝑇17 , 𝑑 are first augmentation coefficients for category 1, 2 and 3
   β€²β€²            1,1,                 β€²β€²              1,1,                        β€²β€²                     1,1,
+ π‘Ž13                    𝑇14 , 𝑑 , + π‘Ž14                             𝑇14 , 𝑑 , + π‘Ž15                                 𝑇14 , 𝑑         are second augmentation coefficient for category 1, 2 and 3
   β€²β€²            3,3,3                    β€²β€²             3,3,3                        β€²β€²                  3,3,3
+ π‘Ž20                        𝑇21 , 𝑑 , + π‘Ž21                             𝑇21 , 𝑑 , + π‘Ž22                                 𝑇21 , 𝑑         are third augmentation coefficient for category 1, 2 and
3
      β€²β€²                                        β€²β€²             4,4,4,4,4                         β€²β€²
+ π‘Ž24 4,4,4,4,4                    𝑇25 , 𝑑 , + π‘Ž25                                  𝑇25 , 𝑑 , + π‘Ž26                   4,4,4,4,4
                                                                                                                                         𝑇25 , 𝑑         are fourth augmentation coefficient for category
1, 2 and 3
      β€²β€²                                        β€²β€²                                                      β€²β€²
+ π‘Ž28 5,5,5,5,5                    𝑇29 , 𝑑 , + π‘Ž29             5,5,5,5,5
                                                                                     𝑇29 , 𝑑       , + π‘Ž30              5,5,5,5,5
                                                                                                                                              𝑇29 , 𝑑     are fifth augmentation coefficient for category
1, 2 and 3
      β€²β€²                                        β€²β€²                                               β€²β€²
+ π‘Ž32 6,6,6,6,6                    𝑇33 , 𝑑 , + π‘Ž33             6,6,6,6,6
                                                                                    𝑇33 , 𝑑 , + π‘Ž34                     6,6,6,6,6
                                                                                                                                           𝑇33 , 𝑑        are sixth augmentation coefficient for category
1, 2 and 3 -
                                                β€²     2           β€²β€²         2                              β€²β€²            1,1,                       β€²β€²         3,3,3,
𝑑 𝑇16                    2
                                               𝑏16             βˆ’ 𝑏16                    𝐺19 , 𝑑          βˆ’ 𝑏13                         𝐺, 𝑑       – 𝑏20                     𝐺23 , 𝑑
    𝑑𝑑
          = 𝑏16               𝑇17 βˆ’                                                                                                                                                                  𝑇16 -
                                               β€²β€²        4,4,4,4,4                                β€²β€²            5,5,5,5,5                              β€²β€²        6,6,6,6,6
                                            βˆ’ 𝑏24                           𝐺27 , 𝑑            βˆ’ 𝑏28                                 𝐺31 , 𝑑        βˆ’ 𝑏32                           𝐺35 , 𝑑
                                                β€²        2        β€²β€²            2                            β€²β€²              1,1,                     β€²β€²        3,3,3,
𝑑 𝑇17
                                               𝑏17             βˆ’ 𝑏17                    𝐺19 , 𝑑           βˆ’ 𝑏14                        𝐺, 𝑑        – 𝑏21                     𝐺23 , 𝑑
                         2
    𝑑𝑑
          = 𝑏17               𝑇16 βˆ’                       4,4,4,4,4
                                                                                                                                                                                                     𝑇17 -
                                               β€²β€²                                                 β€²β€²            5,5,5,5,5                              β€²β€²        6,6,6,6,6
                                            βˆ’ 𝑏25                           𝐺27 , 𝑑            βˆ’ 𝑏29                                 𝐺31 , 𝑑        βˆ’ 𝑏33                           𝐺35 , 𝑑

                                                                                                     www.ijmer.com                                                                                              1983 | Page
International Journal of Modern Engineering Research (IJMER)
                           www.ijmer.com                    Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645

                                             β€²       2          β€²β€²           2                              β€²β€²            1,1,                   β€²β€²      3,3,3,
𝑑 𝑇18                  2
                                            𝑏18              βˆ’ 𝑏18                       𝐺19 , 𝑑         βˆ’ 𝑏15                       𝐺, 𝑑     – 𝑏22                  𝐺23 , 𝑑
 𝑑𝑑
        = 𝑏18               𝑇17 βˆ’                                                                                                                                                            𝑇18 -
                                          β€²β€²         4,4,4,4,4                                  β€²β€²            5,5,5,5,5                             β€²β€²    6,6,6,6,6
                                       βˆ’ 𝑏26                             𝐺27 , 𝑑             βˆ’ 𝑏30                               𝐺31 , 𝑑         βˆ’ 𝑏34                     𝐺35 , 𝑑
         β€²β€²                 2                     β€²β€²                 2                              β€²β€²             2
where βˆ’ 𝑏16                       𝐺19 , 𝑑    , βˆ’ 𝑏17                         𝐺19 , 𝑑           , βˆ’ 𝑏18                     𝐺19 , 𝑑          are first detrition coefficients for category 1, 2 and 3
   β€²β€²         1,1,               β€²β€²           1,1,                     β€²β€²                     1,1,
βˆ’ b13                  G, t , βˆ’ 𝑏14                          𝐺, 𝑑 , βˆ’ 𝑏15                                 𝐺, 𝑑      are second detrition coefficients for category 1,2 and 3
   β€²β€²         3,3,3,                    β€²β€²           3,3,3,                        β€²β€²                      3,3,3,
βˆ’ 𝑏20                      𝐺23 , 𝑑 , βˆ’ 𝑏21                            𝐺23 , 𝑑 , βˆ’ 𝑏22                                      𝐺23 , 𝑑          are third detrition coefficients for category 1,2 and 3
     β€²β€²       4,4,4,4,4                      β€²β€²              4,4,4,4,4                        β€²β€²                    4,4,4,4,4
 βˆ’ 𝑏24                          𝐺27 , 𝑑 , βˆ’ 𝑏25                                  𝐺27 , 𝑑 , βˆ’ 𝑏26                                       𝐺27 , 𝑑      are fourth detrition coefficients for category 1,2
and 3
     β€²β€²       5,5,5,5,5                      β€²β€²                  5,5,5,5,5                        β€²β€²                   5,5,5,5,5
 βˆ’ 𝑏28                          𝐺31 , 𝑑 , βˆ’ 𝑏29                                      𝐺31 , 𝑑 , βˆ’ 𝑏30                                        𝐺31 , 𝑑 are fifth detrition coefficients for category 1,2
and 3
     β€²β€²       6,6,6,6,6                      β€²β€²              6,6,6,6,6                        β€²β€²                     6,6,6,6,6
 βˆ’ 𝑏32                          𝐺35 , 𝑑 , βˆ’ 𝑏33                                  𝐺35 , 𝑑 , βˆ’ 𝑏34                                        𝐺35 , 𝑑     are sixth detrition coefficients for category 1,2
and 3 -
                                               β€²         3          β€²β€²            3                          β€²β€²            2,2,2                       β€²β€²         1,1,1,
                                              π‘Ž20                + π‘Ž20                      𝑇21 , 𝑑       + π‘Ž16                         𝑇17 , 𝑑     + π‘Ž13                   𝑇14 , 𝑑
𝑑 𝐺20                  3
        = π‘Ž20               𝐺21 βˆ’             β€²β€²         4,4,4,4,4,4                                      β€²β€²       5,5,5,5,5,5                            β€²β€²   6,6,6,6,6,6                           𝐺20 -
 𝑑𝑑                                     +    π‘Ž24                                 𝑇25 , 𝑑           +     π‘Ž28                            𝑇29 , 𝑑     +    π‘Ž32                       𝑇33 , 𝑑

                                              β€²          3          β€²β€²           3                          β€²β€²            2,2,2                       β€²β€²       1,1,1,
𝑑 𝐺21
                                             π‘Ž21                 + π‘Ž21                    𝑇21 , 𝑑        + π‘Ž17                         𝑇17 , 𝑑     + π‘Ž14                   𝑇14 , 𝑑
                       3
        = π‘Ž21               𝐺20 βˆ’                    4,4,4,4,4,4
                                                                                                                                                                                                 𝐺21 -
 𝑑𝑑                                       β€²β€²                                                        β€²β€²           5,5,5,5,5,5                          β€²β€²       6,6,6,6,6,6
                                       + π‘Ž25                                     𝑇25 , 𝑑         + π‘Ž29                                 𝑇29 , 𝑑     + π‘Ž33                           𝑇33 , 𝑑
                                              β€²      3              β€²β€²           3                          β€²β€²            2,2,2                       β€²β€²       1,1,1,
𝑑 𝐺22                  3
                                             π‘Ž22                 + π‘Ž22                    𝑇21 , 𝑑        + π‘Ž18                         𝑇17 , 𝑑     + π‘Ž15                   𝑇14 , 𝑑
        = π‘Ž22               𝐺21 βˆ’                                                                                                                                                                𝐺22 -
 𝑑𝑑                                       β€²β€²         4,4,4,4,4,4                                    β€²β€²           5,5,5,5,5,5                          β€²β€²       6,6,6,6,6,6
                                       + π‘Ž26                                   𝑇25 , 𝑑           + π‘Ž30                                 𝑇29 , 𝑑     + π‘Ž34                           𝑇33 , 𝑑
   β€²β€²         3                    β€²β€²         3                       β€²β€²                     3
+ π‘Ž20                 𝑇21 , 𝑑 , + π‘Ž21                    𝑇21 , 𝑑 , + π‘Ž22                              𝑇21 , 𝑑       are first augmentation coefficients for category 1, 2 and 3
         β€²β€²   2,2,2                          β€²β€²      2,2,2                                          β€²β€²     2,2,2
 +      π‘Ž16                𝑇17 , 𝑑 , +      π‘Ž17                      𝑇17 , 𝑑             , +       π‘Ž18                    𝑇17 , 𝑑      are second augmentation coefficients for category 1, 2
and 3
     β€²β€²       1,1,1,                    β€²β€²           1,1,1,                        β€²β€²                      1,1,1,
 + π‘Ž13                     𝑇14 , 𝑑 , + π‘Ž14                            𝑇14 , 𝑑 , + π‘Ž15                                     𝑇14 , 𝑑       are third augmentation coefficients for category 1, 2
and 3
     β€²β€²                              β€²β€²                         β€²β€²  4,4,4,4,4,4
 + π‘Ž24 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25                𝑇25 , 𝑑 , + π‘Ž26 4,4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficients for
category 1, 2 and 3
     β€²β€²                         β€²β€²                           β€²β€²
 + π‘Ž28 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž29 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž30 5,5,5,5,5,5 𝑇29 , 𝑑    are fifth augmentation coefficients for
category 1, 2 and 3
     β€²β€²                           β€²β€²                         β€²β€²
 + π‘Ž32 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž34 6,6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficients for
category 1, 2 and 3 -
                                               β€²             3       β€²β€²              3                        β€²β€²            2,2,2                      β€²β€²         1,1,1,
𝑑 𝑇20                                         𝑏20                 βˆ’ 𝑏20                     𝐺23 , 𝑑        – 𝑏16                        𝐺19 , 𝑑     – 𝑏13                   𝐺, 𝑑
                       3
 𝑑𝑑
        = 𝑏20               𝑇21 βˆ’                                                                                                                                                                    𝑇20 -
                                          β€²β€²         4,4,4,4,4,4                                    β€²β€²           5,5,5,5,5,5                          β€²β€²       6,6,6,6,6,6
                                       βˆ’ 𝑏24                                 𝐺27 , 𝑑             βˆ’ 𝑏28                                 𝐺31 , 𝑑     βˆ’ 𝑏32                           𝐺35 , 𝑑
                                               β€²         3          β€²β€²            3                           β€²β€²           2,2,2                       β€²β€²      1,1,1,
𝑑 𝑇21
                                              𝑏21                βˆ’ 𝑏21                     𝐺23 , 𝑑         – 𝑏17                        𝐺19 , 𝑑     – 𝑏14                   𝐺, 𝑑
                       3
        = 𝑏21               𝑇20 βˆ’                    4,4,4,4,4,4
                                                                                                                                                                                                     𝑇21 -
 𝑑𝑑                                       β€²β€²                                                          β€²β€²         5,5,5,5,5,5                           β€²β€²      6,6,6,6,6,6
                                       βˆ’ 𝑏25                                   𝐺27 , 𝑑             βˆ’ 𝑏29                               𝐺31 , 𝑑      βˆ’ 𝑏33                          𝐺35 , 𝑑
                                               β€²          3          β€²β€²           3                           β€²β€²           2,2,2                       β€²β€²         1,1,1,
𝑑 𝑇22                  3
                                              𝑏22                 βˆ’ 𝑏22                     𝐺23 , 𝑑        – 𝑏18                        𝐺19 , 𝑑     – 𝑏15                   𝐺, 𝑑
 𝑑𝑑
        = 𝑏22               𝑇21 βˆ’                                                                                                                                                                    𝑇22 -
                                          β€²β€²         4,4,4,4,4,4                                    β€²β€²           5,5,5,5,5,5                          β€²β€²       6,6,6,6,6,6
                                       βˆ’ 𝑏26                                 𝐺27 , 𝑑             βˆ’ 𝑏30                                 𝐺31 , 𝑑     βˆ’ 𝑏34                           𝐺35 , 𝑑
   β€²β€²         3                    β€²β€²         3                               β€²β€²                 3
βˆ’ 𝑏20                 𝐺23 , 𝑑 , βˆ’ 𝑏21                    𝐺23 , 𝑑         , βˆ’ 𝑏22                         𝐺23 , 𝑑       are first detrition coefficients for category 1, 2 and 3
         β€²β€²   2,2,2                          β€²β€²      2,2,2                                          β€²β€²     2,2,2
βˆ’       𝑏16                𝐺19 , 𝑑 , βˆ’      𝑏17                      𝐺19 , 𝑑 , βˆ’                   𝑏18                    𝐺19 , 𝑑       are second detrition coefficients for category 1, 2 and 3
   β€²β€²         1,1,1,                 β€²β€²           1,1,1,                     β€²β€²                      1,1,1,
βˆ’ 𝑏13                      𝐺, 𝑑 , βˆ’ 𝑏14                            𝐺, 𝑑 , βˆ’ 𝑏15                                    𝐺, 𝑑       are third detrition coefficients for category 1,2 and 3
     β€²β€²                         β€²β€²                               4,4,4,4,4,4                          β€²β€²
βˆ’ 𝑏24 4,4,4,4,4,4 𝐺27 , 𝑑 , βˆ’ 𝑏25                                                        𝐺27 , 𝑑 , βˆ’ 𝑏26                  4,4,4,4,4,4
                                                                                                                                              𝐺27 , 𝑑 are fourth detrition coefficients for category
1, 2 and 3
        β€²β€²                         β€²β€²                                                                   β€²β€²
  βˆ’ 𝑏28 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29                                5,5,5,5,5,5
                                                                                           𝐺31 , 𝑑 , βˆ’ 𝑏30                   5,5,5,5,5,5
                                                                                                                                                  𝐺31 , 𝑑 are fifth detrition coefficients for category
1, 2 and 3

