SlideShare ist ein Scribd-Unternehmen logo
1 von 50
Downloaden Sie, um offline zu lesen
Numerical methods for variational principles in traffic
Guillaume Costeseque
joint work with J-P. Lebacque
Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA
S´eminaire Mod´elisation des r´eseaux de transport
October 16, 2013 - Marne-la-Vall´ee
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 1 / 49
Introduction
Variational principles in physical systems
Evolutionary systems in time and space
Position
Starting point (x0, t0)
Time
Target (xT , T)
Which is the (good) physical evolution?
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 2 / 49
Introduction
Variational principles in physical systems
Evolutionary systems in time and space
Variational methods ⇔ calculus of variations
Calculus of variations
Minimum principle (Pontryagin)
Hamilton−Jacobi−Bellman equation
Dynamic programming (Bellman)
Fermat principle in geometrical optics (1657)
Maupertuis principle in mechanics (1740)
... Euler-Lagrange-Jacobi principle of least action (1755-1840)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 3 / 49
Introduction
Breakthrough in traffic monitoring
Traffic monitoring from GPS enabled devices
Floating car data (probe vehicles)
Cheaper (no dedicated infrastructure)
Increasing number (dense situations)
Accurate
Scientific challenge ⇒ data assimilation
[Mobile Millenium, 2008]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 4 / 49
Introduction
Outline
1 Macroscopic traffic flow models
2 Variational principles in traffic
3 Numerical method
4 Conclusion
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 5 / 49
Macroscopic traffic flow models
Outline
1 Macroscopic traffic flow models
2 Variational principles in traffic
3 Numerical method
4 Conclusion
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 6 / 49
Macroscopic traffic flow models First order model
LWR model
Traffic state:
density of vehicles ρ(t, x) at time t and location x
flow speed v (mean spatial velocity of vehicles)
x x + ∆x
ρ(x, t)∆x
Q(x, t)∆t Q(x + ∆x, t)∆t
Scalar one dimensional conservation law
∂tρ + ∂x(ρv) = 0 Conservation of vehicles,
v = I(ρ, x) Fundamental diagram.
(1)
[Lighthill and Whitham, 1955], [Richards, 1956]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 7 / 49
Macroscopic traffic flow models First order model
Fundamental diagram (FD)
Flow-density fundamental diagram F : ρ → ρI(ρ)
Empirical function with
ρmax the maximal or jam density,
ρc the critical density
Flux is increasing for ρ ≤ ρc: free-flow phase
Flux is decreasing for ρ ≥ ρc: congestion phase
0
Flow, F
ρmax
Density, ρ
0
Flow, F
ρmax
Density, ρ
0
Flow, F
ρmax
Density, ρ
[Garavello and Piccoli, 2006]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 8 / 49
Macroscopic traffic flow models First order model
Kinematic waves theory
Conservation law
∂tρ + ∂xρ (∂ρF) = −∂xF
Characteristics= curves such that
˙x(t) = ∂ρF
along such curve, density evolves such that
˙ρ(t) = −∂xF
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 9 / 49
Macroscopic traffic flow models Second order models
Motivation for higher order models
Experimental evidences
fundamental diagram: multi-valued in congested case
[S. Fan, U. Illinois], NGSIM dataset
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 10 / 49
Macroscopic traffic flow models Second order models
Motivation for higher order models
Experimental evidences
fundamental diagram: multi-valued in congested case
phenomena not accounted for: bounded acceleration, capacity drop...
Need for models able to integrate measurements of different traffic
quantities (acceleration, fuel consumption, noise)
First order models: “mass” conservation but what about conservation
of momentum or energy?
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 11 / 49
Macroscopic traffic flow models Second order models
GSOM family
Generic Second Order Models (GSOM) family



∂tρ + ∂x(ρv) = 0 Conservation of vehicles,
∂t(ρI) + ∂x(ρvI) = ρϕ(I) Dynamics of the driver attribute I,
v = I(ρ, I) Fundamental diagram,
(2)
Specific driver attribute I
the driver aggressiveness,
the driver origin / destination,
the vehicle class,
...
Flow-density fundamental diagram
F : (ρ, I) → ρI(ρ, I).
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 12 / 49
Macroscopic traffic flow models Second order models
Kinematic waves or 1-waves:
similar to the seminal LWR model
density variations at speed ν = ∂ρI(ρ, I)
driver attribute I is continuous
Contact discontinuities or 2-waves:
variations of driver attribute I at speed ν = I(ρ, I)
the flow speed v is constant.
