SlideShare ist ein Scribd-Unternehmen logo
1 von 6
Downloaden Sie, um offline zu lesen
We believe in the Power of Nature
Hydropower Project
BAKUN
Malaysia
The most efficient power station in the world
IMPSA's scope of supply includes electromechanical
equipment for the power plant under a turnkey contract. It
encompasses four of the eight 350 MW Francis generating
units with their respective governor and excitation system,
control and protection system, main power transformers,
and the balance of plant.
IMPSA was contracted for this project after an international
bidding process in which its turbines proved to be the most
efficient. For Sarawak Hidro, this represents not only
increased power generation but also higher incomes. The
plant's overall efficiency is 94%, making it the most efficient
power station in the world. Generation from other sources
currently yield no more than 60% (combined cycle). Another
relevant fact is the project's exceptional plant factor.
Bakun saves 30 million barrels of oil equivalent per year,
eliminating the corresponding greenhouse gas emissions,
thus aiding in the prevention of global warming and
environmental pollution. In this way, resources are also
strategically saved for export.
The Bakun Hydropower Project is located in Sarawak, Malaysia, 60 km west of the city of Belaga on the Balui River, a
tributary of the Rajang. It follows the guidelines of the Sarawak Corridor of Renewable Energy (SCORE) program,
aiming to diversify Malaysia's energy matrix by increasing the use of clean energy. This project represents a first step
towards harnessing the 20,000 MW potential of the Rajang Basin.
The project has been designed to supply electricity to the provinces of Sarawak and Sabah as well as to Peninsular
Malaysia by means of a 650 km underground cable laid across the bottom of the South China Sea. There is also the
possibility of supplying energy to the state of Brunei and Kalimantan, Province of Indonesia, both on the Island of Borneo.
Bakun comprises a 205 m high and 750 m long concrete-faced rockfill dam (CFRD), the highest of this type in the world,
intake structure, a gated spillway, 8 pressure tunnels with their respective penstocks, and the powerhouse.
This project also triggered the decision to expand and modernize IMPSA's plant in Lumut, on the west coast of
Malaysia, with state-of-the-art machine tools so that high value-added turbine and generator components can be
manufactured locally. To this end, some 500 local workers from different disciplines were hired. This led to the
transfer of technology to Malaysian professionals and technicians. This was achieved by means of a considerable
personnel exchange program between Argentina and Malaysia.
Name
Country
Customer
Scope of Supply
Installed capacity
Mean annual energy
Equivalent energy
Bakun
Malaysia
Sarawak Hidro Sdn Bhd
Turnkey equipment
2,800 MW
8,900 GWh
83,000 BOED
1
Project
description
Turbines
Governors
The control system is made up of 5 main sections:
Turbine
Generator
Ancillary systems
Control and protection system
Technical
characteristics
Quantity x Capacity 4 x 350 MW
Rated head 172.4 m
Runaway speed 290 rpm
Type Electro-hydraulic with PID control
Water cooling system
Full compressed air systems at high and low pressure
Unit drainage system
Oil transfer and treatment system
Fire protection system for generators and transformers
Hoisting for the ancillary system
Type Francis
Generators
Generating voltage 18 kV
Frequency 50 Hz
Quantity x Capacity 4 x 396 MVA
Excitation system
Type Static with electric brake
Power transformers
Quantity x Capacity 4 x 396 MVA
Medium voltage side 18 kV
High voltage side 290 kV
Type Three-phase
Type of cooling ODWF
Tap changer type On load
Electrical systems
Auxiliary service transformers
Generator's isolated phase busducts for 3,000 A - 8kV1 1
High and low voltage equipment
Main generator circuit breakers for 3,000 A - 8 kV1 1
DC AC supply system
Full wiring
Grounding system
Auxiliary services
Alarm
Automation
Spare parts for all equipment
Turbine model testing at IMPSA's laboratories in Argentina
Customer personnel training
Other equipment and services
Camp and infrastructure for assembly / erection and on-site testing
Assembly / erection, on-site testing and start-up
Speed 166.7 rpm
Turbines
Tests of the Bakun turbine's reduced model were
performed at the Hydraulic Laboratory of IMPSA's
Technology Research Center and witnessed by
SARAWAK HIDRO's representatives and international
experts. The development process comprised: hydraulic
design, mechanical design of the model, internal tests to
meet project requirements; and tests witnessed by
customer's representatives. The tests made it possible
to verify compliance with all project's guarantees.
All turbine components were initially analyzed and optimized with flow simulation programs (CFD). Results obtained
were consistent with other measurements performed during model testing. The turbines, designed for a head range of
more than 40 m, made it possible to achieve high efficiencies throughout the unit's operational range.
Hydraulic design
A computerized 3D model was used for the mechanical design. It
verified component stresses and also computed the deflections and
natural frequencies using the finite element method (FEM).
The spiral case was made of welded steel plates designed for
maximum operation pressure. The stay ring has two parallel plates
welded onto 9 stay vanes. This component was pressurized on site at
50% of the design pressure.
The distributor has 20 wicket gates driven by two servomotors through
an operating ring. The wicket gates, cast in 3.4 stainless steel, are
equipped with self-lubricating bushings.
The runner was made of components cast in 3.4 stainless steel.
The shaft utilizes a thin-wall welded design. Because of its inertia,
this increases the safety margin between runaway and critical
speeds. In addition, it gives greater vibration stability and reduces
manufacturing cost.
