SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
Steel StructuresLab
1
UNIVERSITY OF ENGINEERING AND
TECHNOLOGY LAHORE
Steel structures lab
Design ASSIGNMENT
Submitted By:
HAMZA WAHEED
2015-CIV-111
Section C
Submitted To:
Dr. Qasim Shaukat Khan
DEPARTMENT OF CIVIL ENGINEERING
UET LAHORE
Steel StructuresLab
2
Assignment#01: Design of Truss Roof
Givendata:
Galvanized Iron corrugated sheet as a roofing material
N0 = -750
R = N - N0 = 56 – (-750) (where N is the registration number)
Truss spacing = s = 2.5 + (R-700) / 50 (m)
Span of truss = L = 10 + (R-700) / 5 (m)
Solution:
R = N - N0 = 56 – (-750) = 806
Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m
Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m
Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m
Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○
Dead load of roofing (GI corrugated sheet) = 15 kg / m2
Dead load of insulation boards = 5 kg / m2
Self-weight of purlins = 10 kg / m2
Self-weight of bracing elements = 5 kg / m2
Miscellaneous = 5 kg / m2
Total dead load excluding truss self-weight = 15 + 5 + 10 + 5 + 5 = 40 kg / m2
Steel StructuresLab
3
Live load from design aids (for Ө = 4.764○) = 100 kg / m2
Total gravity load = w = 40 + 100 = 140 kg / m2
Now, using Thayer’s Formula:
Self-weight of truss = √
𝑤
𝑠
(
𝐿
8.5
+ 0.5) = √
140
4.62
(
31.2
8.5
+ 0.5) = 22.96kg / m2
Total dead load = 40 + 22.96 = 62.96 kg / m2
Leeward wind pressure = Pl = 1250 Cq = 1250 (-0.7) = -875 N / m2
Windward wind pressure = Pw = 1250 Cq = 1250 (-0.7) = -875 N / m2
(for Ө = 0○ to 9.5○, Cq =-0.7)
Panel dead load = PD = w * p * s = 62.96 * 3.9 * 4.62 * 9.81 / 1000 = 11.13 KN
Panel live load = PL = w * p * s = 100 * 3.9 * 4.62 * 9.81 / 1000 = 17.68 KN
Panel wind load on Leeward side = Plw = Pl * (p / cosӨ) * (s / 1000)
= (-875) * (3.9 / cos 4.764○) * (4.62 / 1000)
Plw = -15.82 KN
Panel wind load on Leeward side = Pww = Pw * (p / cos Ө) * (s / 1000)
Steel StructuresLab
4
= (-875) * (3.9 / cos 4.764○) * (4.62 / 1000)
Pww = -15.82 KN
Unitgravityload analysis of truss roof:
Unitwindload analysisonhinge side oftruss roof:
Steel StructuresLab
5
Unitwindload analysisonroller side oftrussroof:
Steel StructuresLab
6
So, the values required for the table of forces are as follows:
Panel dead load = PD = 11.13 KN
Panel live load = PL = 17.68 KN
Panel wind load on Leeward side = Plw = -15.82 KN
Panel wind load on Leeward side = Pww = -15.82 KN
Table of forces
Member
Name
Member
Force
Under
Unit
Gravity
Load
Member
Force
Under
Unit Wind
Load On
Hinge
Side
Member
Force
Under
Unit
Wind
Load On
Roller
Side
(1.2Pd+1.6
Pl)*Col2
(1.2Pd+
0.5Pl)*
Col2+
(1.3Pww*
Col3)+
(1.3Plw)*
Col4
(1.2Pd+
0.5Pl)*
Col2+
(1.3Pww*
Col4)+
(1.3Plw)*
Col3
(0.9Pd)*
Col2+
(1.3Pww)
*Col3+
(1.3Plw)*
Col4
(0.9Pd)*Col2
+ (1.3Pww)*
Col4+
(1.3Plw)*
Col3
Max
Factored
Tension
Max
Factored
Compression
Remarks
AB 0 0.32 -0.32 0 0 0 0 0 0.000 0.000
BC 4.67 3.59 1.05 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension
L89X76X
7.9
CD 7.2 5 2.15 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension
L89X76X
7.9
DE 8.18 5.07 3.05 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension
L89X76X
7.9
EF 8.18 3.37 4.75 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension
L89X76X
7.9
Steel StructuresLab
7
FG 7.2 2.47 4.68 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension
L89X76X
7.9
GH 4.67 1.37 3.27 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension
L89X76X
7.9
HI 0 0 0 0 0 0 0 0 0.000 0.000
IK -4 -1.03 -2.95 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr…
L89X76X
7.9
KM -4.68 -1.38 -3.32 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr…
L89X76X
7.9
MO -7.22 -2.48 -4.82 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr…
L102X89
X9.5
OQ -8.21 -3.38 -4.96 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr…
L102X89
X9.5
QR -8.03 -4.13 -4.09 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr…
L102X89
X9.5
RP -8.03 -4.09 -4.13 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr…
L102X89
X9.5
PN -8.21 -4.96 -3.38 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr…
L102X89
X9.5
NL -7.22 -4.82 -2.48 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr…
L102X89
X9.5
LJ -4.68 -3.32 -1.38 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr…
L89X76X
7.9
JA -4 -2.95 -1.03 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr…
