Bayesian network and cpt

P(H=F) P(H=T)
0.75 0.25
P(I=F) P(I=T)
0.80 0.20
H I P(F=M) P(F=S) P(F=G)
F F 0.70 0.20 0.10
T F 0.30 0.10 0.60
F T 0.35 0.15 0.50
T T 0.10 0.20 0.70
Bayesian network and CPT
Result
P(I=F) P(I=T)
0 1
Bayes theorem
H I P(F=M) P(F=S) P(F=G)
F F 0.70 0.20 0.10
T F 0.30 0.10 0.60
F T 0.35 0.15 0.50
T T 0.10 0.20 0.70
• Financial loss
P(H=F) P(H=T)
0.75 0.25
• Human error
P(I=F) P(I=T)
0.80 0.20
• IT failure
P(I=F) P(I=T)
P(H=F) 0.60 0.15
P(H=T) 0.20 0.05
H I P(F=M) P(F=S) P(F=G)
F F 0.42 0.12 0.06
T F 0.06 0.02 0.12
F T 0.0525 0.0225 0.075
T T 0.005 0.01 0.035
• Likelihood = 0.11 / 0.29 = 0.3793
• Normalising constant = 0.20
• Prior = 0.29
• Posterior = ( 0.3793 * 0.29) / 0.20 = 0.55
P(I=F) P(I=T)
0.80 0.20
D P(H=F) P(H=T)
F 0.75 0.25
T 0.25 0.75
P(D=F) P(D=T)
0.80 0.20
H I P(F=M) P(F=S) P(F=G)
F F 0.70 0.20 0.10
T F 0.30 0.10 0.60
F T 0.35 0.15 0.50
T T 0.10 0.20 0.70
Bayesian network and CPT
Result
P(D=F) P(D=T)
0 1
P(I=F) P(I=T)
0 1
1 von 5

Recomendados

Abdequipo1Abdequipo1
Abdequipo1Rosa Munoz
116 views4 Folien
Quad fcnQuad fcn
Quad fcnAngie Starrett
725 views19 Folien
Tangent planeTangent plane
Tangent planeyash patel
1.2K views12 Folien

Más contenido relacionado

Was ist angesagt?(14)

Programa expresiones regularesPrograma expresiones regulares
Programa expresiones regulares
Anel Sosa91 views
Basics of CTBasics of CT
Basics of CT
Mohamed Shaaban3.3K views
Nilai  tugas statistikaNilai  tugas statistika
Nilai tugas statistika
Hendra Hendrial141 views
Monte-carlo sim pricing EU callMonte-carlo sim pricing EU call
Monte-carlo sim pricing EU call
Tianqi Huang, CFA195 views
Estadistica compleja trabEstadistica compleja trab
Estadistica compleja trab
Liliana Maldonado464 views
PYTHON. AM CALL Pricing TreesPYTHON. AM CALL Pricing Trees
PYTHON. AM CALL Pricing Trees
Tianqi Huang, CFA235 views
Seg codeSeg code
Seg code
wi7sonjoseph252 views
Euler method in cEuler method in c
Euler method in c
Subir Halder443 views
Open GL 09 scan conversionOpen GL 09 scan conversion
Open GL 09 scan conversion
Roziq Bahtiar1.1K views
AdvancedAdvanced
Advanced
Logan Campbell344 views
Ecuaciones de economíaEcuaciones de economía
Ecuaciones de economía
Jorge Wan Vallejos4.1K views

Destacado(6)

Bayesian network and cpt

  • 1. P(H=F) P(H=T) 0.75 0.25 P(I=F) P(I=T) 0.80 0.20 H I P(F=M) P(F=S) P(F=G) F F 0.70 0.20 0.10 T F 0.30 0.10 0.60 F T 0.35 0.15 0.50 T T 0.10 0.20 0.70 Bayesian network and CPT
  • 3. Bayes theorem H I P(F=M) P(F=S) P(F=G) F F 0.70 0.20 0.10 T F 0.30 0.10 0.60 F T 0.35 0.15 0.50 T T 0.10 0.20 0.70 • Financial loss P(H=F) P(H=T) 0.75 0.25 • Human error P(I=F) P(I=T) 0.80 0.20 • IT failure P(I=F) P(I=T) P(H=F) 0.60 0.15 P(H=T) 0.20 0.05 H I P(F=M) P(F=S) P(F=G) F F 0.42 0.12 0.06 T F 0.06 0.02 0.12 F T 0.0525 0.0225 0.075 T T 0.005 0.01 0.035 • Likelihood = 0.11 / 0.29 = 0.3793 • Normalising constant = 0.20 • Prior = 0.29 • Posterior = ( 0.3793 * 0.29) / 0.20 = 0.55
  • 4. P(I=F) P(I=T) 0.80 0.20 D P(H=F) P(H=T) F 0.75 0.25 T 0.25 0.75 P(D=F) P(D=T) 0.80 0.20 H I P(F=M) P(F=S) P(F=G) F F 0.70 0.20 0.10 T F 0.30 0.10 0.60 F T 0.35 0.15 0.50 T T 0.10 0.20 0.70 Bayesian network and CPT