Since the unit operates as a synchronous condenser, special
provisions were made for air injection and water drainage in the upper
cover and bottom ring.
Once hydraulic energy has been converted into mechanical energy,
the turbine restores the water through a draft tube made of welded
steel plates.
1
1
1
1
Governor IMPSA's governor is of the digital electro-hydraulic type with PID control. The
control electronics, composed of standard high-quality PLCs, is highly reliable
and facilitates maintenance. The control architecture consists of a main
controller and a manual back-up one. This ensures high fault tolerance in the
case of a main controller failure, preventing the generating unit from shutting
down, otherwise, the load would be rejected and the power system would be
adversely affected.
The software includes all speed power and position control functions required
for these types of units.
The oil pressure system (air/oil) has a pumping unit with three screw-type
pumps to pressurize the system and an air/oil tank with an accumulated
volume of about 8,000 liters. The pumping unit was fully designed in 3D.
The project's control system comprises the supervision, control and protection of the four generating units that are part
of IMPSA's scope of supply. Each generating unit has three main controllers.
Each unit's automated control coordinates the safe and synchronized operation of both the generator and turbine
systems, such as: speed governor, voltage regulator, switchgear, etc.
Each controller is linked to the overall control system through its S8000 network, providing all the information required
for the generating unit. The network makes possible to remotely control and integrate all units with the control modules
in the power plant. These controllers have event sequencing (SOE) capacity with ms resolution and overall
synchronization with GPS.
1
Automation
Mechanical design
This project is yet another example of IMPSA's commitment to providing integrated solutions
for renewable power generation.
Excitation system
Generators
This machine converts the turbine's mechanical energy into electricity for transmission to consumption centers.
Hydro generators are three-phase, vertical shaft, salient-pole synchronous machines, each with a capacity of 396 MVA.
At 0 MVA per pole, it shows the high level of complexity of the design.
Integral dimensioning of the generator was performed with IMPSA's own ARGEN expert system, which analyze the
equipment's behavior, both in steady and transient states as well as under normal and fault conditions. This software
simulates all the issues required to produce this type of machine: components' dimensioning, electromagnetism,
electrical and magnetic circuits, fluid mechanics and heat transmission, strength and fatigue of materials, tribology, shaft-
line stability, vibrations and oscillatory behavior.
3D Computer Aided Design (CAD) was used throughout the whole design process. Verification studies were
carried out not only with tools developed by IMPSA and integrated into the PROGEN expert system, but also with
applications that use FEM.
The stator's magnetic core was made from 0.5 mm oriented magnetic steel segments, which were die-cut, varnished
and stacked. The stator winding, in which a three-phase alternating current is induced, is mounted on the slots. The
set is supported by the stator frame, a welded structure which directs the air from the core to the heat exchange
units of the cooling system.
The rotor consists of a steel-welded spider, a rotor rim made of die-cut stacked segments (for radial ventilation), and the
poles that generate the rotating magnetic field in the machine's air gaps.
The arrangement of the line of shafts includes a guide bearing on the generator's rotor, a combined bearing below the
generator's rotor, and a guide bearing in the turbine. This arrangement is very convenient for the rotor's dynamic stability.
Design characteristics include a membrane-type lower bracket which transmits radial stress to the foundation,
minimizing the machine's length. This solution means a significant saving in the project's civil structure.
The ventilation system is of the asymmetric radial type, which uses the rotor to generate pressure for machine cooling.
1
The system includes:
Automatic Voltage Regulator (AVR):
Power stage:
Field discharge:
Excitation transformer:
It consists of an automated system with a processing unit in redundant
configuration (hot-stand by), and field current controllers for each SCR (thyristor) rectifying bridge. In the event of
internal failure, this configuration performs either processing unit or power stage commutations.
It is made up of two bridge rectifiers, one of them in cold standby to ensure double power redundancy
without jeopardizing the other SCRs in the event of a power failure near the bridge rectifiers. Each bridge rectifier has
its own air/air heat exchange unit and protection system.
In the event of a normal shutdown, the field breaker trips and the system performs a fast
deexcitation by opening the field breaker. The energy stored in the rotor is discharged into a resistor.
Dry-type cast resin transformer. The epoxy-encapsulated winding is protected with its
corresponding cell, which is connected to the segregated phase bus duct. Overcurrent protection is connected to
the primary circuit by means of current transformers.
www.impsa.com
IMPSA LATIN-AMERICA
Carril Rodríguez Peña 2451
M5503AHY, San Francisco del Monte
Godoy Cruz, Mendoza
Argentina
Ph (+54 261) 413 1300
Fax (+54 261) 413 1416
IMPSA RECIFE
Estrada TDR Norte, 1724 Km 3,3
Distrito Industrial de Suape
Cabo de Santo Agostinho, PE, Brazil
CEP: 5490-000
Ph (+55 81) 3087 9300
Fax (+55 81) 3087 9372
IMPSA MALAYSIA SDN BHD
T2-8, 8th Floor, Jaya 33, N° 3 (Lot 33)
Jalan Semangat, Section 13
46100 Petaling Jaya, Selangor Darul Ehsan
Kuala Lumpur
Malaysia
Ph (+60 3) 7954 1168
Fax (+60 3) 7954 1169
ISO 9001 :: ISO 14.001 :: OHSAS 18.001