                                                                                                   www.ijmer.com                                                                                             1984 | Page
International Journal of Modern Engineering Research (IJMER)
                    www.ijmer.com                       Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016      ISSN: 2249-6645
    β€²β€²                                   β€²β€²                                                β€²β€²
 βˆ’ 𝑏32 6,6,6,6,6,6          𝐺35 , 𝑑 , βˆ’ 𝑏33               6,6,6,6,6,6
                                                                              𝐺35 , 𝑑 , βˆ’ 𝑏34                    6,6,6,6,6,6
                                                                                                                                    𝐺35 , 𝑑 are sixth detrition coefficients for category 1,
2 and 3 -
-
                                                                 β€²      4        β€²β€²           4                          β€²β€²          5,5,                     β€²β€²      6,6,
                  𝑑𝐺24                                          π‘Ž24           + π‘Ž24                     𝑇25 , 𝑑       + π‘Ž28                    𝑇29 , 𝑑     + π‘Ž32              𝑇33 , 𝑑
                                        4
                       = π‘Ž24                  𝐺25 βˆ’                                                                                                                                            𝐺24 -
                   𝑑𝑑                                           β€²β€²
                                                             + π‘Ž13            1,1,1,1
                                                                                              𝑇14 , 𝑑             β€²β€²
                                                                                                               + π‘Ž16           2,2,2,2
                                                                                                                                             𝑇17 , 𝑑         β€²β€²
                                                                                                                                                          + π‘Ž20     3,3,3,3
                                                                                                                                                                                 𝑇21 , 𝑑
                                                                 β€²      4        β€²β€²              4                          β€²β€²       5,5,                      β€²β€²      6,6
                  𝑑𝐺25                  4
                                                                π‘Ž25           + π‘Ž25                        𝑇25 , 𝑑       + π‘Ž29                  𝑇29 , 𝑑     + π‘Ž33             𝑇33 , 𝑑
                       = π‘Ž25                  𝐺24 βˆ’                                                                                                                                            𝐺25 -
                   𝑑𝑑                                           β€²β€²            1,1,1,1                             β€²β€²           2,2,2,2                       β€²β€²     3,3,3,3
                                                             + π‘Ž14                            𝑇14 , 𝑑          + π‘Ž17                         𝑇17 , 𝑑      + π‘Ž21                  𝑇21 , 𝑑
                                                                 β€²      4        β€²β€²           4                          β€²β€²          5,5,                     β€²β€²      6,6,
                  𝑑𝐺26                                          π‘Ž26           + π‘Ž26                     𝑇25 , 𝑑       + π‘Ž30                    𝑇29 , 𝑑     + π‘Ž34              𝑇33 , 𝑑
                                        4
                       = π‘Ž26                  𝐺25 βˆ’                           1,1,1,1
                                                                                                                                                                                               𝐺26 -
                   𝑑𝑑                                          β€²β€²
                                                            + π‘Ž15                             𝑇14 , 𝑑             β€²β€²
                                                                                                               + π‘Ž18           2,2,2,2
                                                                                                                                             𝑇17 , 𝑑         β€²β€²
                                                                                                                                                          + π‘Ž22     3,3,3,3
                                                                                                                                                                                 𝑇21 , 𝑑
              β€²β€²    4                         β€²β€²      4                          β€²β€²      4
 π‘Šπ‘•π‘’π‘Ÿπ‘’       π‘Ž24            𝑇25 , 𝑑 ,        π‘Ž25            𝑇25 , 𝑑 ,           π‘Ž26                  𝑇25 , 𝑑         π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
    β€²β€²     5,5,                  β€²β€²            5,5,                     β€²β€²                   5,5,
 + π‘Ž28              𝑇29 , 𝑑 , + π‘Ž29                        𝑇29 , 𝑑 , + π‘Ž30                                 𝑇29 , 𝑑       π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
      β€²β€²   6,6,                          β€²β€²    6,6,                                β€²β€²        6,6,
 +   π‘Ž32            𝑇33 , 𝑑 , +         π‘Ž33                𝑇33 , 𝑑 , +            π‘Ž34                      𝑇33 , 𝑑       π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
     β€²β€²                              β€²β€²                                        β€²β€²                     1,1,1,1
+ π‘Ž13 1,1,1,1           𝑇14 , 𝑑 , + π‘Ž14            1,1,1,1
                                                                  𝑇14 , 𝑑 , + π‘Ž15                                    𝑇14 , 𝑑        are fourth augmentation coefficients for category 1,
2,and 3
     β€²β€²                              β€²β€²                                            β€²β€²
+ π‘Ž16 2,2,2,2           𝑇17 , 𝑑 , + π‘Ž17             2,2,2,2
                                                                      𝑇17 , 𝑑 , + π‘Ž18                  2,2,2,2
                                                                                                                     𝑇17 , 𝑑        are fifth augmentation coefficients for category 1,
2,and 3
     β€²β€²                              β€²β€²                                            β€²β€²
+ π‘Ž20 3,3,3,3           𝑇21 , 𝑑 , + π‘Ž21            3,3,3,3
                                                                      𝑇21 , 𝑑 , + π‘Ž22                  3,3,3,3
                                                                                                                      𝑇21 , 𝑑 are sixth augmentation coefficients for category 1,
2,and 3 -
                                                                 β€²      4       β€²β€²           4                           β€²β€²          5,5,                      β€²β€²     6,6,
                   𝑑𝑇24                                         𝑏24          βˆ’ 𝑏24                     𝐺27 , 𝑑        βˆ’ 𝑏28                    𝐺31 , 𝑑      – 𝑏32             𝐺35 , 𝑑
                                         4
                        = 𝑏24                 𝑇25 βˆ’                                                                                                                                            𝑇24 -
                    𝑑𝑑                                             β€²β€²
                                                                βˆ’ 𝑏13          1,1,1,1
                                                                                              𝐺, 𝑑                β€²β€²
                                                                                                               βˆ’ 𝑏16       2,2,2,2
                                                                                                                                            𝐺19 , 𝑑          β€²β€²
                                                                                                                                                          – 𝑏20    3,3,3,3
                                                                                                                                                                              𝐺23 , 𝑑
                                                                 β€²      4       β€²β€²           4                           β€²β€²          5,5,                      β€²β€²     6,6,
                   𝑑𝑇25                 4
                                                                𝑏25          βˆ’ 𝑏25                     𝐺27 , 𝑑        βˆ’ 𝑏29                    𝐺31 , 𝑑      – 𝑏33             𝐺35 , 𝑑
                        = 𝑏25                 𝑇24 βˆ’                                                                                                                                            𝑇25 -
                    𝑑𝑑                                             β€²β€²          1,1,1,1                            β€²β€²       2,2,2,2                           β€²β€²    3,3,3,3
                                                                βˆ’ 𝑏14                         𝐺, 𝑑             βˆ’ 𝑏17                        𝐺19 , 𝑑       – 𝑏21               𝐺23 , 𝑑
                                                                 β€²      4       β€²β€²           4                              β€²β€²       5,5,                      β€²β€²     6,6,
                   𝑑𝑇26                                         𝑏26          βˆ’ 𝑏26                     𝐺27 , 𝑑           βˆ’ 𝑏30                  𝐺31 , 𝑑     – 𝑏34                𝐺35 , 𝑑
                                        4
                        = 𝑏26                 𝑇25 βˆ’                            1,1,1,1
                                                                                                                                                                                               𝑇26 -
                    𝑑𝑑                                             β€²β€²
                                                                βˆ’ 𝑏15                            𝐺, 𝑑             β€²β€²
                                                                                                               βˆ’ 𝑏18           2,2,2,2
                                                                                                                                            𝐺19 , 𝑑          β€²β€²
                                                                                                                                                          – 𝑏22    3,3,3,3
                                                                                                                                                                                 𝐺23 , 𝑑
          β€²β€²            4                  β€²β€²               4                      β€²β€²                   4
 π‘Šπ‘•π‘’π‘Ÿπ‘’ βˆ’ 𝑏24                  𝐺27 , 𝑑 , βˆ’ 𝑏25                         𝐺27 , 𝑑 , βˆ’ 𝑏26                           𝐺27 , 𝑑        π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
      β€²β€²   5,5,                          β€²β€²    5,5,                                β€²β€²        5,5,
βˆ’    𝑏28           𝐺31 , 𝑑 , βˆ’          𝑏29                𝐺31 , 𝑑 , βˆ’            𝑏30                      𝐺31 , 𝑑        π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
   β€²β€²      6,6,                 β€²β€²             6,6,                     β€²β€²                   6,6,
βˆ’ 𝑏32              𝐺35 , 𝑑 , βˆ’ 𝑏33                         𝐺35 , 𝑑 , βˆ’ 𝑏34                                 𝐺35 , 𝑑       π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
    β€²β€²                    β€²β€²                     β€²β€²                                          1,1,1,1
βˆ’ 𝑏13 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏15              𝐺, 𝑑
π‘Žπ‘Ÿπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘π‘• π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
    β€²β€²                       β€²β€²                     β€²β€²
βˆ’ 𝑏16 2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏17 2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏18 2,2,2,2 𝐺19 , 𝑑
π‘Žπ‘Ÿπ‘’ 𝑓𝑖𝑓𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3
    β€²β€²                     β€²β€²                      β€²β€²
– 𝑏20 3,3,3,3 𝐺23 , 𝑑 , – 𝑏21 3,3,3,3 𝐺23 , 𝑑 , – 𝑏22 3,3,3,3 𝐺23 , 𝑑
π‘Žπ‘Ÿπ‘’ 𝑠𝑖π‘₯𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 -
                                                                 β€²      5       β€²β€²           5                          β€²β€²          4,4,                      β€²β€²     6,6,6
              𝑑𝐺28                                              π‘Ž28          + π‘Ž28                     𝑇29 , 𝑑       + π‘Ž24                    𝑇25 , 𝑑      + π‘Ž32                 𝑇33 , 𝑑
                                   5
                   = π‘Ž28                    𝐺29 βˆ’                                                                                                                                                𝐺28 -
               𝑑𝑑                                            β€²β€²
                                                          + π‘Ž13             1,1,1,1,1
                                                                                             𝑇14 , 𝑑              β€²β€²
                                                                                                               + π‘Ž16           2,2,2,2,2
                                                                                                                                              𝑇17 , 𝑑         β€²β€²
                                                                                                                                                           + π‘Ž20     3,3,3,3,3
                                                                                                                                                                                    𝑇21 , 𝑑
                                                                 β€²      5       β€²β€²           5                          β€²β€²          4,4,                      β€²β€²     6,6,6
              𝑑𝐺29                 5
                                                                π‘Ž29          + π‘Ž29                     𝑇29 , 𝑑       + π‘Ž25                    𝑇25 , 𝑑      + π‘Ž33                 𝑇33 , 𝑑
                   = π‘Ž29                 𝐺28 βˆ’                                                                                                                                                   𝐺29 -
               𝑑𝑑                                            β€²β€²             1,1,1,1,1                             β€²β€²           2,2,2,2,2                      β€²β€²     3,3,3,3,3
                                                          + π‘Ž14                              𝑇14 , 𝑑           + π‘Ž17                          𝑇17 , 𝑑      + π‘Ž21                    𝑇21 , 𝑑
                                                                 β€²      5       β€²β€²           5                          β€²β€²          4,4,                      β€²β€²     6,6,6
                                                                π‘Ž30          + π‘Ž30                     𝑇29 , 𝑑       + π‘Ž26                    𝑇25 , 𝑑      + π‘Ž34                 𝑇33 , 𝑑
              𝑑𝐺30                 5
                   = π‘Ž30                 𝐺29 βˆ’               β€²β€²             1,1,1,1,1                             β€²β€²                                          β€²β€²
                                                                                                                                                                                                 𝐺30 -
               𝑑𝑑                                         + π‘Ž15                              𝑇14 , 𝑑           + π‘Ž18           2,2,2,2,2
                                                                                                                                              𝑇17 , 𝑑      + π‘Ž22     3,3,3,3,3
                                                                                                                                                                                     𝑇21 , 𝑑