L89X76X
7.9
JB 5.61 3.93 1.65 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension
L89X76X
7.9
LB -3.11 -2.18 -0.91 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr…
L89X76X
7.9
LC 3.17 1.77 1.37 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension
L89X76X
7.9
NC -1.9 -1.06 -0.82 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr…
L89X76X
7.9
ND 1.28 0.08 1.17 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension
L89X76X
7.9
PD -0.82 -0.05 -0.75 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr…
L89X76X
7.9
PE -0.25 -1.29 1.02 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Compr…
L89X76X
7.9
RE 0.33 0.18 0.18 13.74252 -0.07908 -0.07908 -4.09815 -4.09815 13.743 4.098 Tension
L89X76X
7.9
QE -0.25 1.02 -1.29 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Tension
L89X76X
Steel StructuresLab
8
7.9
QF -0.82 -0.75 -0.05 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr…
L89X76X
7.9
OF 1.28 1.17 0.08 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension
L89X76X
7.9
OG -1.9 -0.82 -1.06 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr…
L89X76X
7.9
MG 3.17 1.37 1.77 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension
L89X76X
7.9
MH -3.11 -0.91 -2.18 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr…
L89X76X
7.9
KH 5.61 1.65 3.93 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension
L89X76X
7.9
Assignment#02: Design of purlin
Givendata:
Galvanized Iron corrugated sheet as a roofing material
N0 = -750
R = N - N0 = 56 – (-750) (where N is the registration number)
Truss spacing = s = 2.5 + (R-700) / 50 (m)
Span of truss = L = 10 + (R-700) / 5 (m)
Steel StructuresLab
9
Solution:
R = N - N0 = 56 – (-750) = 806
Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m
Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m
Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m
Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○
Dead load of roofing (GI corrugated sheet) = 25 kg / m2
Dead load of insulation boards = 6 kg / m2
Miscellaneous = 9 kg / m2
Live load from design aids (for Ө = 4.764○) = 100 kg / m2
Total Gravity Load = 25 + 6 + 9 + 100 = 140 kg / m2
Assumed self-weight of purlin = 0.15 * Total Gravity Load = 0.15 * 140 = 21 kg / m2
No. of truss panels = 8
Steel StructuresLab
10
Dead Load = (25 * 6 * 9) * 3.9 * 9.81 + (21 * 3.9 * 9.81) = (1530.36 + 803.44) N/m
Live Load = (100 * 3.9 * 9.81) = 3825.9 N/m
Total Gravity Load = ((1530.36 + 3825.9) + 803.44)= (5356.26 + 803.44)N/m
Now
Mx = wcosӨ (S2/8)
= 6159.7cos4.764 (4.622/8)
Mx = 16377.61 N/m
My = wsinӨ (S2/8) + wsinӨ (S2/8)
= 5356.26sin4.764 (4.622/8) + 803.44sin4.764 (4.622/8)
My = (1186.87+ 178.03) N/m
Now For Channel Section:
Mx (assumed)= Mx + 15My
= 16377.61 + 15(1186.87 + 178.03)
Steel StructuresLab
11
= 36851.11 Nm
Sx (Required) = Mx (assumed) / 0.66 Fy
= (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3
dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm
Trial Section No. 1:
C250 * 30
dmin. Check:
d = 254 mm >dmin. OK.
Applied Stress Check:
Sx = 259 * 103mm3
Sy = 21.6 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (259 * 103) + (1186.87 * 1000) / ((21.6/2) * 103) +
(178.03 * 1000) / (21.6 * 103)
fb = 181.37MPa>Fb NOT OK.
Trial Section No. 2:
C250 * 37
dmin. Check:
d = 254 mm >dmin. OK.
Applied Stress Check:
Sx = 298 * 103mm3
Sy = 24.3 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (298 * 103) + (1186.87 * 1000) / ((24.3/2) * 103) +
(178.03 * 1000) / (24.3 * 103)
fb = 159.97 MPa<Fb OK.
Steel StructuresLab
12
Compactness Check:
bf / tf = 73 / 11.1 = 6.6 < 10.7 OK.
Check for self-weight of purlin:
Actual Self-Weight of purlin = 37 * 10 / 31.2 = 11.86 Kg / m2< 1.2 * 21 OK.
So the final section is
Now For W Section:
Mx (assumed)= Mx + 15My
= 16377.61 + 15(1186.87 + 178.03)
= 36851.11 Nm
Sx (Required) = Mx (assumed) / 0.66 Fy
= (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3
dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm
Trial Section No. 1:
W310 * 21
dmin. Check:
d = 302 mm >dmin. OK.
Applied Stress Check:
Sx = 244 * 103mm3
Sy = 19.5 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (244 * 103) + (1186.87 * 1000) / ((19.5/2) * 103) +
(178.03 * 1000) / (19.5 * 103)
fb = 197.98 MPa>Fb NOT OK.
C250 * 37
Steel StructuresLab
13
Trial Section No. 2:
W250 * 28.4
dmin. Check:
d = 259 mm >dmin. OK.