Weitere ähnliche Inhalte

Was ist angesagt?

CV-Electrical Engineer (1)
CV-Electrical Engineer (1)CV-Electrical Engineer (1)
CV-Electrical Engineer (1)Mohamed Fadol
 
Pengenalan kepada kecacatan kimpal.
Pengenalan kepada kecacatan kimpal.Pengenalan kepada kecacatan kimpal.
Pengenalan kepada kecacatan kimpal.Aqkmar Kkm
 
Internship report of mechanical student
Internship report of mechanical studentInternship report of mechanical student
Internship report of mechanical studentRitika Vyas
 
Pengenalan motor
Pengenalan motorPengenalan motor
Pengenalan motorEncik Mirul
 
LabReport-Autodesk Inventor 2008-MasterCam X4
LabReport-Autodesk Inventor 2008-MasterCam X4LabReport-Autodesk Inventor 2008-MasterCam X4
LabReport-Autodesk Inventor 2008-MasterCam X4Kienho Chan
 
Shujaat Updated CV New
Shujaat Updated CV NewShujaat Updated CV New
Shujaat Updated CV NewShujaat Jan
 
RESUME ELECTRICAL ENGINEER
RESUME ELECTRICAL ENGINEERRESUME ELECTRICAL ENGINEER
RESUME ELECTRICAL ENGINEERAMIT BISWAS
 
ELECTRICAL TECHNICIAN
ELECTRICAL TECHNICIANELECTRICAL TECHNICIAN
ELECTRICAL TECHNICIANtanweer alam
 
Sistem pneumatik
Sistem pneumatikSistem pneumatik
Sistem pneumatikFendy Endy
 
NOTA KURSUS 11 OKTOBER 2021.pdf
NOTA KURSUS 11 OKTOBER 2021.pdfNOTA KURSUS 11 OKTOBER 2021.pdf
NOTA KURSUS 11 OKTOBER 2021.pdfkelisa620
 
Cad cam report-final (mechanical workshop)
Cad cam report-final (mechanical workshop)Cad cam report-final (mechanical workshop)
Cad cam report-final (mechanical workshop)Parthibanraj Selvaraj
 
Cv for qc inspector mechanical
Cv for qc inspector mechanicalCv for qc inspector mechanical
Cv for qc inspector mechanicalShaik Ghouse
 
TMK TAHUN 4 PERANTI OUTPUT DAN INPUT
TMK TAHUN 4 PERANTI OUTPUT DAN INPUTTMK TAHUN 4 PERANTI OUTPUT DAN INPUT
TMK TAHUN 4 PERANTI OUTPUT DAN INPUTJasleen Razali
 

Was ist angesagt? (20)

CV-Electrical Engineer (1)
CV-Electrical Engineer (1)CV-Electrical Engineer (1)
CV-Electrical Engineer (1)
 
Pengenalan kepada kecacatan kimpal.
Pengenalan kepada kecacatan kimpal.Pengenalan kepada kecacatan kimpal.
Pengenalan kepada kecacatan kimpal.
 