           β€²β€²           5                  β€²β€²               5                  β€²β€²                      5
π‘Šπ‘•π‘’π‘Ÿπ‘’ + π‘Ž28                   𝑇29 , 𝑑 , + π‘Ž29                     𝑇29 , 𝑑 , + π‘Ž30                              𝑇29 , 𝑑     π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦
1, 2 π‘Žπ‘›π‘‘ 3
                                                                                        www.ijmer.com                                                                                                  1985 | Page
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016
Be2419772016

More Related Content

What's hot

Y. H. Presentation
Y. H. PresentationY. H. Presentation
Y. H. Presentationyamen78
Β 
MMath Paper, Canlin Zhang
MMath Paper, Canlin ZhangMMath Paper, Canlin Zhang
MMath Paper, Canlin Zhangcanlin zhang
Β 
Matter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as MatterMatter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as MatterVasil Penchev
Β 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsMaurice R. TREMBLAY
Β 
PART X.1 - Superstring Theory
PART X.1 - Superstring TheoryPART X.1 - Superstring Theory
PART X.1 - Superstring TheoryMaurice R. TREMBLAY
Β 
Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...
Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...
Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...IRJET Journal
Β 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approachSpringer
Β 
Fundamentals of quantum computing part i rev
Fundamentals of quantum computing   part i revFundamentals of quantum computing   part i rev
Fundamentals of quantum computing part i revPRADOSH K. ROY
Β 
Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...
Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...
Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...IJRES Journal
Β 
Heuristic approach for quantized space & time
Heuristic approach for quantized space & timeHeuristic approach for quantized space & time
Heuristic approach for quantized space & timeEran Sinbar
Β 
Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...Alexander Decker
Β 
Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...Alexander Decker
Β 
Quantized fabric of space and time theory
Quantized fabric of space and time theoryQuantized fabric of space and time theory
Quantized fabric of space and time theoryEran Sinbar
Β 
Effective properties of heterogeneous materials
Effective properties of heterogeneous materialsEffective properties of heterogeneous materials
Effective properties of heterogeneous materialsSpringer
Β 
Parellelism in spectral methods
Parellelism in spectral methodsParellelism in spectral methods
Parellelism in spectral methodsRamona Corman
Β 
Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...
Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...
Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...sipij
Β 
Monoton-working version-1995.doc
Monoton-working version-1995.docMonoton-working version-1995.doc
Monoton-working version-1995.docbutest
Β 

What's hot (19)

Y. H. Presentation
Y. H. PresentationY. H. Presentation
Y. H. Presentation
Β 
MMath Paper, Canlin Zhang
MMath Paper, Canlin ZhangMMath Paper, Canlin Zhang
MMath Paper, Canlin Zhang
Β 
MASTER_THESIS-libre
MASTER_THESIS-libreMASTER_THESIS-libre
MASTER_THESIS-libre
Β 
Matter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as MatterMatter as Information. Quantum Information as Matter
Matter as Information. Quantum Information as Matter
Β 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum Electrodynamics
Β 
PART X.1 - Superstring Theory
PART X.1 - Superstring TheoryPART X.1 - Superstring Theory
PART X.1 - Superstring Theory
Β 
Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...
Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...
Development, Optimization, and Analysis of Cellular Automaton Algorithms to S...
Β 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approach
Β 
Fundamentals of quantum computing part i rev
Fundamentals of quantum computing   part i revFundamentals of quantum computing   part i rev
Fundamentals of quantum computing part i rev
Β 
Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...
Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...
Semi-global Leaderless Consensus with Input Saturation Constraints via Adapti...
Β 
Heuristic approach for quantized space & time
Heuristic approach for quantized space & timeHeuristic approach for quantized space & time
Heuristic approach for quantized space & time
Β 
Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...Topology of charge density from pseudopotential density functional theory cal...
Topology of charge density from pseudopotential density functional theory cal...
Β 
Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...Structural, electronic, elastic, optical and thermodynamical properties of zi...
Structural, electronic, elastic, optical and thermodynamical properties of zi...
Β 
Quantized fabric of space and time theory
Quantized fabric of space and time theoryQuantized fabric of space and time theory
Quantized fabric of space and time theory
Β 
Klt
KltKlt
Klt
Β 
Effective properties of heterogeneous materials
Effective properties of heterogeneous materialsEffective properties of heterogeneous materials
Effective properties of heterogeneous materials
Β 
Parellelism in spectral methods
Parellelism in spectral methodsParellelism in spectral methods
Parellelism in spectral methods
Β 
Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...
Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...
Heuristic Sensing Schemes for Four-Target Detection in Time-Constrained Vecto...
Β 
Monoton-working version-1995.doc
Monoton-working version-1995.docMonoton-working version-1995.doc
Monoton-working version-1995.doc
Β 

Viewers also liked

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...
Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...
Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...IJMER
Β 
Optimization of Bolted Joints for Aircraft Engine Using Genetic Algorithms
Optimization of Bolted Joints for Aircraft Engine Using Genetic  AlgorithmsOptimization of Bolted Joints for Aircraft Engine Using Genetic  Algorithms
Optimization of Bolted Joints for Aircraft Engine Using Genetic AlgorithmsIJMER
Β 
Bg31189192
Bg31189192 Bg31189192
Bg31189192 IJMER
Β 
A Comparison Of Smart Routings In Mobile Ad Hoc Networks(MANETs)
A Comparison Of Smart Routings In Mobile Ad Hoc  Networks(MANETs) A Comparison Of Smart Routings In Mobile Ad Hoc  Networks(MANETs)
A Comparison Of Smart Routings In Mobile Ad Hoc Networks(MANETs) IJMER
Β 
Objectives and assignment
Objectives and assignmentObjectives and assignment
Objectives and assignmentzinger3891
Β 
Bd31172177
Bd31172177Bd31172177
Bd31172177IJMER
Β 
On The Zeros of Polynomials
On The Zeros of PolynomialsOn The Zeros of Polynomials
On The Zeros of PolynomialsIJMER
Β 
Bb31166168
Bb31166168Bb31166168
Bb31166168IJMER
Β 
Image Denoising Using Non Linear Filter
Image Denoising Using Non Linear FilterImage Denoising Using Non Linear Filter
Image Denoising Using Non Linear FilterIJMER
Β 
Cu3210381040
Cu3210381040Cu3210381040
Cu3210381040IJMER
Β 
Optimization of Surface Impedance for Reducing Surface Waves between Antennas
Optimization of Surface Impedance for Reducing Surface Waves between AntennasOptimization of Surface Impedance for Reducing Surface Waves between Antennas
Optimization of Surface Impedance for Reducing Surface Waves between AntennasIJMER
Β 
An Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking ProcessAn Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking ProcessIJMER
Β 
Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...
Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...
Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...IJMER
Β 
D0502 01 1722
D0502 01 1722D0502 01 1722
D0502 01 1722IJMER
Β 
Dd31477485
Dd31477485Dd31477485
Dd31477485IJMER
Β 
Cj31365368
Cj31365368Cj31365368
Cj31365368IJMER
Β 
Choosing the Best Probabilistic Model for Estimating Seismic Demand in Steel...
Choosing the Best Probabilistic Model for Estimating Seismic Demand in  Steel...Choosing the Best Probabilistic Model for Estimating Seismic Demand in  Steel...
Choosing the Best Probabilistic Model for Estimating Seismic Demand in Steel...IJMER
Β 
Bi32798808
Bi32798808Bi32798808
Bi32798808IJMER
Β 
το δημοτικο τραγουδι
το δημοτικο τραγουδιτο δημοτικο τραγουδι
το δημοτικο τραγουδιPopi Kaza
Β 

Viewers also liked (20)

Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...
Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...
Signal Processing Algorithm of Space Time Coded Waveforms for Coherent MIMO R...
Β 
Tu van-tri-lieu
Tu van-tri-lieuTu van-tri-lieu
Tu van-tri-lieu
Β 
Optimization of Bolted Joints for Aircraft Engine Using Genetic Algorithms
Optimization of Bolted Joints for Aircraft Engine Using Genetic  AlgorithmsOptimization of Bolted Joints for Aircraft Engine Using Genetic  Algorithms
Optimization of Bolted Joints for Aircraft Engine Using Genetic Algorithms
Β 
Bg31189192
Bg31189192 Bg31189192
Bg31189192
Β 
A Comparison Of Smart Routings In Mobile Ad Hoc Networks(MANETs)
A Comparison Of Smart Routings In Mobile Ad Hoc  Networks(MANETs) A Comparison Of Smart Routings In Mobile Ad Hoc  Networks(MANETs)
A Comparison Of Smart Routings In Mobile Ad Hoc Networks(MANETs)
Β 
Objectives and assignment
Objectives and assignmentObjectives and assignment
Objectives and assignment
Β 
Bd31172177
Bd31172177Bd31172177
Bd31172177
Β 
On The Zeros of Polynomials
On The Zeros of PolynomialsOn The Zeros of Polynomials
On The Zeros of Polynomials
Β 
Bb31166168
Bb31166168Bb31166168
Bb31166168
Β 
Image Denoising Using Non Linear Filter
Image Denoising Using Non Linear FilterImage Denoising Using Non Linear Filter
Image Denoising Using Non Linear Filter
Β 
Cu3210381040
Cu3210381040Cu3210381040
Cu3210381040
Β 
Optimization of Surface Impedance for Reducing Surface Waves between Antennas
Optimization of Surface Impedance for Reducing Surface Waves between AntennasOptimization of Surface Impedance for Reducing Surface Waves between Antennas
Optimization of Surface Impedance for Reducing Surface Waves between Antennas
Β 
An Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking ProcessAn Overview of Clearance Optimization in Sheet Metal Blanking Process
An Overview of Clearance Optimization in Sheet Metal Blanking Process
Β 
Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...
Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...
Optimal Motion Planning For a Robot Arm by Using Artificial Bee Colony (ABC) ...
Β 
D0502 01 1722
D0502 01 1722D0502 01 1722
D0502 01 1722
Β 
Dd31477485
Dd31477485Dd31477485
Dd31477485
Β 
Cj31365368
Cj31365368Cj31365368
Cj31365368
Β 
Choosing the Best Probabilistic Model for Estimating Seismic Demand in Steel...
Choosing the Best Probabilistic Model for Estimating Seismic Demand in  Steel...Choosing the Best Probabilistic Model for Estimating Seismic Demand in  Steel...
Choosing the Best Probabilistic Model for Estimating Seismic Demand in Steel...
Β 
Bi32798808
Bi32798808Bi32798808
Bi32798808
Β 
το δημοτικο τραγουδι
το δημοτικο τραγουδιτο δημοτικο τραγουδι
το δημοτικο τραγουδι
Β 

Similar to Be2419772016

A General Relativity Primer
A General Relativity PrimerA General Relativity Primer
A General Relativity PrimerIOSR Journals
Β 
Molecular dynamics and namd simulation
Molecular dynamics and namd simulationMolecular dynamics and namd simulation
Molecular dynamics and namd simulationShoaibKhan488
Β 
nonlinear_rmt.pdf
nonlinear_rmt.pdfnonlinear_rmt.pdf
nonlinear_rmt.pdfGieTe
Β 
Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)
Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)
Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)SEENET-MTP
Β 
Harmoni resonance mode analysis
Harmoni resonance mode analysisHarmoni resonance mode analysis
Harmoni resonance mode analysisJose Rubens Macedo Jr
Β 
Quantum Evolutionary Algorithm for Solving Bin Packing Problem
Quantum Evolutionary Algorithm for Solving Bin Packing ProblemQuantum Evolutionary Algorithm for Solving Bin Packing Problem
Quantum Evolutionary Algorithm for Solving Bin Packing Probleminventionjournals
Β 
A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...
A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...
A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...IJDKP
Β 
maths.ppt
maths.pptmaths.ppt
maths.pptAjay Singh
Β 
Monoton-working version-1995.doc
Monoton-working version-1995.docMonoton-working version-1995.doc
Monoton-working version-1995.docbutest
Β 
Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2SamsonAjibola
Β 
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...Wissem Dhaouadi
Β 
The Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical commentThe Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical commentVasil Penchev
Β 
Behavior study of entropy in a digital image through an iterative algorithm
Behavior study of entropy in a digital image through an iterative algorithmBehavior study of entropy in a digital image through an iterative algorithm
Behavior study of entropy in a digital image through an iterative algorithmijscmcj
Β 
Samplying in Factored Dynamic Systems_Fadel.pdf
Samplying in Factored Dynamic Systems_Fadel.pdfSamplying in Factored Dynamic Systems_Fadel.pdf
Samplying in Factored Dynamic Systems_Fadel.pdfFadel Adoe
Β 
Stephy index page no 1 to 25 2
Stephy  index page no 1 to 25 2Stephy  index page no 1 to 25 2
Stephy index page no 1 to 25 2stephy97
Β 
Lec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir QureshiLec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir QureshiCivil Zone
Β 
Algoritmo quΓ’ntico
Algoritmo quΓ’nticoAlgoritmo quΓ’ntico
Algoritmo quΓ’nticoXequeMateShannon
Β 

Similar to Be2419772016 (20)

Bachelor's Thesis
Bachelor's ThesisBachelor's Thesis
Bachelor's Thesis
Β 
A General Relativity Primer
A General Relativity PrimerA General Relativity Primer
A General Relativity Primer
Β 
1538545
15385451538545
1538545
Β 
Molecular dynamics and namd simulation
Molecular dynamics and namd simulationMolecular dynamics and namd simulation
Molecular dynamics and namd simulation
Β 
nonlinear_rmt.pdf
nonlinear_rmt.pdfnonlinear_rmt.pdf
nonlinear_rmt.pdf
Β 
Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)
Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)
Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)
Β 
Harmoni resonance mode analysis
Harmoni resonance mode analysisHarmoni resonance mode analysis
Harmoni resonance mode analysis
Β 
Quantum Evolutionary Algorithm for Solving Bin Packing Problem
Quantum Evolutionary Algorithm for Solving Bin Packing ProblemQuantum Evolutionary Algorithm for Solving Bin Packing Problem
Quantum Evolutionary Algorithm for Solving Bin Packing Problem
Β 
A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...
A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...
A COMPREHENSIVE ANALYSIS OF QUANTUM CLUSTERING : FINDING ALL THE POTENTIAL MI...
Β 
maths.ppt
maths.pptmaths.ppt
maths.ppt
Β 
Monoton-working version-1995.doc
Monoton-working version-1995.docMonoton-working version-1995.doc
Monoton-working version-1995.doc
Β 
Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2
Β 
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
A+relativistic+quantum+kinematics+description+for+d-Dimensional+path+planning...
Β 
The Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical commentThe Kochen - Specker theorem in quantum mechanics: A philosophical comment
The Kochen - Specker theorem in quantum mechanics: A philosophical comment
Β 
Behavior study of entropy in a digital image through an iterative algorithm
Behavior study of entropy in a digital image through an iterative algorithmBehavior study of entropy in a digital image through an iterative algorithm
Behavior study of entropy in a digital image through an iterative algorithm
Β 
Samplying in Factored Dynamic Systems_Fadel.pdf
Samplying in Factored Dynamic Systems_Fadel.pdfSamplying in Factored Dynamic Systems_Fadel.pdf
Samplying in Factored Dynamic Systems_Fadel.pdf
Β 
Stephy index page no 1 to 25 2
Stephy  index page no 1 to 25 2Stephy  index page no 1 to 25 2
Stephy index page no 1 to 25 2
Β 
Q.M.pptx
Q.M.pptxQ.M.pptx
Q.M.pptx
Β 
Lec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir QureshiLec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir Qureshi
Β 
Algoritmo quΓ’ntico
Algoritmo quΓ’nticoAlgoritmo quΓ’ntico
Algoritmo quΓ’ntico
Β 

More from IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...IJMER
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingIJMER
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreIJMER
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...IJMER
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...IJMER
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...IJMER
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...IJMER
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationIJMER
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless BicycleIJMER
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIJMER
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemIJMER
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesIJMER
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...IJMER
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningIJMER
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessIJMER
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersIJMER
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And AuditIJMER
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLIJMER
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyIJMER
Β 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
Β 