Applied Stress Check:
Sx = 308 * 103mm3
Sy = 35.1 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (308 * 103) + (1186.87 * 1000) / ((35.1/2) * 103) +
(178.03 * 1000) / (35.1 * 103)
fb = 125.87MPa<Fb OK.
Compactness Check:
bf / tf = 102 / 10 = 10.2< 10.7 OK.
Check for self-weight of purlin:
Actual Self-Weight of purlin = 28.4 * 10 / 31.2 = 9.10 Kg / m2< 1.2 * 21 OK.
So the final section is
As angle Ө = 4.764○
; so there is no need to design the “sag rod”.
W250 * 28.4
Steel StructuresLab
14
Assignment # 03: Design of corrugated sheet
Givendata:
Design of 75 * 20 Galvanized Iron corrugated sheet
Number of sheets required = ?
N0 = -750
R = N - N0 = 56 – (-750) (where N is the registration number)
Truss spacing = s = 2.5 + (R-700) / 50 (m)
Span of truss = L = 10 + (R-700) / 5 (m)
Solution:
R = N - N0 = 56 – (-750) = 806
Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m
Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m
Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m
Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○
Assumed dead load of roofing = 20 kg / m2
Insulation not attached to the sheet
Miscellaneous load = 6 kg / m2
Live load from design aids (for Ө = 4.764○) = 100 kg / m2
Steel StructuresLab
15
Live load from design aids (for Ө = 4.764○) = 100 kg / m (For 1 m wide strip)
Total Gravity Load w = 25 + (1/3)6 + 100 + 100 = 127 kg / m2
No. of truss panels = 8
Number of trusses = 9
Sheet projection beyond center of truss support = 300 mm
Total gravity load = w = 127 * 9.81 = 124 6 N/m2
w = 1246 N/m for 1 meter wide strip
Length of one sheet = L = (np / cos Ө ) + E
L1 = (1* 3.9 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m)
L2 = (2 * 3.9 / cos 4.7640 ) + 0.2 = 8.03 m (Not possible because 1.5 m < L < 4 m)
L3 = (3 * 3.9 / cos 4.7640 ) + 0.2 = 11.94 m (Not possible because 1.5 m < L < 4 m)
As no length is satisfying so we increase the number of purlins. We introduce another purlim in
between the two purlins.
Steel StructuresLab
16
Now;
Panel length = p = 3.9 / 2 = 1.95 m
So
L1 = (1* 1.95 / cos 4.7640 ) + 0.2 = 2.16 m
L2 = (2 * 1.95 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m)
L3 = (3 * 1.95 / cos 4.7640 ) + 0.2 = 6.07 m (Not possible because 1.5 m < L < 4 m)
So length of one sheet = L = 2.25 m
Mmax = w * p2 / 8 = 1246 * 1.952 / 8 = 592.24 Nm
(Sx)Required = Mmax * 1000 / 0.6 Fy = 592.24 * 1000 / 0.6 * 250 = 3.95 * 103 mm3
Trial sheet gage 1 = 22; I = 4.23 * 104 mm4
Self weight of roofing check:
Actual self weight of roofing = 77.6 N/m2
Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2
Now
(1.35 * 77.6 = 104.76) < (1.2 * 196.2 = 235.44) OK.
Maximum deflection check:
Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm
For simply supported sheet:
∆max = 0.013 wL * p4 / EI
∆max = 0.013 * 0.981 * 19504 / 200000 * 4.23 * 104 = 21.8 mm
For S.S Sheet with partial fixity at one end
∆max = 0.01 wL * p4 / EI
∆max = 0.01 * 0.981 * 19504 / 200000 * 4.23 * 104 = 16.8 mm
So
∆max = 21.8 mm
Now
Steel StructuresLab
17
∆allowed= span / 90 = 1950 / 90 = 21.7 mm
So
∆max = 21.8 mm > ∆allowed= 21.7 mm NOT OK.
Trial sheet gage 2 = 20; I = 5.04 * 104 mm4
Self weight of roofing check:
Actual self weight of roofing = 91.5 N/m2
Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2
Now
(1.35 * 91.5 = 123.5) < (1.2 * 196.2 = 235.44) OK.
Maximum deflection check:
Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm
For simply supported sheet:
∆max = 0.013 wL * p4 / EI
∆max = 0.013 * 0.981 * 19504 / 200000 * 5.04 * 104 = 18.3 mm
For S.S Sheet with partial fixity at one end
∆max = 0.01 wL * p4 / EI
∆max = 0.01 * 0.981 * 19504 / 200000 * 5.04 * 104 = 14.1 mm
So
∆max = 18.3 mm
Now
∆allowed= span / 90 = 1950 / 90 = 21.7 mm
So
∆max = 18.3 mm < ∆allowed= 21.7 mm OK.
Now
Number of sheet panels required for 100 m2 of roof area = N100 = 108 / C (L-E)
N100 = 108 / 585 (2160 – 200) = 87.21 = 88
Now
The inclined roof area on one side = A = ((L / 2 + Sheet projection) * (Nt – 1) * S) / cos Ө
Steel StructuresLab
18
A = (31.2 / 2 + 0.3) * (9 – 1) * 4.62 / cos 4.7640
A = 589.7 m2
Number of sheets on one side = N1 = (A * N100) / 100
= 589.7 * 88 / 100
= 519
Total number of sheets = 2 * N1 = 2 * 519 = 1038
Final Results:
Gage of G.I Corrugated sheet = 20 gage
Standard Designation = 75 * 20
Sheet panel size = 0.7 * 2.25 m
Total number of sheets = 1038