Qc
QcQc
Qc
 
Internship report of mechanical student
Internship report of mechanical studentInternship report of mechanical student
Internship report of mechanical student
 
BUSDUCT
BUSDUCTBUSDUCT
BUSDUCT
 
CV-Project Manager
CV-Project ManagerCV-Project Manager
CV-Project Manager
 
Pengenalan motor
Pengenalan motorPengenalan motor
Pengenalan motor
 
LabReport-Autodesk Inventor 2008-MasterCam X4
LabReport-Autodesk Inventor 2008-MasterCam X4LabReport-Autodesk Inventor 2008-MasterCam X4
LabReport-Autodesk Inventor 2008-MasterCam X4
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Shujaat Updated CV New
Shujaat Updated CV NewShujaat Updated CV New
Shujaat Updated CV New
 
RESUME ELECTRICAL ENGINEER
RESUME ELECTRICAL ENGINEERRESUME ELECTRICAL ENGINEER
RESUME ELECTRICAL ENGINEER
 
ELECTRICAL TECHNICIAN
ELECTRICAL TECHNICIANELECTRICAL TECHNICIAN
ELECTRICAL TECHNICIAN
 
Sistem pneumatik
Sistem pneumatikSistem pneumatik
Sistem pneumatik
 
EDM wirecut report
EDM wirecut reportEDM wirecut report
EDM wirecut report
 
Certified QA QC civil engineer
Certified QA QC civil engineer Certified QA QC civil engineer
Certified QA QC civil engineer
 
NOTA KURSUS 11 OKTOBER 2021.pdf
NOTA KURSUS 11 OKTOBER 2021.pdfNOTA KURSUS 11 OKTOBER 2021.pdf
NOTA KURSUS 11 OKTOBER 2021.pdf
 
Cad cam report-final (mechanical workshop)
Cad cam report-final (mechanical workshop)Cad cam report-final (mechanical workshop)
Cad cam report-final (mechanical workshop)
 
Cv for qc inspector mechanical
Cv for qc inspector mechanicalCv for qc inspector mechanical
Cv for qc inspector mechanical
 
Grinder machine
Grinder machineGrinder machine
Grinder machine
 
TMK TAHUN 4 PERANTI OUTPUT DAN INPUT
TMK TAHUN 4 PERANTI OUTPUT DAN INPUTTMK TAHUN 4 PERANTI OUTPUT DAN INPUT
TMK TAHUN 4 PERANTI OUTPUT DAN INPUT
 

Andere mochten auch

Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...
Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...
Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...Smart Villages
 
Kuching | Jan-15 | Micro Hydro Project For Rural Electrification
Kuching | Jan-15 |  Micro Hydro Project For Rural ElectrificationKuching | Jan-15 |  Micro Hydro Project For Rural Electrification
Kuching | Jan-15 | Micro Hydro Project For Rural ElectrificationSmart Villages
 
Sarawak Energy Confidential (PPT)
Sarawak Energy Confidential (PPT)Sarawak Energy Confidential (PPT)
Sarawak Energy Confidential (PPT)Sarawak Headhunter
 
Kuching | Jan-15 | Sarawak Rural Electrification
Kuching | Jan-15 | Sarawak Rural Electrification   Kuching | Jan-15 | Sarawak Rural Electrification
Kuching | Jan-15 | Sarawak Rural Electrification Smart Villages
 
Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...
Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...
Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...Smart Villages
 
Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...
Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...
Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...Smart Villages
 
Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...
Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...
Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...Smart Villages
 
Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...
Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...
Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...Smart Villages
 
Design of microhydro turbine for sewage treatment plant.
Design of microhydro turbine for sewage treatment plant.Design of microhydro turbine for sewage treatment plant.
Design of microhydro turbine for sewage treatment plant.Firdaus Julaihi
 
Hydropower
HydropowerHydropower
Hydropowerfscseema
 
Hydroelectric power plant
Hydroelectric power plantHydroelectric power plant
Hydroelectric power plantMuddassar Awan
 
Electrocution
ElectrocutionElectrocution
ElectrocutionAyshaO3 .
 