Be2419772016

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 Von Neumann Entropy in Quantum Computation and Sine qua non Relativistic Parameters- a Gesellschaft-Gemeinschaft Model 1 Dr. K. N. Prasanna Kumar, 2Prof. B. S. Kiranagi, 3 Prof. C. S. Bagewadi 1 Post doctoral researcher, Dr KNP Kumar has three PhD’s, one each in Mathematics, Economics and Political science and a D.Litt. in Political Science, Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India 2 UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India 3 Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu university, Shankarghatta, Shimoga district, Karnataka, India ABSTRACT: Von Neumann Entropy and computational complexity theory is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. In this context, a computational problem is understood to be a task that is in principle amenable to being solved by a computer (which basically means that the problem can be stated by a set of mathematical instructions). Informally, a computational problem consists of problem instances and solutions to these problem instances. For example, primality testing is the problem of determining whether a given number is prime or not. The instances of this problem are natural numbers, and the solution to an instance is yes or no based on whether the number is prime or not.A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computational complexity theory is to determine the practical limits on what computers can and cannot do. Closely related fields in theoretical computer science are analysis of algorithms and computability theory. A key distinction between analysis of algorithms and computational complexity theory is that the former is devoted to analyzing the amount of resources needed by a particular algorithm to solve a problem, whereas the latter asks a more general question about all possible algorithms that could be used to solve the same problem. More precisely, it tries to classify problems that can or cannot be solved with appropriately restricted resources. In turn, imposing restrictions on the available resources is what distinguishes computational complexity from computability theory: the latter theory asks what kind of problems can, in principle, be solved algorithmically. Low-energy excitations of one-dimensional spin-orbital models which consist of spin waves, orbital waves, and joint spin-orbital excitations. Among the latter we identify strongly entangled spin-orbital bound states which appear as peaks in the von Neumann entropy (vNE) spectral function introduced in this work. The strong entanglement of bound states is manifested by a universal logarithmic scaling of the vNE with system size, while the vNE of other spin-orbital excitations saturates. We suggest that spin-orbital entanglement can be experimentally explored by the measurement of the dynamical spin-orbital correlations using resonant inelastic x-ray scattering, where strong spin-orbit coupling associated with the core hole plays a role. Distinguish ability of States and von Neumann Entropy have been studied by Richard Jozsa, Juergen Schlienz.Consider an ensemble of pure quantum states |psi_j>, j=1,...,n taken with prior probabilities p_j respectively. It has been shown that it is possible to increase all of the pair wise overlaps |<psi_j|psi_j>| i.e. make each constituent pair of the states more parallel (while keeping the prior probabilities the same), in such a way that the von Neumann entropy S is increased, and dually, make all pairs more orthogonal while decreasing S. This phenomenon cannot occur for ensembles in two dimensions but that it is a feature of almost all ensembles of three states in three dimensions. It is known that the von Neumann entropy characterizes the classical and quantum information capacities of the ensemble and we argue that information capacity in turn, is a manifestation of the distinguish ability of the signal states. Hence our result shows that the notion of distinguish ability within an ensemble is a global property that cannot be reduced to considering distinguish ability of each constituent pair of states. Key words: Von Neumann entropy, Quantum computation, Governing equations Introduction Von Neumann entropy In quantum statistical mechanics, von Neumann entropy, named after John von Neumann, is the extension of classical entropy concepts to the field of quantum mechanics. John von Neumann rigorously established the mathematical framework for quantum mechanics in his work Mathematische Grundlagen der Quantenmechanik In it, he provided a theory of measurement, where the usual notion of wave-function collapse is described as an irreversible process (the so-called von Neumann or projective measurement). The density matrix was introduced, with different motivations, by von Neumann and by Lev Landau. The motivation that inspired Landau was the impossibility of describing a subsystem of a composite quantum system by a state vector. On the www.ijmer.com 1977 | Page
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 other hand, von Neumann introduced the density matrix in order to develop both quantum statistical mechanics and a theory of quantum measurements. The density matrix formalism was developed to extend the tools of classical statistical mechanics to the quantum domain. In the classical framework, we compute the partition function of the system in order to evaluate all possible thermodynamic quantities. Von Neumann introduced the density matrix in the context of states and operators in a Hilbert space. The knowledge of the statistical density matrix operator would allow us to compute all average quantities in a conceptually similar, but mathematically different way. Let us suppose we have a set of wave functions |Ξ¨ ⟩ which depend parametrically on a set of quantum numbers . The natural variable which we have is the amplitude with which a particular wavefunction of the basic set participates in the actual wavefunction of the system. Let us denote the square of this amplitude by . The goal is to turn this quantity p into the classical density function in phase space. We have to verify that p goes over into the density function in the classical limit, and that it hasergodic properties. After checking that is a constant of motion, an ergodic assumption for the probabilities makes p a function of the energy only . After this procedure, one finally arrives at the density matrix formalism when seeking a form where is invariant with respect to the representation used. In the form it is written, it will only yield the correct expectation values for quantities which are diagonal with respect to the quantum numbers . Expectation values of operators which are not diagonal involve the phases of the quantum amplitudes. Suppose we encode the quantum numbers into the single index or . Then our wave function has the form The expectation value of an operator which is not diagonal in these wave functions, so The role, which was originally reserved for the quantities, is thus taken over by the density matrix of the system S. Therefore reads as The invariance of the above term is described by matrix theory. A mathematical framework was described where the expectation value of quantum operators, as described by matrices, is obtained by taking the trace of the product of the density operator and an operator (Hilbert scalar product between operators). The matrix formalism here is in the statistical mechanics framework, although it applies as well for finite quantum systems, which is usually the case, where the state of the system cannot be described by a pure state, but as a statistical operator of the above form. Mathematically, is a positive, semi definite Hermitian matrix with unit trace Given the density matrix ρ, von Neumann defined the entropy as Which is a proper extension of the Gibbs entropy (up to a factor ) and the Shannon entropy to the quantum case. To compute S(ρ) it is convenient (see logarithm of a matrix) to compute the Eigen decomposition of The von Neumann entropy is then given by Since, for a pure state, the density matrix is idempotent, ρ=ρ2, the entropy S(ρ) for it vanishes. Thus, if the system is finite (finite dimensional matrix representation), the entropy (ρ) quantifies the departure of the system from a pure state. In other words, it codifies the degree of mixing of the state describing a given finite system. Measurement decohere a quantum system into something noninterfering and ostensibly classical; so, e.g., the vanishing entropy of a pure state |Ψ⟩ = (|0⟩+|1⟩)/√2, corresponding to a density matrix increases to S=ln 2 =0.69 for the measurement outcome mixture As the quantum interference information is erased. Properties Some properties of the von Neumann entropy: S(ρ) is only zero for pure states. S (ρ) is maximal and equal to for a maximally mixed state, being the dimension of the Hilbert space. S (ρ) is invariant under changes in the basis of , that is, , with U a unitary transformation. S (ρ) is concave, that is, given a collection of positive numbers which sum to unity ( ) and density operators , we have www.ijmer.com 1978 | Page