Weitere ähnliche Inhalte

Was ist angesagt?

Lec.5 strength design method rectangular sections 1
Lec.5   strength design method rectangular sections  1Lec.5   strength design method rectangular sections  1
Lec.5 strength design method rectangular sections 1Muthanna Abbu
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforcedSelvakumar Palanisamy
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wallAchuthan Karnnan
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...Dr.Costas Sachpazis
 
Matching base shear in Etabs 2016
Matching base shear in Etabs 2016Matching base shear in Etabs 2016
Matching base shear in Etabs 2016Vamsi krishna reddy
 
Moment Resisting Frame.pdf
Moment Resisting Frame.pdfMoment Resisting Frame.pdf
Moment Resisting Frame.pdfZeinab Awada
 
Design for Short Axially Loaded Columns ACI318
Design for Short  Axially  Loaded Columns ACI318Design for Short  Axially  Loaded Columns ACI318
Design for Short Axially Loaded Columns ACI318Abdullah Khair
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footingLatif Hyder Wadho
 
Structural Design
Structural DesignStructural Design
Structural DesignVj NiroSh
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footingArun Kurali
 
Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcementshivam gautam
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structuresvempatishiva
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Tension members
Tension membersTension members
Tension memberssky hawk
 

Was ist angesagt? (20)

Lec.5 strength design method rectangular sections 1
Lec.5   strength design method rectangular sections  1Lec.5   strength design method rectangular sections  1
Lec.5 strength design method rectangular sections 1
 
Ch 3-a.pdf
Ch 3-a.pdfCh 3-a.pdf
Ch 3-a.pdf
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforced
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wall
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
Reinfored beam
Reinfored beamReinfored beam
Reinfored beam
 
Design of concrete beam
Design of concrete beamDesign of concrete beam
Design of concrete beam
 
Matching base shear in Etabs 2016
Matching base shear in Etabs 2016Matching base shear in Etabs 2016
Matching base shear in Etabs 2016
 
Moment Resisting Frame.pdf
Moment Resisting Frame.pdfMoment Resisting Frame.pdf
Moment Resisting Frame.pdf
 
Design for Short Axially Loaded Columns ACI318
Design for Short  Axially  Loaded Columns ACI318Design for Short  Axially  Loaded Columns ACI318
Design for Short Axially Loaded Columns ACI318
 
Rc04 bending2
Rc04 bending2Rc04 bending2
Rc04 bending2
 
Doubly reinforced beam design
Doubly reinforced beam   designDoubly reinforced beam   design
Doubly reinforced beam design
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
Structural Design
Structural DesignStructural Design
Structural Design
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Design of short columns using helical reinforcement
Design of short columns using helical reinforcementDesign of short columns using helical reinforcement
Design of short columns using helical reinforcement
 
Design of a circular raft for a cylindrical core
Design of a circular raft for a cylindrical coreDesign of a circular raft for a cylindrical core
Design of a circular raft for a cylindrical core
 
determinate and indeterminate structures
determinate and indeterminate structuresdeterminate and indeterminate structures
determinate and indeterminate structures
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
 
Tension members
Tension membersTension members
Tension members
 

Ähnlich wie Roof Truss Design (By Hamza Waheed UET Lahore )

Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsTyler Edgington
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments DesignPratik Patel
 
Diseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigasDiseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigasDavid Chavez Huerto
 
Diseno y-calculo-de-puentes
Diseno y-calculo-de-puentesDiseno y-calculo-de-puentes
Diseno y-calculo-de-puentescarlos
 
Design and analysis of school building
Design and analysis of school buildingDesign and analysis of school building
Design and analysis of school buildingRaghav Sankar
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatasWalther Castro
 
design of water section concrete structures
design of water section concrete structuresdesign of water section concrete structures
design of water section concrete structuressyehia1
 
Calculo de losa aligerada
Calculo de losa aligeradaCalculo de losa aligerada
Calculo de losa aligeradaAntonio Zr
 
Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)EngGalaydh Farah Axmed
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Transmission and distribution system design
Transmission and distribution system designTransmission and distribution system design
Transmission and distribution system designBikash Gyawali
 
Power screw application
Power screw applicationPower screw application
Power screw applicationalsaid fathy
 

Ähnlich wie Roof Truss Design (By Hamza Waheed UET Lahore ) (20)

Puentes
PuentesPuentes
Puentes
 
Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design Calucations
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
 
Concreto armado
Concreto armadoConcreto armado
Concreto armado
 
Baja kuda kuda
Baja kuda kudaBaja kuda kuda
Baja kuda kuda
 
Diseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigasDiseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigas
 
2 compression
2  compression2  compression
2 compression
 
Metalicas
MetalicasMetalicas
Metalicas
 
Diseno y-calculo-de-puentes
Diseno y-calculo-de-puentesDiseno y-calculo-de-puentes
Diseno y-calculo-de-puentes
 