Andere mochten auch (17)

Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...
Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...
Kuching | Jan-15 | Hydro Power Development in Sarawak: Opportunities & Challe...
 
Kuching | Jan-15 | Micro Hydro Project For Rural Electrification
Kuching | Jan-15 |  Micro Hydro Project For Rural ElectrificationKuching | Jan-15 |  Micro Hydro Project For Rural Electrification
Kuching | Jan-15 | Micro Hydro Project For Rural Electrification
 
Bakun
BakunBakun
Bakun
 
Sarawak Energy Confidential (PPT)
Sarawak Energy Confidential (PPT)Sarawak Energy Confidential (PPT)
Sarawak Energy Confidential (PPT)
 
Kuching | Jan-15 | Sarawak Rural Electrification
Kuching | Jan-15 | Sarawak Rural Electrification   Kuching | Jan-15 | Sarawak Rural Electrification
Kuching | Jan-15 | Sarawak Rural Electrification
 
Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...
Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...
Kuching | Jan-15 | Research & Development Projects for Rural Community Develo...
 
Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...
Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...
Kuching | Jan-15 | Rural electrification using solar- hydro energy- a Long Pa...
 
Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...
Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...
Kuching | Jan-15 | Solar Social Enterprise and Sustainable Living and Learnin...
 
Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...
Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...
Kuching | Jan-15 | Solar DC nano-grids: A technology perspective on village e...
 
Hirarc slide
Hirarc slideHirarc slide
Hirarc slide
 
Design of microhydro turbine for sewage treatment plant.
Design of microhydro turbine for sewage treatment plant.Design of microhydro turbine for sewage treatment plant.
Design of microhydro turbine for sewage treatment plant.
 
Hydropower
HydropowerHydropower
Hydropower
 
Hydroelectric power plant
Hydroelectric power plantHydroelectric power plant
Hydroelectric power plant
 
Hydroelectric Power
Hydroelectric PowerHydroelectric Power
Hydroelectric Power
 
Hydro power plant
Hydro power plantHydro power plant
Hydro power plant
 
Electrocution rs
Electrocution rsElectrocution rs
Electrocution rs
 
Electrocution
ElectrocutionElectrocution
Electrocution
 

Ähnlich wie BAKUN Hydropower Project

Power conversion system design for tidal stream generator by Oceanflow
Power conversion system design for tidal stream generator by OceanflowPower conversion system design for tidal stream generator by Oceanflow
Power conversion system design for tidal stream generator by OceanflowOptima Control Solutions
 
Condition monitoring of rotating electrical machines
Condition monitoring of rotating electrical machinesCondition monitoring of rotating electrical machines
Condition monitoring of rotating electrical machinesAnkit Basera
 
M A MALLICK ppt. for FDP SEPT. 2019
M A MALLICK ppt. for  FDP SEPT. 2019M A MALLICK ppt. for  FDP SEPT. 2019
M A MALLICK ppt. for FDP SEPT. 2019Mohammad Mallick
 
IRJET- Power Quality Improvement in SEIG
IRJET- Power Quality Improvement in SEIGIRJET- Power Quality Improvement in SEIG
IRJET- Power Quality Improvement in SEIGIRJET Journal
 
windturbinepower-160919122215-converted.pptx
windturbinepower-160919122215-converted.pptxwindturbinepower-160919122215-converted.pptx
windturbinepower-160919122215-converted.pptxKarthikkumar Shanmugam
 
FINAL PROJECT ppt.pptx
FINAL PROJECT ppt.pptxFINAL PROJECT ppt.pptx
FINAL PROJECT ppt.pptxmmpnair0
 
Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...
Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...
Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...ijtsrd
 
Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)
Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)
Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)Davide Serani
 
Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...
Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...
Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...IJERDJOURNAL
 
Grid Connected Wind Turbine Generator with Real and Reactive Power Control
Grid Connected Wind Turbine Generator with Real and Reactive Power ControlGrid Connected Wind Turbine Generator with Real and Reactive Power Control
Grid Connected Wind Turbine Generator with Real and Reactive Power ControlIRJET Journal
 
IRJET- Electric Supercharger
IRJET-  	  Electric SuperchargerIRJET-  	  Electric Supercharger
IRJET- Electric SuperchargerIRJET Journal
 
Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...
Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...
Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...IRJET Journal
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsLong Thang Pham
 