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 S (ρ) is additive for independent systems. Given two density matrices describing independent systems A and B, we have . S(ρ) strongly sub additive for any three systems A, B, and C: . This automatically means that S(ρ) is sub additive: Below, the concept of subadditivity is discussed, followed by its generalization to strong Subadditivity. Subadditivity If are the reduced density matrices of the general state , then This right hand inequality is known as subadditivity. The two inequalities together are sometimes known as the triangle inequality. They were proved in 1970 by Huzihiro Araki andElliott H. Lieb While in Shannon's theory the entropy of a composite system can never be lower than the entropy of any of its parts, in quantum theory this is not the case, i.e., it is possible that while and . Intuitively, this can be understood as follows: In quantum mechanics, the entropy of the joint system can be less than the sum of the entropy of its components because the components may be entangled. For instance, the Bell state of two spin- 1/2's, , is a pure state with zero entropy, but each spin has maximum entropy when considered individually. The entropy in one spin can be "cancelled" by being correlated with the entropy of the other. The left-hand inequality can be roughly interpreted as saying that entropy can only be canceled by an equal amount of entropy. If system and system have different amounts of entropy, the lesser can only partially cancel the greater, and some entropy must be left over. Likewise, the right-hand inequality can be interpreted as saying that the entropy of a composite system is maximized when its components are uncorrelated, in which case the total entropy is just a sum of the sub- entropies. This may be more intuitive in the phase space, instead of Hilbert space, representation, where the Von Neumann entropy amounts to minus the expected value of the βˆ—-logarithm of the Wigner function up to an offset shift. Strong Subadditivity The von Neumann entropy is also strongly sub additive. Given three Hilbert spaces, , This is a more difficult theorem and was proved in 1973 by Elliott H. Lieb and Mary Beth Ruskai using a matrix inequality of Elliott H. Lieb proved in 1973. By using the proof technique that establishes the left side of the triangle inequality above, one can show that the strong subadditivity inequality is equivalent to the following inequality. When , etc. are the reduced density matrices of a density matrix . If we apply ordinary subadditivity to the left side of this inequality, and consider all permutations of , we obtain the triangle inequality for : Each of the three numbers is less than or equal to the sum of the other two. Uses The von Neumann entropy is being extensively used in different forms (conditional entropies, relative entropies, etc.) in the framework of quantum information theory. Entanglement measures are based upon some quantity directly related to the von Neumann entropy. However, there have appeared in the literature several papers dealing with the possible inadequacy of the Shannon information measure, and consequently of the von Neumann entropy as an appropriate quantum generalization of Shannon entropy. The main argument is that in classical measurement the Shannon information measure is a natural measure of our ignorance about the properties of a system, whose existence is independent of measurement. Conversely, quantum measurement cannot be claimed to reveal the properties of a system that existed before the measurement was made. This controversy has encouraged some authors to introduce the non-additivity property of Tsallis entropy (a generalization of the standard Boltzmann–Gibbs entropy) as the main reason for recovering a true quantal information measure in the quantum context, claiming that non-local correlations ought to be described because of the particularity of Tsallis entropy. THE SYSTEM IN QUESTION IS: 1. Von Neumann Entropy And Quantum Entanglement 2. Velocity Field Of The Particle And Wave Function 3. Matter Presence In Abundance And Break Down Of Parity Conservation 4. Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms 5. Decoherence And Computational Complexity 6. Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits www.ijmer.com 1979 | Page
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 VON NEUMANN ENTROPY AND QUANTUM ENTANGLEMENT: MODULE ONE NOTATION : 𝐺13 : Category One Of Quantum Entanglement 𝐺14 : Category Two Of Quantum Entanglement 𝐺15 : Category Three Of Quantum Entanglement 𝑇13 : Category One Of Von Neumann Entropy 𝑇14 : Category Two Of Von Neumann Entropy 𝑇15 : Category Three Of Von Neumann Entropy - WAVE FUNCTIONS AND VELOCITY FIELD OF THE PARTICLES: MODULE TWO 𝐺16 : Category One Of Velocity Field Of The Particles 𝐺17 : Category Two Of The Velocity Field Of The Particles 𝐺18 : Category Three Of The Velocity Field Of The Particles 𝑇16 : Category One Of Wave Functions Concomitant To The Velocity Fields 𝑇17 :Category Two Of Wave Functions Corresponding To Category Two Of Velocity Field 𝑇18 : Category Three Of Wave Functions- BREAK DOWN OF PARITY CONSERVATION AND ABUNDANCE OF MATTER PRESCENCE: MODULE THREE: 𝐺20 : Category One Of Systems Where There Is Break Down Of Parity Conservation 𝐺21 : Category Two Of Systems Where There Is Break Down In Parity Conservation 𝐺22 : Category Three Of Systems Where There Is Break Down Of Parity Conservation 𝑇20 : Category Three Of Systems Where There Is Break Down Of Parity Conservation 𝑇21 : Category One Of Systems Where There Is Abundance Of Matter 𝑇22 : Category Two Of Systems Where There Is Abundance Of Matter 𝐺24 : Category Three Of Systems Where There Is Abundance Of Matter EFFICIENCY OF QUANTUM ALGORITHMS AND DISSIPATION IN QUANTUM COMPUTATION MODULE NUMBERED FOUR: 𝐺25 : Category Two Of Efficiency Of Quantum Algorithms 𝐺26 : Category Three Of efficiency Of Quantum Algorithms 𝐺24 : Category One Of Efficiency Of Quantum Algorithms 𝑇24 : Category Three Of Dissipation In Quantum Computation 𝑇25 : Category One Of Systems With Efficiency In Quantum Algorithm 𝑇26 : Category Two Of Systems With Quantum Algorithm Of Efficiency (Different From Category One) COMPUTATIONAL COMPLEXITY AND DECOHERENCE MODULE NUMBERED FIVE 𝐺28 : Category One Of Computational Complexity 𝐺29 :Category Two Of Computational Complexity 𝐺30 : Category Three Of Computational Complexity 𝑇28 : Category One Of Decoherence 𝑇29 : Category Two Of Decoherence 𝑇30 : Category Three Of Decoherence DIFFERENT POSSSIBLE INPUTS (QUBITS) AND QUANTUM SUPERPOSITION OF OUTPUTS MODULE NUMBERED SIX 𝐺32 : Category One Of Different Possible Qubits Inputs 𝐺33 : Category Two Of Different Possible Qubits Inputs 𝐺34 : Category Three Of Different Possible Qubits Inputs T32 : Category One Of Coherent Superposition Of Outputs 𝑇33 : Category Two Of Coherent Superposition Of Outputs T34 : Category Three Of Coherent Superposition Of Outputs ACCENTUATION COEFFCIENTS OF THE HOLISTIC SYSTEM Von Neumann Entropy And Quantum Entanglement Velocity Field Of The Particle And Wave Function Matter Presence In Abundance And Break Down Of Parity Conservation Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms Decoherence And Computational Complexity Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits www.ijmer.com 1980 | Page
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 1 1 1 1 1 1 π‘Ž13 , π‘Ž14 , π‘Ž15 , 𝑏13 , 𝑏14 , 𝑏15 π‘Ž16 2 , π‘Ž17 2 , π‘Ž18 2 2 2 2 3 3 3 𝑏16 , 𝑏17 , 𝑏18 : π‘Ž20 , π‘Ž21 , π‘Ž22 , 𝑏20 3 , 𝑏21 3 , 𝑏22 3 4 4 4 4 4 4 π‘Ž24 , π‘Ž25 , π‘Ž26 , 𝑏24 , 𝑏25 , 𝑏26 , 𝑏28 5 , 𝑏29 5 , 𝑏30 5 , 5 5 5 6 6 6 π‘Ž28 , π‘Ž29 , π‘Ž30 , π‘Ž32 , π‘Ž33 , π‘Ž34 , 𝑏32 6 , 𝑏33 6 , 𝑏34 6 DISSIPATION COEFFCIENTS: β€² β€² β€² 1 β€² β€² β€² 1 β€² β€² π‘Ž13 1 , π‘Ž14 1 , π‘Ž15 , 𝑏13 1 , 𝑏14 1 , 𝑏15 , π‘Ž16 2 , π‘Ž17 2 , aβ€²18 2 , β€² 𝑏16 2 β€² , 𝑏17 2 β€² , 𝑏18 2 β€² 3 β€² 3 β€² 3 β€² 3 β€² 3 β€² 3 , π‘Ž20 , π‘Ž21 , π‘Ž22 , 𝑏20 , 𝑏21 , 𝑏22 β€² 4 β€² 4 β€² 4 β€² 4 β€² 4 β€² 4 β€² 5 β€² 5 β€² 5 β€² 5 β€² 5 β€² 5 π‘Ž24 , π‘Ž25 , π‘Ž26 , 𝑏24 , 𝑏25 , 𝑏26 , 𝑏28 , 𝑏29 , 𝑏30 π‘Ž28 , π‘Ž29 , π‘Ž30 , β€² 6 β€² 6 β€² 6 β€² 6 β€² 6 β€² 6 π‘Ž32 , π‘Ž33 , π‘Ž34 , 𝑏32 , 𝑏33 , 𝑏34 - GOVERNING EQUATIONS:OF THE SYSTEM VONNEUMANN ENTROPY AND QUANTUM ENTANGLEMENT The differential system of this model is now - 𝑑 𝐺13 β€² β€²β€² 𝑑𝑑 = π‘Ž13 1 𝐺14 βˆ’ π‘Ž13 1 + π‘Ž13 1 𝑇14 , 𝑑 𝐺13 - 𝑑 𝐺14 1 β€² 1 β€²β€² 1 = π‘Ž14 𝐺13 βˆ’ π‘Ž14 + π‘Ž14 𝑇14 , 𝑑 𝐺14 - 𝑑𝑑 𝑑 𝐺15 1 β€² 1 β€²β€² 1 = π‘Ž15 𝐺14 βˆ’ π‘Ž15 + π‘Ž15 𝑇14 , 𝑑 𝐺15 - 𝑑𝑑 𝑑 𝑇13 1 β€² 1 β€²β€² 1 = 𝑏13 𝑇14 βˆ’ 𝑏13 βˆ’ 𝑏13 𝐺, 𝑑 𝑇13 - 𝑑𝑑 𝑑 𝑇14 1 β€² 1 β€²β€² 1 𝑑𝑑 = 𝑏14 𝑇13 βˆ’ 𝑏14 βˆ’ 𝑏14 𝐺, 𝑑 𝑇14 - 𝑑 𝑇15 1 β€² 1 β€²β€² 1 = 𝑏15 𝑇14 βˆ’ 𝑏15 βˆ’ 𝑏15 𝐺, 𝑑 𝑇15 - 𝑑𝑑 β€²β€² 1 + π‘Ž13 𝑇14 , 𝑑 = First augmentation factor - β€²β€² 1 βˆ’ 𝑏13 𝐺, 𝑑 = First detritions factor - GOVERNING EQUATIONS OF THE SYSTEM VELOCITY FIELD OF THE PARTICLE AND WAVE FUNCTION: The differential system of this model is