Design and analysis of school building
Design and analysis of school buildingDesign and analysis of school building
Design and analysis of school building
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
 
design of water section concrete structures
design of water section concrete structuresdesign of water section concrete structures
design of water section concrete structures
 
Calculo de losa aligerada
Calculo de losa aligeradaCalculo de losa aligerada
Calculo de losa aligerada
 
Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Transmission and distribution system design
Transmission and distribution system designTransmission and distribution system design
Transmission and distribution system design
 
Power screw application
Power screw applicationPower screw application
Power screw application
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 

Mehr von Hamza Waheed

ALL ROUNDER COVER LETTER
ALL ROUNDER COVER LETTERALL ROUNDER COVER LETTER
ALL ROUNDER COVER LETTERHamza Waheed
 
PLAIN AND REINFORCED CONRETE (LAB MANUAL)
PLAIN AND REINFORCED CONRETE (LAB MANUAL)PLAIN AND REINFORCED CONRETE (LAB MANUAL)
PLAIN AND REINFORCED CONRETE (LAB MANUAL)Hamza Waheed
 
How to find missing children, vulnerable groups and managing them
How to find missing children, vulnerable groups and managing themHow to find missing children, vulnerable groups and managing them
How to find missing children, vulnerable groups and managing themHamza Waheed
 
All Rounder CV (modern CV sample)
All Rounder CV (modern CV sample)All Rounder CV (modern CV sample)
All Rounder CV (modern CV sample)Hamza Waheed
 
Construction report (boq, wbs, reports, evm)
Construction report (boq, wbs, reports, evm)Construction report (boq, wbs, reports, evm)
Construction report (boq, wbs, reports, evm)Hamza Waheed
 
How to write an effective paragraph with example
How to write an effective paragraph with exampleHow to write an effective paragraph with example
How to write an effective paragraph with exampleHamza Waheed
 
CONSTRUCTION PROCESSES in CIVIL ENGINEERING (HISTORICAL AND MODERN)
CONSTRUCTION PROCESSES  in CIVIL ENGINEERING (HISTORICAL AND MODERN) CONSTRUCTION PROCESSES  in CIVIL ENGINEERING (HISTORICAL AND MODERN)
CONSTRUCTION PROCESSES in CIVIL ENGINEERING (HISTORICAL AND MODERN) Hamza Waheed
 

Mehr von Hamza Waheed (7)

ALL ROUNDER COVER LETTER
ALL ROUNDER COVER LETTERALL ROUNDER COVER LETTER
ALL ROUNDER COVER LETTER
 
PLAIN AND REINFORCED CONRETE (LAB MANUAL)
PLAIN AND REINFORCED CONRETE (LAB MANUAL)PLAIN AND REINFORCED CONRETE (LAB MANUAL)
PLAIN AND REINFORCED CONRETE (LAB MANUAL)
 
How to find missing children, vulnerable groups and managing them
How to find missing children, vulnerable groups and managing themHow to find missing children, vulnerable groups and managing them
How to find missing children, vulnerable groups and managing them
 
All Rounder CV (modern CV sample)
All Rounder CV (modern CV sample)All Rounder CV (modern CV sample)
All Rounder CV (modern CV sample)
 
Construction report (boq, wbs, reports, evm)
Construction report (boq, wbs, reports, evm)Construction report (boq, wbs, reports, evm)
Construction report (boq, wbs, reports, evm)
 
How to write an effective paragraph with example
How to write an effective paragraph with exampleHow to write an effective paragraph with example
How to write an effective paragraph with example
 
CONSTRUCTION PROCESSES in CIVIL ENGINEERING (HISTORICAL AND MODERN)
CONSTRUCTION PROCESSES  in CIVIL ENGINEERING (HISTORICAL AND MODERN) CONSTRUCTION PROCESSES  in CIVIL ENGINEERING (HISTORICAL AND MODERN)
CONSTRUCTION PROCESSES in CIVIL ENGINEERING (HISTORICAL AND MODERN)
 

Kürzlich hochgeladen

Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Introduction to Machine Learning Part1.pptx
Introduction to Machine Learning Part1.pptxIntroduction to Machine Learning Part1.pptx
Introduction to Machine Learning Part1.pptxPavan Mohan Neelamraju
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...KrishnaveniKrishnara1
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfTheory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfShreyas Pandit
 
Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...
Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...
Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...Ayisha586983
 
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...IJAEMSJORNAL
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHbirinder2
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labsamber724300
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...Amil baba
 
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliNimot Muili
 
10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptx10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptxAdityaGoogle
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...gerogepatton
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 

Kürzlich hochgeladen (20)

Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Introduction to Machine Learning Part1.pptx
Introduction to Machine Learning Part1.pptxIntroduction to Machine Learning Part1.pptx
Introduction to Machine Learning Part1.pptx
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfTheory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdf
 
Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...
Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...
Submerged Combustion, Explosion Flame Combustion, Pulsating Combustion, and E...
 
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
 
Substation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRHSubstation Automation SCADA and Gateway Solutions by BRH
Substation Automation SCADA and Gateway Solutions by BRH
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labs
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
Uk-NO1 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Exp...
 