60015688 ashish-loco-summer (1)
60015688 ashish-loco-summer (1)60015688 ashish-loco-summer (1)
60015688 ashish-loco-summer (1)99sunilkumar
 

Ähnlich wie BAKUN Hydropower Project (20)

Power conversion system design for tidal stream generator by Oceanflow
Power conversion system design for tidal stream generator by OceanflowPower conversion system design for tidal stream generator by Oceanflow
Power conversion system design for tidal stream generator by Oceanflow
 
Condition monitoring of rotating electrical machines
Condition monitoring of rotating electrical machinesCondition monitoring of rotating electrical machines
Condition monitoring of rotating electrical machines
 
M A MALLICK ppt. for FDP SEPT. 2019
M A MALLICK ppt. for  FDP SEPT. 2019M A MALLICK ppt. for  FDP SEPT. 2019
M A MALLICK ppt. for FDP SEPT. 2019
 
IRJET- Power Quality Improvement in SEIG
IRJET- Power Quality Improvement in SEIGIRJET- Power Quality Improvement in SEIG
IRJET- Power Quality Improvement in SEIG
 
Overview of different wind generator systems and their comparison
Overview of different wind generator systems and their comparisonOverview of different wind generator systems and their comparison
Overview of different wind generator systems and their comparison
 
Construction of PCC Parapet
Construction of PCC Parapet Construction of PCC Parapet
Construction of PCC Parapet
 
windturbinepower-160919122215-converted.pptx
windturbinepower-160919122215-converted.pptxwindturbinepower-160919122215-converted.pptx
windturbinepower-160919122215-converted.pptx
 
FINAL PROJECT ppt.pptx
FINAL PROJECT ppt.pptxFINAL PROJECT ppt.pptx
FINAL PROJECT ppt.pptx
 
Wind turbine power
Wind turbine powerWind turbine power
Wind turbine power
 
Northern western raiways ppt
Northern western raiways pptNorthern western raiways ppt
Northern western raiways ppt
 
Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...
Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...
Energy Consumption Minimization of Squirrel Cage Induction Motor Using Classi...
 
Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)
Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)
Genius Energy - Steel Energy - Flywheel Energy Storage (Kinetic Storage)
 
Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...
Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...
Development of Enhanced Frequency Drive for 3-Phase Induction Motors Submitte...
 
Grid Connected Wind Turbine Generator with Real and Reactive Power Control
Grid Connected Wind Turbine Generator with Real and Reactive Power ControlGrid Connected Wind Turbine Generator with Real and Reactive Power Control
Grid Connected Wind Turbine Generator with Real and Reactive Power Control
 
IRJET- Electric Supercharger
IRJET-  	  Electric SuperchargerIRJET-  	  Electric Supercharger
IRJET- Electric Supercharger
 
Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...
Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...
Design of Integrated Generator-Rectifier System to Determine the Maximum Powe...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
apratimkangkan
apratimkangkanapratimkangkan
apratimkangkan
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generators
 
60015688 ashish-loco-summer (1)
60015688 ashish-loco-summer (1)60015688 ashish-loco-summer (1)
60015688 ashish-loco-summer (1)
 