now - 𝑑 𝐺16 β€² β€²β€² 𝑑𝑑 = π‘Ž16 2 𝐺17 βˆ’ π‘Ž16 2 + π‘Ž16 2 𝑇17 , 𝑑 𝐺16 - 𝑑 𝐺17 2 β€² 2 β€²β€² 2 = π‘Ž17 𝐺16 βˆ’ π‘Ž17 + π‘Ž17 𝑇17 , 𝑑 𝐺17 - 𝑑𝑑 𝑑 𝐺18 2 β€² 2 β€²β€² 2 𝑑𝑑 = π‘Ž18 𝐺17 βˆ’ π‘Ž18 + π‘Ž18 𝑇17 , 𝑑 𝐺18 - dT 16 2 β€² 2 β€²β€² 2 dt = b16 T17 βˆ’ b16 βˆ’ 𝑏16 𝐺19 , 𝑑 𝑇16 - dT 17 2 β€² 2 β€²β€² 2 dt = b17 T16 βˆ’ b17 βˆ’ 𝑏17 𝐺19 , 𝑑 T17 - dT 18 2 β€² 2 β€²β€² 2 dt = b18 T17 βˆ’ b18 βˆ’ b18 G19 , t T18 - + aβ€²β€² 16 2 T17 , t = First augmentation factor - β€²β€² 2 βˆ’ b16 G19 , t = First detritions factor - GOVERNING EQUATIONS:OF BREAK DOWN OF PARITY CONSERVATION AND MATTER ABUNDANCE: The differential system of this model is now - 𝑑 𝐺20 β€² β€²β€² = π‘Ž20 3 𝐺21 βˆ’ π‘Ž20 3 + π‘Ž20 3 𝑇21 , 𝑑 𝐺20 - 𝑑𝑑 𝑑 𝐺21 3 β€² 3 β€²β€² 3 𝑑𝑑 = π‘Ž21 𝐺20 βˆ’ π‘Ž21 + π‘Ž21 𝑇21 , 𝑑 𝐺21 - 𝑑 𝐺22 3 β€² 3 β€²β€² 3 = π‘Ž22 𝐺21 βˆ’ π‘Ž22 + π‘Ž22 𝑇21 , 𝑑 𝐺22 - 𝑑𝑑 𝑑 𝑇20 3 β€² 3 β€²β€² 3 𝑑𝑑 = 𝑏20 𝑇21 βˆ’ 𝑏20 βˆ’ 𝑏20 𝐺23 , 𝑑 𝑇20 - 𝑑 𝑇21 3 β€² 3 β€²β€² 3 𝑑𝑑 = 𝑏21 𝑇20 βˆ’ 𝑏21 βˆ’ 𝑏21 𝐺23 , 𝑑 𝑇21 - 𝑑 𝑇22 3 β€² 3 β€²β€² 3 𝑑𝑑 = 𝑏22 𝑇21 βˆ’ 𝑏22 βˆ’ 𝑏22 𝐺23 , 𝑑 𝑇22 - β€²β€² 3 + π‘Ž20 𝑇21 , 𝑑 = First augmentation factor - β€²β€² 3 βˆ’ 𝑏20 𝐺23 , 𝑑 = First detritions factor - GOVERNING EQUATIONS:OF DISSIPATION IN QUANTUM COMPUTATION AND EFFICIENCY OF QUANTUM ALGORITHMS: The differential system of this model is now - 𝑑 𝐺24 β€² β€²β€² 𝑑𝑑 = π‘Ž24 4 𝐺25 βˆ’ π‘Ž24 4 + π‘Ž24 4 𝑇25 , 𝑑 𝐺24 - www.ijmer.com 1981 | Page
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 𝑑 𝐺25 4 β€² 4 β€²β€² 4 = π‘Ž25 𝐺24 βˆ’ π‘Ž25 + π‘Ž25 𝑇25 , 𝑑 𝐺25 - 𝑑𝑑 𝑑 𝐺26 4 β€² 4 β€²β€² 4 = π‘Ž26 𝐺25 βˆ’ π‘Ž26 + π‘Ž26 𝑇25 , 𝑑 𝐺26 - 𝑑𝑑 𝑑 𝑇24 4 β€² 4 β€²β€² 4 𝑑𝑑 = 𝑏24 𝑇25 βˆ’ 𝑏24 βˆ’ 𝑏24 𝐺27 , 𝑑 𝑇24 - 𝑑 𝑇25 4 β€² 4 β€²β€² 4 = 𝑏25 𝑇24 βˆ’ 𝑏25 βˆ’ 𝑏25 𝐺27 , 𝑑 𝑇25 - 𝑑𝑑 𝑑 𝑇26 4 β€² 4 β€²β€² 4 𝑑𝑑 = 𝑏26 𝑇25 βˆ’ 𝑏26 βˆ’ 𝑏26 𝐺27 , 𝑑 𝑇26 - β€²β€² 4 + π‘Ž24 𝑇25 , 𝑑 = First augmentation factor- β€²β€² 4 βˆ’ 𝑏24 𝐺27 , 𝑑 = First detritions factor - GOVERNING EQUATIONS:OF THE SYSTEM DECOHERENCE AND COMPUTATIONAL COMPLEXITY: The differential system of this model is now - 𝑑 𝐺28 β€² β€²β€² = π‘Ž28 5 𝐺29 βˆ’ π‘Ž28 5 + π‘Ž28 5 𝑇29 , 𝑑 𝐺28 - 𝑑𝑑 𝑑 𝐺29 5 β€² 5 β€²β€² 5 𝑑𝑑 = π‘Ž29 𝐺28 βˆ’ π‘Ž29 + π‘Ž29 𝑇29 , 𝑑 𝐺29 - 𝑑 𝐺30 5 β€² 5 β€²β€² 5 = π‘Ž30 𝐺29 βˆ’ π‘Ž30 + π‘Ž30 𝑇29 , 𝑑 𝐺30 - 𝑑𝑑 𝑑 𝑇28 5 β€² 5 β€²β€² 5 𝑑𝑑 = 𝑏28 𝑇29 βˆ’ 𝑏28 βˆ’ 𝑏28 𝐺31 , 𝑑 𝑇28 - 𝑑 𝑇29 5 β€² 5 β€²β€² 5 𝑑𝑑 = 𝑏29 𝑇28 βˆ’ 𝑏29 βˆ’ 𝑏29 𝐺31 , 𝑑 𝑇29 - 𝑑 𝑇30 5 β€² 5 β€²β€² 5 𝑑𝑑 = 𝑏30 𝑇29 βˆ’ 𝑏30 βˆ’ 𝑏30 𝐺31 , 𝑑 𝑇30 - β€²β€² 5 + π‘Ž28 𝑇29 , 𝑑 = First augmentation factor - β€²β€² 5 βˆ’ 𝑏28 𝐺31 , 𝑑 = First detritions factor - GOVERNING EQUATIONS:COHERENT SUPERPOSITION OF OUTPUTS AND DIFFERENT POSSIBILITIES OF QUBIT INPUTS The differential system of this model is now - 𝑑 𝐺32 β€² β€²β€² = π‘Ž32 6 𝐺33 βˆ’ π‘Ž32 6 + π‘Ž32 6 𝑇33 , 𝑑 𝐺32 - 𝑑𝑑 𝑑 𝐺33 6 β€² 6 β€²β€² 6 = π‘Ž33 𝐺32 βˆ’ π‘Ž33 + π‘Ž33 𝑇33 , 𝑑 𝐺33 - 𝑑𝑑 𝑑 𝐺34 6 β€² 6 β€²β€² 6 𝑑𝑑 = π‘Ž34 𝐺33 βˆ’ π‘Ž34 + π‘Ž34 𝑇33 , 𝑑 𝐺34 - 𝑑 𝑇32 6 β€² 6 β€²β€² 6 𝑑𝑑 = 𝑏32 𝑇33 βˆ’ 𝑏32 βˆ’ 𝑏32 𝐺35 , 𝑑 𝑇32 - 𝑑 𝑇33 6 β€² 6 β€²β€² 6 = 𝑏33 𝑇32 βˆ’ 𝑏33 βˆ’ 𝑏33 𝐺35 , 𝑑 𝑇33 - 𝑑𝑑 𝑑 𝑇34 6 β€² 6 β€²β€² 6 𝑑𝑑 = 𝑏34 𝑇33 βˆ’ 𝑏34 βˆ’ 𝑏34 𝐺35 , 𝑑 𝑇34 - β€²β€² 6 + π‘Ž32 𝑇33 , 𝑑 = First augmentation factor - β€²β€² 6 βˆ’ 𝑏32 𝐺35 , 𝑑 = First detritions factor - CONCATENATED GOVERNING SYSTEMS OF THE HOLISTIC GLOBAL SYSTEM: (1) Von Neumann Entropy And Quantum Entanglement (2) Velocity Field Of The Particle And Wave Function (3) Matter Presence In Abundance And Break Down Of Parity Conservation (4) Dissipation In Quantum Computation And Efficiency Of Quantum Algorithms (5) Decoherence And Computational Complexity Coherent Superposition Of Outputs And Different Possible Inputs In The Form Of Qubits- β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑑 𝐺13 π‘Ž13 + π‘Ž13 𝑇14 , 𝑑 + π‘Ž16 𝑇17 , 𝑑 + π‘Ž20 𝑇21 , 𝑑 1 𝑑𝑑 = π‘Ž13 𝐺14 βˆ’ 𝐺13 - β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, π‘Ž14 + π‘Ž14 𝑇14 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 𝑑 𝐺14 1 𝑑𝑑 = π‘Ž14 𝐺13 βˆ’ 4,4,4,4, 𝐺14 - β€²β€² β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑑 𝐺15 1 π‘Ž15 + π‘Ž15 𝑇14 , 𝑑 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž22 𝑇21 , 𝑑 = π‘Ž15 𝐺14 βˆ’ 𝐺15 - 𝑑𝑑 β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 β€²β€² 1 β€²β€² 1 β€²β€² 1 Where π‘Ž13 𝑇14 , 𝑑 , π‘Ž14 𝑇14 , 𝑑 , π‘Ž15 𝑇14 , 𝑑 are first augmentation coefficients for category 1, 2 and 3 β€²β€² 2,2, β€²β€² 2,2, β€²β€² 2,2, + π‘Ž16 𝑇17 , 𝑑 , + π‘Ž17 𝑇17 , 𝑑 , + π‘Ž18 𝑇17 , 𝑑 are second augmentation coefficient for category 1, 2 and 3 www.ijmer.com 1982 | Page
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 β€²β€² 3,3, β€²β€² 3,3, β€²β€² 3,3, + π‘Ž20 𝑇21 , 𝑑 , + π‘Ž21 𝑇21 , 𝑑 , + π‘Ž22 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3 β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, + π‘Ž24 𝑇25 , 𝑑 , + π‘Ž25 𝑇25 , 𝑑 , + π‘Ž26 𝑇25 , 𝑑 are fourth augmentation coefficient for category 1, 2 and 3 β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, + π‘Ž28 𝑇29 , 𝑑 , + π‘Ž29 𝑇29 , 𝑑 , + π‘Ž30 𝑇29 , 𝑑 are fifth augmentation coefficient for category 1, 2 and 3 β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, + π‘Ž32 𝑇33 , 𝑑 , + π‘Ž33 𝑇33 , 𝑑 , + π‘Ž34 𝑇33 , 𝑑 are sixth augmentation coefficient for category 1, 2 and 3- β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑏13 βˆ’ 𝑏13 𝐺, 𝑑 βˆ’ 𝑏16 𝐺19 , 𝑑 – 𝑏20 𝐺23 , 𝑑 𝑑 𝑇13 1 = 𝑏13 𝑇14 βˆ’ β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, 𝑇13 - 𝑑𝑑 βˆ’ 𝑏24 𝐺27 , 𝑑 βˆ’ 𝑏28 𝐺31 , 𝑑 βˆ’ 𝑏32 𝐺35 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑑 𝑇14 𝑏14 βˆ’ 𝑏14 𝐺, 𝑑 βˆ’ 𝑏17 𝐺19 , 𝑑 – 𝑏21 𝐺23 , 𝑑 1 𝑑𝑑 = 𝑏14 𝑇13 βˆ’ 4,4,4,4, 𝑇14 - β€²β€² β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, βˆ’ 𝑏25 𝐺27 , 𝑑 βˆ’ 𝑏29 𝐺31 , 𝑑 βˆ’ 𝑏33 𝐺35 , 𝑑 β€² 1 β€²β€² 1 β€²β€² 2,2, β€²β€² 3,3, 𝑑 𝑇15 1 𝑏15 βˆ’ 𝑏15 𝐺, 𝑑 βˆ’ 𝑏18 𝐺19 , 𝑑 – 𝑏22 𝐺23 , 𝑑 𝑑𝑑 = 𝑏15 𝑇14 βˆ’ 𝑇15 - β€²β€² 4,4,4,4, β€²β€² 5,5,5,5, β€²β€² 6,6,6,6, βˆ’ 𝑏26 𝐺27 , 𝑑 βˆ’ 𝑏30 𝐺31 , 𝑑 βˆ’ 𝑏34 𝐺35 , 𝑑 β€²β€² 1 β€²β€² 1 β€²β€² 1 Where βˆ’ 𝑏13 𝐺, 𝑑 , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are first detrition coefficients for category 1, 2 and 3 β€²β€² 2,2, β€²β€² 2,2, β€²β€² 2,2, βˆ’ 𝑏16 𝐺19 , 𝑑 , βˆ’ 𝑏17 𝐺19 , 𝑑 , βˆ’ 𝑏18 𝐺19 , 𝑑 are second detrition coefficients for category 1, 2 and 3 β€²β€² 3,3, β€²β€² 3,3, β€²β€² 3,3, βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are third detrition coefficients for category 1, 2 and 3 β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, β€²β€² 4,4,4,4, βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 are fourth detrition coefficients for category 1, 2 and 3 β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, β€²β€² 5,5,5,5, βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 𝐺31 , 𝑑 , βˆ’ 𝑏30 𝐺31 , 𝑑 are fifth detrition coefficients for category 1, 2 and 3 β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, β€²β€² 6,6,6,6, βˆ’ 𝑏32 𝐺35 , 𝑑 , βˆ’ 𝑏33 𝐺35 , 𝑑 , βˆ’ 𝑏34 𝐺35 , 𝑑 are sixth detrition coefficients for category 1, 2 and β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3 𝑑𝐺16 π‘Ž16 + π‘Ž16 𝑇17 , 𝑑 + π‘Ž13 𝑇14 , 𝑑 + π‘Ž20 𝑇21 , 𝑑 2 3 = π‘Ž16 𝐺17 βˆ’ 𝐺16 - 𝑑𝑑 β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3 π‘Ž17 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž14 𝑇14 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 𝑑 𝐺17 2 = π‘Ž17 𝐺16 βˆ’ 4,4,4,4,4 𝐺17 - 𝑑𝑑 β€²β€² β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3 𝑑 𝐺18 2 π‘Ž18 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž15 𝑇14 , 𝑑 + π‘Ž22 𝑇21 , 𝑑 = π‘Ž18 𝐺17 βˆ’ 𝐺18 - 𝑑𝑑 β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 β€²β€² 2 β€²β€² 2 β€²β€² 2 Where + π‘Ž16 𝑇17 , 𝑑 , + π‘Ž17 𝑇17 , 𝑑 , + π‘Ž18 𝑇17 , 𝑑 are first augmentation coefficients for category 1, 2 and 3 β€²β€² 1,1, β€²β€² 1,1, β€²β€² 1,1, + π‘Ž13 𝑇14 , 𝑑 , + π‘Ž14 𝑇14 , 𝑑 , + π‘Ž15 𝑇14 , 𝑑 are second augmentation coefficient for category 1, 2 and 3 β€²β€² 3,3,3 β€²β€² 3,3,3 β€²β€² 3,3,3 + π‘Ž20 𝑇21 , 𝑑 , + π‘Ž21 𝑇21 , 𝑑 , + π‘Ž22 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3 β€²β€² β€²β€² 4,4,4,4,4 β€²β€² + π‘Ž24 4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25 𝑇25 , 𝑑 , + π‘Ž26 4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficient for category 1, 2 and 3 β€²β€² β€²β€² β€²β€² + π‘Ž28 5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž29 5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž30 5,5,5,5,5 𝑇29 , 𝑑 are fifth augmentation coefficient for category 1, 2 and 3 β€²β€² β€²β€² β€²β€² + π‘Ž32 6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33 6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž34 6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficient for category 1, 2 and 3 - β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3, 𝑑 𝑇16 2 𝑏16 βˆ’ 𝑏16 𝐺19 , 𝑑 βˆ’ 𝑏13 𝐺, 𝑑 – 𝑏20 𝐺23 , 𝑑 𝑑𝑑 = 𝑏16 𝑇17 βˆ’ 𝑇16 - β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 βˆ’ 𝑏24 𝐺27 , 𝑑 βˆ’ 𝑏28 𝐺31 , 𝑑 βˆ’ 𝑏32 𝐺35 , 𝑑 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3, 𝑑 𝑇17 𝑏17 βˆ’ 𝑏17 𝐺19 , 𝑑 βˆ’ 𝑏14 𝐺, 𝑑 – 𝑏21 𝐺23 , 𝑑 2 𝑑𝑑 = 𝑏17 𝑇16 βˆ’ 4,4,4,4,4 𝑇17 - β€²β€² β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 βˆ’ 𝑏25 𝐺27 , 𝑑 βˆ’ 𝑏29 𝐺31 , 𝑑 βˆ’ 𝑏33 𝐺35 , 𝑑 www.ijmer.com 1983 | Page