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot MuiliStructural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
Structural Integrity Assessment Standards in Nigeria by Engr Nimot Muili
 
10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptx10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptx
 
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
March 2024 - Top 10 Read Articles in Artificial Intelligence and Applications...
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 

Roof Truss Design (By Hamza Waheed UET Lahore )

  • 1. Steel StructuresLab 1 UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAHORE Steel structures lab Design ASSIGNMENT Submitted By: HAMZA WAHEED 2015-CIV-111 Section C Submitted To: Dr. Qasim Shaukat Khan DEPARTMENT OF CIVIL ENGINEERING UET LAHORE
  • 2. Steel StructuresLab 2 Assignment#01: Design of Truss Roof Givendata: Galvanized Iron corrugated sheet as a roofing material N0 = -750 R = N - N0 = 56 – (-750) (where N is the registration number) Truss spacing = s = 2.5 + (R-700) / 50 (m) Span of truss = L = 10 + (R-700) / 5 (m) Solution: R = N - N0 = 56 – (-750) = 806 Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○ Dead load of roofing (GI corrugated sheet) = 15 kg / m2 Dead load of insulation boards = 5 kg / m2 Self-weight of purlins = 10 kg / m2 Self-weight of bracing elements = 5 kg / m2 Miscellaneous = 5 kg / m2 Total dead load excluding truss self-weight = 15 + 5 + 10 + 5 + 5 = 40 kg / m2
  • 3. Steel StructuresLab 3 Live load from design aids (for Ө = 4.764○) = 100 kg / m2 Total gravity load = w = 40 + 100 = 140 kg / m2 Now, using Thayer’s Formula: Self-weight of truss = √ 𝑤 𝑠 ( 𝐿 8.5 + 0.5) = √ 140 4.62 ( 31.2 8.5 + 0.5) = 22.96kg / m2 Total dead load = 40 + 22.96 = 62.96 kg / m2 Leeward wind pressure = Pl = 1250 Cq = 1250 (-0.7) = -875 N / m2 Windward wind pressure = Pw = 1250 Cq = 1250 (-0.7) = -875 N / m2 (for Ө = 0○ to 9.5○, Cq =-0.7) Panel dead load = PD = w * p * s = 62.96 * 3.9 * 4.62 * 9.81 / 1000 = 11.13 KN Panel live load = PL = w * p * s = 100 * 3.9 * 4.62 * 9.81 / 1000 = 17.68 KN Panel wind load on Leeward side = Plw = Pl * (p / cosӨ) * (s / 1000) = (-875) * (3.9 / cos 4.764○) * (4.62 / 1000) Plw = -15.82 KN Panel wind load on Leeward side = Pww = Pw * (p / cos Ө) * (s / 1000)
  • 4. Steel StructuresLab 4 = (-875) * (3.9 / cos 4.764○) * (4.62 / 1000) Pww = -15.82 KN Unitgravityload analysis of truss roof: Unitwindload analysisonhinge side oftruss roof:
  • 6. Steel StructuresLab 6 So, the values required for the table of forces are as follows: Panel dead load = PD = 11.13 KN Panel live load = PL = 17.68 KN Panel wind load on Leeward side = Plw = -15.82 KN Panel wind load on Leeward side = Pww = -15.82 KN Table of forces Member Name Member Force Under Unit Gravity Load Member Force Under Unit Wind Load On Hinge Side Member Force Under Unit Wind Load On Roller Side (1.2Pd+1.6 Pl)*Col2 (1.2Pd+ 0.5Pl)* Col2+ (1.3Pww* Col3)+ (1.3Plw)* Col4 (1.2Pd+ 0.5Pl)* Col2+ (1.3Pww* Col4)+ (1.3Plw)* Col3 (0.9Pd)* Col2+ (1.3Pww) *Col3+ (1.3Plw)* Col4 (0.9Pd)*Col2 + (1.3Pww)* Col4+ (1.3Plw)* Col3 Max Factored Tension Max Factored Compression Remarks AB 0 0.32 -0.32 0 0 0 0 0 0.000 0.000 BC 4.67 3.59 1.05 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension L89X76X 7.9 CD 7.2 5 2.15 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension L89X76X 7.9 DE 8.18 5.07 3.05 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension L89X76X 7.9 EF 8.18 3.37 4.75 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension L89X76X 7.9
  • 7. Steel StructuresLab 7 FG 7.2 2.47 4.68 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension L89X76X 7.9 GH 4.67 1.37 3.27 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension L89X76X 7.9 HI 0 0 0 0 0 0 0 0 0.000 0.000 IK -4 -1.03 -2.95 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr… L89X76X 7.9 KM -4.68 -1.38 -3.32 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr… L89X76X 7.9 MO -7.22 -2.48 -4.82 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr… L102X89 X9.5 OQ -8.21 -3.38 -4.96 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr… L102X89 X9.5 QR -8.03 -4.13 -4.09 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr… L102X89 X9.5 RP -8.03 -4.09 -4.13 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr… L102X89 X9.5 PN -8.21 -4.96 -3.38 