BAKUN Hydropower Project

  • 1. We believe in the Power of Nature Hydropower Project BAKUN Malaysia The most efficient power station in the world
  • 2. IMPSA's scope of supply includes electromechanical equipment for the power plant under a turnkey contract. It encompasses four of the eight 350 MW Francis generating units with their respective governor and excitation system, control and protection system, main power transformers, and the balance of plant. IMPSA was contracted for this project after an international bidding process in which its turbines proved to be the most efficient. For Sarawak Hidro, this represents not only increased power generation but also higher incomes. The plant's overall efficiency is 94%, making it the most efficient power station in the world. Generation from other sources currently yield no more than 60% (combined cycle). Another relevant fact is the project's exceptional plant factor. Bakun saves 30 million barrels of oil equivalent per year, eliminating the corresponding greenhouse gas emissions, thus aiding in the prevention of global warming and environmental pollution. In this way, resources are also strategically saved for export. The Bakun Hydropower Project is located in Sarawak, Malaysia, 60 km west of the city of Belaga on the Balui River, a tributary of the Rajang. It follows the guidelines of the Sarawak Corridor of Renewable Energy (SCORE) program, aiming to diversify Malaysia's energy matrix by increasing the use of clean energy. This project represents a first step towards harnessing the 20,000 MW potential of the Rajang Basin. The project has been designed to supply electricity to the provinces of Sarawak and Sabah as well as to Peninsular Malaysia by means of a 650 km underground cable laid across the bottom of the South China Sea. There is also the possibility of supplying energy to the state of Brunei and Kalimantan, Province of Indonesia, both on the Island of Borneo. Bakun comprises a 205 m high and 750 m long concrete-faced rockfill dam (CFRD), the highest of this type in the world, intake structure, a gated spillway, 8 pressure tunnels with their respective penstocks, and the powerhouse. This project also triggered the decision to expand and modernize IMPSA's plant in Lumut, on the west coast of Malaysia, with state-of-the-art machine tools so that high value-added turbine and generator components can be manufactured locally. To this end, some 500 local workers from different disciplines were hired. This led to the transfer of technology to Malaysian professionals and technicians. This was achieved by means of a considerable personnel exchange program between Argentina and Malaysia. Name Country Customer Scope of Supply Installed capacity Mean annual energy Equivalent energy Bakun Malaysia Sarawak Hidro Sdn Bhd Turnkey equipment 2,800 MW 8,900 GWh 83,000 BOED 1 Project description
  • 3. Turbines Governors The control system is made up of 5 main sections: Turbine Generator Ancillary systems Control and protection system Technical characteristics Quantity x Capacity 4 x 350 MW Rated head 172.4 m Runaway speed 290 rpm Type Electro-hydraulic with PID control Water cooling system Full compressed air systems at high and low pressure Unit drainage system Oil transfer and treatment system Fire protection system for generators and transformers Hoisting for the ancillary system Type Francis Generators Generating voltage 18 kV Frequency 50 Hz Quantity x Capacity 4 x 396 MVA Excitation system Type Static with electric brake Power transformers Quantity x Capacity 4 x 396 MVA Medium voltage side 18 kV High voltage side 290 kV Type Three-phase Type of cooling ODWF Tap changer type On load Electrical systems Auxiliary service transformers Generator's isolated phase busducts for 3,000 A - 8kV1 1 High and low voltage equipment Main generator circuit breakers for 3,000 A - 8 kV1 1 DC AC supply system Full wiring Grounding system Auxiliary services Alarm Automation Spare parts for all equipment Turbine model testing at IMPSA's laboratories in Argentina Customer personnel training Other equipment and services Camp and infrastructure for assembly / erection and on-site testing Assembly / erection, on-site testing and start-up Speed 166.7 rpm Turbines Tests of the Bakun turbine's reduced model were performed at the Hydraulic Laboratory of IMPSA's Technology Research Center and witnessed by SARAWAK HIDRO's representatives and international experts. The development process comprised: hydraulic design, mechanical design of the model, internal tests to meet project requirements; and tests witnessed by customer's representatives. The tests made it possible to verify compliance with all project's guarantees. All turbine components were initially analyzed and optimized with flow simulation programs (CFD). Results obtained were consistent with other measurements performed during model testing. The turbines, designed for a head range of more than 40 m, made it possible to achieve high efficiencies throughout the unit's operational range. Hydraulic design
  • 4. A computerized 3D model was used for the mechanical design. It verified component stresses and also computed the deflections and natural frequencies using the finite element method (FEM). The spiral case was made of welded steel plates designed for maximum operation pressure. The stay ring has two parallel plates welded onto 9 stay vanes. This component was pressurized on site at 50% of the design pressure. The distributor has 20 wicket gates driven by two servomotors through an operating ring. The wicket gates, cast in 3.4 stainless steel, are equipped with self-lubricating bushings. The runner was made of components cast in 3.4 stainless steel. The shaft utilizes a thin-wall welded design. Because of its inertia, this increases the safety margin between runaway and critical speeds. In addition, it gives greater vibration stability and reduces manufacturing cost. Since the unit operates as a synchronous condenser, special provisions were made for air injection and water drainage in the upper cover and bottom ring. Once hydraulic energy has been converted into mechanical energy, the turbine restores the water through a draft tube made of welded steel plates. 