[Lebacque et al., 2007]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 13 / 49
Macroscopic traffic flow models Second order models
Examples of GSOM models
LWR model= a GSOM model with no specific driver attribute
The LWR model with bounded acceleration [Lebacque, 2002-2003],
[Leclercq, 2007] = a GSOM model with driver attribute the speed of
vehicles.
The ARZ model (for Aw, Rascle and Zhang) with driver attribute
I = v − Ve(ρ) and
I(ρ, I) = I + Ve(ρ)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 14 / 49
Macroscopic traffic flow models Second order models
Examples of GSOM models
(continued)
Multi-commodity models (multi-class, multi-lanes)
[Jin and Zhang, 2004],
[Bagnerini and Rascle, 2003],
[Herty, Kirchner, Moutari and Rascle, 2008],
[Klar, Greenberg and Rascle, 2003].
The Colombo 1-phase model with no driver attribute in fluid situation
and driver attribute I a non-trivial scalar in congested situation.
The stochastic GSOM model of [Khoshyaran and Lebacque, 2009]
with driver attribute I a random variable such that I = I(N, t, ω).
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 15 / 49
Variational principles in traffic
Outline
1 Macroscopic traffic flow models
2 Variational principles in traffic
LWR model
GSOM family
3 Numerical method
4 Conclusion
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 16 / 49
Variational principles in traffic LWR model
Key surface
Three-dimensional representation of traffic flow
Eulerian (x, t), Lagrangian (n, t), T-coordinates (x, n)
See [Makigami et al, 1971], [Laval and Leclercq, 2013]
Moskowitz surface
[Leclercq, Th´eorie du trafic, ENTPE]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 17 / 49
Variational principles in traffic LWR model
LWR in Eulerian (x, t)
Cumulative vehicles count (CVC) or Moskowitz surface N(x, t)
f = ∂tN and ρ = −∂xN
If density ρ satisfies the scalar (LWR) conservation law
∂tρ + ∂xF(ρ) = 0
Then N satisfies the first order Hamilton-Jacobi equation
∂tN − F(−∂xN) = 0 (3)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 18 / 49
Variational principles in traffic LWR model
LWR in Eulerian (x, t)
Legendre-Fenchel transform with F concave (relative capacity)
M(q) = sup
ρ
[F(ρ) − ρq]
M(q)
u
w
Density ρ
q
q
Flow F
w u
q
Transform M
−wρmax
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 19 / 49
Variational principles in traffic LWR model
LWR in Eulerian (x, t)
(continued)
Lax-Hopf formula (representation formula) [Daganzo, 2006]
N(T, xT ) = min
u(.),(t0,x0)
T
t0
M(u(τ))dτ + N(t0, x0),
˙X = u
u ∈ U
X(t0) = x0, X(T ) = xT
(t0, x0) ∈ J
(4) Time
Space
J
(T, xT )˙X(τ)
(t0, x0)
Viability theory [Claudel and Bayen, 2010]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 20 / 49
Variational principles in traffic LWR model
LWR in Eulerian (x, t)
(Historical note)
Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)
Flow, F
w
u
0 ρmax
Density, ρ
u
x
w
t
Time
Space
(t, x)
Minimum principle [Newell, 1993]
N(t, x) = min N t −
x − xu
u
, xu ,
N t −
x − xw
w
, xw + ρmax(xw − x) ,
(5)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 21 / 49
Variational principles in traffic LWR model
LWR in Lagrangian (n, t)
Consider X(t, n) the location of vehicle n at time t ≥ 0
v = ∂tX and r = −∂nX
If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)
∂tr + ∂nV(r) = 0
with the speed-spacing FD V : r → I (1/r) ,
Then X satisfies the first order Hamilton-Jacobi equation
∂tX − V(−∂nX) = 0. (6)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 22 / 49
Variational principles in traffic LWR model
LWR in Lagrangian (n, t)
(continued)
Legendre-Fenchel transform with V concave
M(u) = sup
r
[V(r) − ru] .