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr… L102X89 X9.5 NL -7.22 -4.82 -2.48 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr… L102X89 X9.5 LJ -4.68 -3.32 -1.38 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr… L89X76X 7.9 JA -4 -2.95 -1.03 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr… L89X76X 7.9 JB 5.61 3.93 1.65 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension L89X76X 7.9 LB -3.11 -2.18 -0.91 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr… L89X76X 7.9 LC 3.17 1.77 1.37 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension L89X76X 7.9 NC -1.9 -1.06 -0.82 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr… L89X76X 7.9 ND 1.28 0.08 1.17 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension L89X76X 7.9 PD -0.82 -0.05 -0.75 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr… L89X76X 7.9 PE -0.25 -1.29 1.02 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Compr… L89X76X 7.9 RE 0.33 0.18 0.18 13.74252 -0.07908 -0.07908 -4.09815 -4.09815 13.743 4.098 Tension L89X76X 7.9 QE -0.25 1.02 -1.29 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Tension L89X76X
  • 8. Steel StructuresLab 8 7.9 QF -0.82 -0.75 -0.05 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr… L89X76X 7.9 OF 1.28 1.17 0.08 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension L89X76X 7.9 OG -1.9 -0.82 -1.06 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr… L89X76X 7.9 MG 3.17 1.37 1.77 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension L89X76X 7.9 MH -3.11 -0.91 -2.18 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr… L89X76X 7.9 KH 5.61 1.65 3.93 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension L89X76X 7.9 Assignment#02: Design of purlin Givendata: Galvanized Iron corrugated sheet as a roofing material N0 = -750 R = N - N0 = 56 – (-750) (where N is the registration number) Truss spacing = s = 2.5 + (R-700) / 50 (m) Span of truss = L = 10 + (R-700) / 5 (m)
  • 9. Steel StructuresLab 9 Solution: R = N - N0 = 56 – (-750) = 806 Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○ Dead load of roofing (GI corrugated sheet) = 25 kg / m2 Dead load of insulation boards = 6 kg / m2 Miscellaneous = 9 kg / m2 Live load from design aids (for Ө = 4.764○) = 100 kg / m2 Total Gravity Load = 25 + 6 + 9 + 100 = 140 kg / m2 Assumed self-weight of purlin = 0.15 * Total Gravity Load = 0.15 * 140 = 21 kg / m2 No. of truss panels = 8
  • 10. Steel StructuresLab 10 Dead Load = (25 * 6 * 9) * 3.9 * 9.81 + (21 * 3.9 * 9.81) = (1530.36 + 803.44) N/m Live Load = (100 * 3.9 * 9.81) = 3825.9 N/m Total Gravity Load = ((1530.36 + 3825.9) + 803.44)= (5356.26 + 803.44)N/m Now Mx = wcosӨ (S2/8) = 6159.7cos4.764 (4.622/8) Mx = 16377.61 N/m My = wsinӨ (S2/8) + wsinӨ (S2/8) = 5356.26sin4.764 (4.622/8) + 803.44sin4.764 (4.622/8) My = (1186.87+ 178.03) N/m Now For Channel Section: Mx (assumed)= Mx + 15My = 16377.61 + 15(1186.87 + 178.03)
  • 11. Steel StructuresLab 11 = 36851.11 Nm Sx (Required) = Mx (assumed) / 0.66 Fy = (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3 dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm Trial Section No. 1: C250 * 30 dmin. Check: d = 254 mm >dmin. OK. Applied Stress Check: Sx = 259 * 103mm3 Sy = 21.6 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (259 * 103) + (1186.87 * 1000) / ((21.6/2) * 103) + (178.03 * 1000) / (21.6 * 103) fb = 181.37MPa>Fb NOT OK. Trial Section No. 2: C250 * 37 dmin. Check: d = 254 mm >dmin. OK. Applied Stress Check: Sx = 298 * 103mm3 Sy = 24.3 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (298 * 103) + (1186.87 * 1000) / ((24.3/2) * 103) + (178.03 * 1000) / (24.3 * 103) fb = 159.97 MPa<Fb OK.
  • 12. Steel StructuresLab 12 Compactness Check: bf / tf = 73 / 11.1 = 6.6 < 10.7 OK. Check for self-weight of purlin: Actual Self-Weight of purlin = 37 * 10 / 31.2 = 11.86 Kg / m2< 1.2 * 21 OK. So the final section is Now For W Section: Mx (assumed)= Mx + 15My = 16377.61 + 15(1186.87 + 178.03) = 36851.11 Nm Sx (Required) = Mx (assumed) / 0.66 Fy = (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3 dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm Trial Section No. 1: W310 * 21 dmin. Check: d = 302 mm >dmin. OK. Applied Stress Check: Sx = 244 * 103mm3 Sy = 19.5 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (244 * 103) + (1186.87 * 1000) / ((19.5/2) * 103) + (178.03 * 1000) / (19.5 * 103) fb = 197.98 MPa>Fb NOT OK. C250 * 37