1 1 1 1 Governor IMPSA's governor is of the digital electro-hydraulic type with PID control. The control electronics, composed of standard high-quality PLCs, is highly reliable and facilitates maintenance. The control architecture consists of a main controller and a manual back-up one. This ensures high fault tolerance in the case of a main controller failure, preventing the generating unit from shutting down, otherwise, the load would be rejected and the power system would be adversely affected. The software includes all speed power and position control functions required for these types of units. The oil pressure system (air/oil) has a pumping unit with three screw-type pumps to pressurize the system and an air/oil tank with an accumulated volume of about 8,000 liters. The pumping unit was fully designed in 3D. The project's control system comprises the supervision, control and protection of the four generating units that are part of IMPSA's scope of supply. Each generating unit has three main controllers. Each unit's automated control coordinates the safe and synchronized operation of both the generator and turbine systems, such as: speed governor, voltage regulator, switchgear, etc. Each controller is linked to the overall control system through its S8000 network, providing all the information required for the generating unit. The network makes possible to remotely control and integrate all units with the control modules in the power plant. These controllers have event sequencing (SOE) capacity with ms resolution and overall synchronization with GPS. 1 Automation Mechanical design
  • 5. This project is yet another example of IMPSA's commitment to providing integrated solutions for renewable power generation. Excitation system Generators This machine converts the turbine's mechanical energy into electricity for transmission to consumption centers. Hydro generators are three-phase, vertical shaft, salient-pole synchronous machines, each with a capacity of 396 MVA. At 0 MVA per pole, it shows the high level of complexity of the design. Integral dimensioning of the generator was performed with IMPSA's own ARGEN expert system, which analyze the equipment's behavior, both in steady and transient states as well as under normal and fault conditions. This software simulates all the issues required to produce this type of machine: components' dimensioning, electromagnetism, electrical and magnetic circuits, fluid mechanics and heat transmission, strength and fatigue of materials, tribology, shaft- line stability, vibrations and oscillatory behavior. 3D Computer Aided Design (CAD) was used throughout the whole design process. Verification studies were carried out not only with tools developed by IMPSA and integrated into the PROGEN expert system, but also with applications that use FEM. The stator's magnetic core was made from 0.5 mm oriented magnetic steel segments, which were die-cut, varnished and stacked. The stator winding, in which a three-phase alternating current is induced, is mounted on the slots. The set is supported by the stator frame, a welded structure which directs the air from the core to the heat exchange units of the cooling system. The rotor consists of a steel-welded spider, a rotor rim made of die-cut stacked segments (for radial ventilation), and the poles that generate the rotating magnetic field in the machine's air gaps. The arrangement of the line of shafts includes a guide bearing on the generator's rotor, a combined bearing below the generator's rotor, and a guide bearing in the turbine. This arrangement is very convenient for the rotor's dynamic stability. Design characteristics include a membrane-type lower bracket which transmits radial stress to the foundation, minimizing the machine's length. This solution means a significant saving in the project's civil structure. The ventilation system is of the asymmetric radial type, which uses the rotor to generate pressure for machine cooling. 1 The system includes: Automatic Voltage Regulator (AVR): Power stage: Field discharge: Excitation transformer: It consists of an automated system with a processing unit in redundant configuration (hot-stand by), and field current controllers for each SCR (thyristor) rectifying bridge. In the event of internal failure, this configuration performs either processing unit or power stage commutations. It is made up of two bridge rectifiers, one of them in cold standby to ensure double power redundancy without jeopardizing the other SCRs in the event of a power failure near the bridge rectifiers. Each bridge rectifier has its own air/air heat exchange unit and protection system. In the event of a normal shutdown, the field breaker trips and the system performs a fast deexcitation by opening the field breaker. The energy stored in the rotor is discharged into a resistor. Dry-type cast resin transformer. The epoxy-encapsulated winding is protected with its corresponding cell, which is connected to the segregated phase bus duct. Overcurrent protection is connected to the primary circuit by means of current transformers.
  • 6. www.impsa.com IMPSA LATIN-AMERICA Carril Rodríguez Peña 2451 M5503AHY, San Francisco del Monte Godoy Cruz, Mendoza Argentina Ph (+54 261) 413 1300 Fax (+54 261) 413 1416 IMPSA RECIFE Estrada TDR Norte, 1724 Km 3,3 Distrito Industrial de Suape Cabo de Santo Agostinho, PE, Brazil CEP: 5490-000 Ph (+55 81) 3087 9300 Fax (+55 81) 3087 9372 IMPSA MALAYSIA SDN BHD T2-8, 8th Floor, Jaya 33, N° 3 (Lot 33) Jalan Semangat, Section 13 46100 Petaling Jaya, Selangor Darul Ehsan Kuala Lumpur Malaysia Ph (+60 3) 7954 1168 Fax (+60 3) 7954 1169 ISO 9001 :: ISO 14.001 :: OHSAS 18.001