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 β€² 2 β€²β€² 2 β€²β€² 1,1, β€²β€² 3,3,3, 𝑑 𝑇18 2 𝑏18 βˆ’ 𝑏18 𝐺19 , 𝑑 βˆ’ 𝑏15 𝐺, 𝑑 – 𝑏22 𝐺23 , 𝑑 𝑑𝑑 = 𝑏18 𝑇17 βˆ’ 𝑇18 - β€²β€² 4,4,4,4,4 β€²β€² 5,5,5,5,5 β€²β€² 6,6,6,6,6 βˆ’ 𝑏26 𝐺27 , 𝑑 βˆ’ 𝑏30 𝐺31 , 𝑑 βˆ’ 𝑏34 𝐺35 , 𝑑 β€²β€² 2 β€²β€² 2 β€²β€² 2 where βˆ’ 𝑏16 𝐺19 , 𝑑 , βˆ’ 𝑏17 𝐺19 , 𝑑 , βˆ’ 𝑏18 𝐺19 , 𝑑 are first detrition coefficients for category 1, 2 and 3 β€²β€² 1,1, β€²β€² 1,1, β€²β€² 1,1, βˆ’ b13 G, t , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are second detrition coefficients for category 1,2 and 3 β€²β€² 3,3,3, β€²β€² 3,3,3, β€²β€² 3,3,3, βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are third detrition coefficients for category 1,2 and 3 β€²β€² 4,4,4,4,4 β€²β€² 4,4,4,4,4 β€²β€² 4,4,4,4,4 βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 are fourth detrition coefficients for category 1,2 and 3 β€²β€² 5,5,5,5,5 β€²β€² 5,5,5,5,5 β€²β€² 5,5,5,5,5 βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 𝐺31 , 𝑑 , βˆ’ 𝑏30 𝐺31 , 𝑑 are fifth detrition coefficients for category 1,2 and 3 β€²β€² 6,6,6,6,6 β€²β€² 6,6,6,6,6 β€²β€² 6,6,6,6,6 βˆ’ 𝑏32 𝐺35 , 𝑑 , βˆ’ 𝑏33 𝐺35 , 𝑑 , βˆ’ 𝑏34 𝐺35 , 𝑑 are sixth detrition coefficients for category 1,2 and 3 - β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, π‘Ž20 + π‘Ž20 𝑇21 , 𝑑 + π‘Ž16 𝑇17 , 𝑑 + π‘Ž13 𝑇14 , 𝑑 𝑑 𝐺20 3 = π‘Ž20 𝐺21 βˆ’ β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 𝐺20 - 𝑑𝑑 + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑑 𝐺21 π‘Ž21 + π‘Ž21 𝑇21 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž14 𝑇14 , 𝑑 3 = π‘Ž21 𝐺20 βˆ’ 4,4,4,4,4,4 𝐺21 - 𝑑𝑑 β€²β€² β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑑 𝐺22 3 π‘Ž22 + π‘Ž22 𝑇21 , 𝑑 + π‘Ž18 𝑇17 , 𝑑 + π‘Ž15 𝑇14 , 𝑑 = π‘Ž22 𝐺21 βˆ’ 𝐺22 - 𝑑𝑑 β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 β€²β€² 3 β€²β€² 3 β€²β€² 3 + π‘Ž20 𝑇21 , 𝑑 , + π‘Ž21 𝑇21 , 𝑑 , + π‘Ž22 𝑇21 , 𝑑 are first augmentation coefficients for category 1, 2 and 3 β€²β€² 2,2,2 β€²β€² 2,2,2 β€²β€² 2,2,2 + π‘Ž16 𝑇17 , 𝑑 , + π‘Ž17 𝑇17 , 𝑑 , + π‘Ž18 𝑇17 , 𝑑 are second augmentation coefficients for category 1, 2 and 3 β€²β€² 1,1,1, β€²β€² 1,1,1, β€²β€² 1,1,1, + π‘Ž13 𝑇14 , 𝑑 , + π‘Ž14 𝑇14 , 𝑑 , + π‘Ž15 𝑇14 , 𝑑 are third augmentation coefficients for category 1, 2 and 3 β€²β€² β€²β€² β€²β€² 4,4,4,4,4,4 + π‘Ž24 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25 𝑇25 , 𝑑 , + π‘Ž26 4,4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficients for category 1, 2 and 3 β€²β€² β€²β€² β€²β€² + π‘Ž28 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž29 5,5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž30 5,5,5,5,5,5 𝑇29 , 𝑑 are fifth augmentation coefficients for category 1, 2 and 3 β€²β€² β€²β€² β€²β€² + π‘Ž32 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž34 6,6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficients for category 1, 2 and 3 - β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑑 𝑇20 𝑏20 βˆ’ 𝑏20 𝐺23 , 𝑑 – 𝑏16 𝐺19 , 𝑑 – 𝑏13 𝐺, 𝑑 3 𝑑𝑑 = 𝑏20 𝑇21 βˆ’ 𝑇20 - β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 βˆ’ 𝑏24 𝐺27 , 𝑑 βˆ’ 𝑏28 𝐺31 , 𝑑 βˆ’ 𝑏32 𝐺35 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑑 𝑇21 𝑏21 βˆ’ 𝑏21 𝐺23 , 𝑑 – 𝑏17 𝐺19 , 𝑑 – 𝑏14 𝐺, 𝑑 3 = 𝑏21 𝑇20 βˆ’ 4,4,4,4,4,4 𝑇21 - 𝑑𝑑 β€²β€² β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 βˆ’ 𝑏25 𝐺27 , 𝑑 βˆ’ 𝑏29 𝐺31 , 𝑑 βˆ’ 𝑏33 𝐺35 , 𝑑 β€² 3 β€²β€² 3 β€²β€² 2,2,2 β€²β€² 1,1,1, 𝑑 𝑇22 3 𝑏22 βˆ’ 𝑏22 𝐺23 , 𝑑 – 𝑏18 𝐺19 , 𝑑 – 𝑏15 𝐺, 𝑑 𝑑𝑑 = 𝑏22 𝑇21 βˆ’ 𝑇22 - β€²β€² 4,4,4,4,4,4 β€²β€² 5,5,5,5,5,5 β€²β€² 6,6,6,6,6,6 βˆ’ 𝑏26 𝐺27 , 𝑑 βˆ’ 𝑏30 𝐺31 , 𝑑 βˆ’ 𝑏34 𝐺35 , 𝑑 β€²β€² 3 β€²β€² 3 β€²β€² 3 βˆ’ 𝑏20 𝐺23 , 𝑑 , βˆ’ 𝑏21 𝐺23 , 𝑑 , βˆ’ 𝑏22 𝐺23 , 𝑑 are first detrition coefficients for category 1, 2 and 3 β€²β€² 2,2,2 β€²β€² 2,2,2 β€²β€² 2,2,2 βˆ’ 𝑏16 𝐺19 , 𝑑 , βˆ’ 𝑏17 𝐺19 , 𝑑 , βˆ’ 𝑏18 𝐺19 , 𝑑 are second detrition coefficients for category 1, 2 and 3 β€²β€² 1,1,1, β€²β€² 1,1,1, β€²β€² 1,1,1, βˆ’ 𝑏13 𝐺, 𝑑 , βˆ’ 𝑏14 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 are third detrition coefficients for category 1,2 and 3 β€²β€² β€²β€² 4,4,4,4,4,4 β€²β€² βˆ’ 𝑏24 4,4,4,4,4,4 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 4,4,4,4,4,4 𝐺27 , 𝑑 are fourth detrition coefficients for category 1, 2 and 3 β€²β€² β€²β€² β€²β€² βˆ’ 𝑏28 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏30 5,5,5,5,5,5 𝐺31 , 𝑑 are fifth detrition coefficients for category 1, 2 and 3 www.ijmer.com 1984 | Page
  • 9. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1977-2016 ISSN: 2249-6645 β€²β€² β€²β€² β€²β€² βˆ’ 𝑏32 6,6,6,6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏33 6,6,6,6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏34 6,6,6,6,6,6 𝐺35 , 𝑑 are sixth detrition coefficients for category 1, 2 and 3 - - β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑑𝐺24 π‘Ž24 + π‘Ž24 𝑇25 , 𝑑 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 4 = π‘Ž24 𝐺25 βˆ’ 𝐺24 - 𝑑𝑑 β€²β€² + π‘Ž13 1,1,1,1 𝑇14 , 𝑑 β€²β€² + π‘Ž16 2,2,2,2 𝑇17 , 𝑑 β€²β€² + π‘Ž20 3,3,3,3 𝑇21 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6 𝑑𝐺25 4 π‘Ž25 + π‘Ž25 𝑇25 , 𝑑 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 = π‘Ž25 𝐺24 βˆ’ 𝐺25 - 𝑑𝑑 β€²β€² 1,1,1,1 β€²β€² 2,2,2,2 β€²β€² 3,3,3,3 + π‘Ž14 𝑇14 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑑𝐺26 π‘Ž26 + π‘Ž26 𝑇25 , 𝑑 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 4 = π‘Ž26 𝐺25 βˆ’ 1,1,1,1 𝐺26 - 𝑑𝑑 β€²β€² + π‘Ž15 𝑇14 , 𝑑 β€²β€² + π‘Ž18 2,2,2,2 𝑇17 , 𝑑 β€²β€² + π‘Ž22 3,3,3,3 𝑇21 , 𝑑 β€²β€² 4 β€²β€² 4 β€²β€² 4 π‘Šπ‘•π‘’π‘Ÿπ‘’ π‘Ž24 𝑇25 , 𝑑 , π‘Ž25 𝑇25 , 𝑑 , π‘Ž26 𝑇25 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 5,5, β€²β€² 5,5, β€²β€² 5,5, + π‘Ž28 𝑇29 , 𝑑 , + π‘Ž29 𝑇29 , 𝑑 , + π‘Ž30 𝑇29 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 6,6, β€²β€² 6,6, β€²β€² 6,6, + π‘Ž32 𝑇33 , 𝑑 , + π‘Ž33 𝑇33 , 𝑑 , + π‘Ž34 𝑇33 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² β€²β€² β€²β€² 1,1,1,1 + π‘Ž13 1,1,1,1 𝑇14 , 𝑑 , + π‘Ž14 1,1,1,1 𝑇14 , 𝑑 , + π‘Ž15 𝑇14 , 𝑑 are fourth augmentation coefficients for category 1, 2,and 3 β€²β€² β€²β€² β€²β€² + π‘Ž16 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž17 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž18 2,2,2,2 𝑇17 , 𝑑 are fifth augmentation coefficients for category 1, 2,and 3 β€²β€² β€²β€² β€²β€² + π‘Ž20 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž21 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž22 3,3,3,3 𝑇21 , 𝑑 are sixth augmentation coefficients for category 1, 2,and 3 - β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑑𝑇24 𝑏24 βˆ’ 𝑏24 𝐺27 , 𝑑 βˆ’ 𝑏28 𝐺31 , 𝑑 – 𝑏32 𝐺35 , 𝑑 4 = 𝑏24 𝑇25 βˆ’ 𝑇24 - 𝑑𝑑 β€²β€² βˆ’ 𝑏13 1,1,1,1 𝐺, 𝑑 β€²β€² βˆ’ 𝑏16 2,2,2,2 𝐺19 , 𝑑 β€²β€² – 𝑏20 3,3,3,3 𝐺23 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑑𝑇25 4 𝑏25 βˆ’ 𝑏25 𝐺27 , 𝑑 βˆ’ 𝑏29 𝐺31 , 𝑑 – 𝑏33 𝐺35 , 𝑑 = 𝑏25 𝑇24 βˆ’ 𝑇25 - 𝑑𝑑 β€²β€² 1,1,1,1 β€²β€² 2,2,2,2 β€²β€² 3,3,3,3 βˆ’ 𝑏14 𝐺, 𝑑 βˆ’ 𝑏17 𝐺19 , 𝑑 – 𝑏21 𝐺23 , 𝑑 β€² 4 β€²β€² 4 β€²β€² 5,5, β€²β€² 6,6, 𝑑𝑇26 𝑏26 βˆ’ 𝑏26 𝐺27 , 𝑑 βˆ’ 𝑏30 𝐺31 , 𝑑 – 𝑏34 𝐺35 , 𝑑 4 = 𝑏26 𝑇25 βˆ’ 1,1,1,1 𝑇26 - 𝑑𝑑 β€²β€² βˆ’ 𝑏15 𝐺, 𝑑 β€²β€² βˆ’ 𝑏18 2,2,2,2 𝐺19 , 𝑑 β€²β€² – 𝑏22 3,3,3,3 𝐺23 , 𝑑 β€²β€² 4 β€²β€² 4 β€²β€² 4 π‘Šπ‘•π‘’π‘Ÿπ‘’ βˆ’ 𝑏24 𝐺27 , 𝑑 , βˆ’ 𝑏25 𝐺27 , 𝑑 , βˆ’ 𝑏26 𝐺27 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 5,5, β€²β€² 5,5, β€²β€² 5,5, βˆ’ 𝑏28 𝐺31 , 𝑑 , βˆ’ 𝑏29 𝐺31 , 𝑑 , βˆ’ 𝑏30 𝐺31 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² 6,6, β€²β€² 6,6, β€²β€² 6,6, βˆ’ 𝑏32 𝐺35 , 𝑑 , βˆ’ 𝑏33 𝐺35 , 𝑑 , βˆ’ 𝑏34 𝐺35 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² β€²β€² β€²β€² 1,1,1,1 βˆ’ 𝑏13 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏15 𝐺, 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘π‘• π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² β€²β€² β€²β€² βˆ’ 𝑏16 2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏17 2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏18 2,2,2,2 𝐺19 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑓𝑖𝑓𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 β€²β€² β€²β€² β€²β€² – 𝑏20 3,3,3,3 𝐺23 , 𝑑 , – 𝑏21 3,3,3,3 𝐺23 , 𝑑 , – 𝑏22 3,3,3,3 𝐺23 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑠𝑖π‘₯𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 - β€² 5 β€²β€² 5 β€²β€² 4,4, β€²β€² 6,6,6 𝑑𝐺28 π‘Ž28 + π‘Ž28 𝑇29 , 𝑑 + π‘Ž24 𝑇25 , 𝑑 + π‘Ž32 𝑇33 , 𝑑 5 = π‘Ž28 𝐺29 βˆ’ 𝐺28 - 𝑑𝑑 β€²β€² + π‘Ž13 1,1,1,1,1 𝑇14 , 𝑑 β€²β€² + π‘Ž16 2,2,2,2,2 𝑇17 , 𝑑 β€²β€² + π‘Ž20 3,3,3,3,3 𝑇21 , 𝑑 β€² 5 β€²β€² 5 β€²β€² 4,4, β€²β€² 6,6,6 𝑑𝐺29 5 π‘Ž29 + π‘Ž29 𝑇29 , 𝑑 + π‘Ž25 𝑇25 , 𝑑 + π‘Ž33 𝑇33 , 𝑑 = π‘Ž29 𝐺28 βˆ’ 𝐺29 - 𝑑𝑑 β€²β€² 1,1,1,1,1 β€²β€² 2,2,2,2,2 β€²β€² 3,3,3,3,3 + π‘Ž14 𝑇14 , 𝑑 + π‘Ž17 𝑇17 , 𝑑 + π‘Ž21 𝑇21 , 𝑑 β€² 5 β€²β€² 5 β€²β€² 4,4, β€²β€² 6,6,6 π‘Ž30 + π‘Ž30 𝑇29 , 𝑑 + π‘Ž26 𝑇25 , 𝑑 + π‘Ž34 𝑇33 , 𝑑 𝑑𝐺30 5 = π‘Ž30 𝐺29 βˆ’ β€²β€² 1,1,1,1,1 β€²β€² β€²β€² 𝐺30 - 𝑑𝑑 + π‘Ž15 𝑇14 , 𝑑 + π‘Ž18 2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž22 3,3,3,3,3 𝑇21 , 𝑑 β€²β€² 5 β€²β€² 5 β€²β€² 5 π‘Šπ‘•π‘’π‘Ÿπ‘’ + π‘Ž28 𝑇29 , 𝑑 , + π‘Ž29 𝑇29 , 𝑑 , + π‘Ž30 𝑇29 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3 www.ijmer.com 1985 | Page