  • 13. Steel StructuresLab 13 Trial Section No. 2: W250 * 28.4 dmin. Check: d = 259 mm >dmin. OK. Applied Stress Check: Sx = 308 * 103mm3 Sy = 35.1 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (308 * 103) + (1186.87 * 1000) / ((35.1/2) * 103) + (178.03 * 1000) / (35.1 * 103) fb = 125.87MPa<Fb OK. Compactness Check: bf / tf = 102 / 10 = 10.2< 10.7 OK. Check for self-weight of purlin: Actual Self-Weight of purlin = 28.4 * 10 / 31.2 = 9.10 Kg / m2< 1.2 * 21 OK. So the final section is As angle Ө = 4.764○ ; so there is no need to design the “sag rod”. W250 * 28.4
  • 14. Steel StructuresLab 14 Assignment # 03: Design of corrugated sheet Givendata: Design of 75 * 20 Galvanized Iron corrugated sheet Number of sheets required = ? N0 = -750 R = N - N0 = 56 – (-750) (where N is the registration number) Truss spacing = s = 2.5 + (R-700) / 50 (m) Span of truss = L = 10 + (R-700) / 5 (m) Solution: R = N - N0 = 56 – (-750) = 806 Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○ Assumed dead load of roofing = 20 kg / m2 Insulation not attached to the sheet Miscellaneous load = 6 kg / m2 Live load from design aids (for Ө = 4.764○) = 100 kg / m2
  • 15. Steel StructuresLab 15 Live load from design aids (for Ө = 4.764○) = 100 kg / m (For 1 m wide strip) Total Gravity Load w = 25 + (1/3)6 + 100 + 100 = 127 kg / m2 No. of truss panels = 8 Number of trusses = 9 Sheet projection beyond center of truss support = 300 mm Total gravity load = w = 127 * 9.81 = 124 6 N/m2 w = 1246 N/m for 1 meter wide strip Length of one sheet = L = (np / cos Ө ) + E L1 = (1* 3.9 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m) L2 = (2 * 3.9 / cos 4.7640 ) + 0.2 = 8.03 m (Not possible because 1.5 m < L < 4 m) L3 = (3 * 3.9 / cos 4.7640 ) + 0.2 = 11.94 m (Not possible because 1.5 m < L < 4 m) As no length is satisfying so we increase the number of purlins. We introduce another purlim in between the two purlins.
  • 16. Steel StructuresLab 16 Now; Panel length = p = 3.9 / 2 = 1.95 m So L1 = (1* 1.95 / cos 4.7640 ) + 0.2 = 2.16 m L2 = (2 * 1.95 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m) L3 = (3 * 1.95 / cos 4.7640 ) + 0.2 = 6.07 m (Not possible because 1.5 m < L < 4 m) So length of one sheet = L = 2.25 m Mmax = w * p2 / 8 = 1246 * 1.952 / 8 = 592.24 Nm (Sx)Required = Mmax * 1000 / 0.6 Fy = 592.24 * 1000 / 0.6 * 250 = 3.95 * 103 mm3 Trial sheet gage 1 = 22; I = 4.23 * 104 mm4 Self weight of roofing check: Actual self weight of roofing = 77.6 N/m2 Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2 Now (1.35 * 77.6 = 104.76) < (1.2 * 196.2 = 235.44) OK. Maximum deflection check: Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm For simply supported sheet: ∆max = 0.013 wL * p4 / EI ∆max = 0.013 * 0.981 * 19504 / 200000 * 4.23 * 104 = 21.8 mm For S.S Sheet with partial fixity at one end ∆max = 0.01 wL * p4 / EI ∆max = 0.01 * 0.981 * 19504 / 200000 * 4.23 * 104 = 16.8 mm So ∆max = 21.8 mm Now
  • 17. Steel StructuresLab 17 ∆allowed= span / 90 = 1950 / 90 = 21.7 mm So ∆max = 21.8 mm > ∆allowed= 21.7 mm NOT OK. Trial sheet gage 2 = 20; I = 5.04 * 104 mm4 Self weight of roofing check: Actual self weight of roofing = 91.5 N/m2 Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2 Now (1.35 * 91.5 = 123.5) < (1.2 * 196.2 = 235.44) OK. Maximum deflection check: Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm For simply supported sheet: ∆max = 0.013 wL * p4 / EI ∆max = 0.013 * 0.981 * 19504 / 200000 * 5.04 * 104 = 18.3 mm For S.S Sheet with partial fixity at one end ∆max = 0.01 wL * p4 / EI ∆max = 0.01 * 0.981 * 19504 / 200000 * 5.04 * 104 = 14.1 mm So ∆max = 18.3 mm Now ∆allowed= span / 90 = 1950 / 90 = 21.7 mm So ∆max = 18.3 mm < ∆allowed= 21.7 mm OK. Now Number of sheet panels required for 100 m2 of roof area = N100 = 108 / C (L-E) N100 = 108 / 585 (2160 – 200) = 87.21 = 88 Now The inclined roof area on one side = A = ((L / 2 + Sheet projection) * (Nt – 1) * S) / cos Ө
  • 18. Steel StructuresLab 18 A = (31.2 / 2 + 0.3) * (9 – 1) * 4.62 / cos 4.7640 A = 589.7 m2 Number of sheets on one side = N1 = (A * N100) / 100 = 589.7 * 88 / 100 = 519 Total number of sheets = 2 * N1 = 2 * 519 = 1038 Final Results: Gage of G.I Corrugated sheet = 20 gage Standard Designation = 75 * 20 Sheet panel size = 0.7 * 2.25 m Total number of sheets = 1038