Lax-Hopf formula
X(T, nT ) = min
u(.),(t0,n0)
T
t0
M(u(τ))dτ + X(t0, n0),
˙N = u
u ∈ U
N(t0) = n0, N(T) = nT
(t0, n0) ∈ J
(7)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 23 / 49
Variational principles in traffic LWR model
LWR in Lagrangian (n, t)
(continued)
Dynamic programming for triangular FD
1/ρcrit
Speed, V
u
−wρmax
Spacing, r
1/ρmax
−wρmax
n
t
(t, n)
Time
Label
Minimum principle ⇒ car following model [Newell, 2002]
X(t, n) = min X(t0, n) + u(t − t0),
X(t0, n + wρmax(t − t0)) + w(t − t0) .
(8)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 24 / 49
Variational principles in traffic LWR model
Numerical methods for LWR
Dynamic programming [Daganzo, 2006]
Minimization of a cost function over a computational grid
Computational cost proportional to the complexity of the grid
u
w
Position
Time
∆x
∆t
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 25 / 49
Variational principles in traffic LWR model
Numerical methods for LWR
Dynamic programming [Daganzo, 2006]
Minimization of a cost function over a computational grid
Computational cost proportional to the complexity of the grid
Exact for piecewise affine (PWA) value conditions and piecewise
affine FD (but not for arbitrary concave FDs)
Possibility to integrate internal boundary conditions but uneasy
Possibility to integrate space/time dependent FDs (space/time
dependent cost)
[Mazar´e et al, 2012]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 26 / 49
Variational principles in traffic LWR model
Numerical methods for LWR
(continued)
Lax-Hopf algorithm [Claudel and Bayen, 2010]
Minimization of closed form partial solutions (grid-free)
Computational cost proportional to the number of initial and
boundary condition blocks
Exact for PWA value conditions and arbitrary concave FDs
Possible integration of internal boundary conditions
Integration of space-time varying fundamental diagrams: to be done
[Mazar´e et al, 2012]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 27 / 49
Variational principles in traffic LWR model
Examples of data assimilation
Eulerian coordi-
nates (x, t) [Mazar´e et al, 2012]
Lagrangian coordinates (n, t)
[Han et al, 2012]
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 28 / 49
Variational principles in traffic GSOM family
GSOM in Eulerian (x, t)
From [Li and Zhang, 2013], system of coupled scalar conservation
laws
∂tρ + ∂xf(ρ, s) = 0 Conservation of vehicles,
∂ts + ∂xg(ρ, s) = 0 Dynamics around the equilibrium.
(9)
GSOM family for s = ρI and ϕ = 0
Variational representations for cumulative quantities
Nρ :=
+∞
x
ρ(y, t)dy and Ns :=
+∞
x
s(y, t)dy,
if characteristics system (coupled ODEs) is satisfied...
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 29 / 49
Variational principles in traffic GSOM family
GSOM in Lagrangian (n, t)
From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian



∂tr + ∂N v = 0 Conservation of vehicles,
∂tI = ϕ(N, I, t) Dynamics of I,
v = W(N, r, t) := V(r, I(N, t)) Fundamental diagram.
(10)
Position X(N, t) :=
t
−∞
v(N, τ)dτ satisfies the HJ equation
∂tX − W(N, −∂N X, t) = 0, (11)
And I(N, t) solves the ODE
∂tI(N, t) = ϕ(N, I, t),
I(N, 0) = i0(N), for any N.
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 30 / 49
Variational principles in traffic GSOM family
GSOM in Lagrangian (n, t)
(continued)
Legendre-Fenchel transform of W according to r
M(N, c, t) = sup
r∈R
{W(N, r, t) − cr}
M(N, p, t)
pq
W(N, q, t)
W(N, r, t)
q r
p
p
u
c
Transform M
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 31 / 49
Variational principles in traffic GSOM family
GSOM in Lagrangian (n, t)
(continued)
Lax-Hopf formula
X(NT , T) = min
u(.),(N0,t0)
T
t0
M(N, u, t)dt + ξ(N0, t0),
˙N = u
u ∈ U
N(t0) = N0, N(T) = NT
(N0, t0) ∈ J
(12)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 32 / 49
Variational principles in traffic GSOM family
GSOM in Lagrangian (n, t)
(continued)
Optimal trajectories = characteristics
˙N = ∂rW(N, r, t),
˙r = −∂N W(N, r, t),
(13)
System of ODEs to solve
Difficulty: not straight lines in the general case
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 33 / 49
Numerical method
Outline
1 Macroscopic traffic flow models
2 Variational principles in traffic
3 Numerical method
Methodology
Elementary blocks
Numerical example
4 Conclusion
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 34 / 49
Numerical method Methodology
General ideas
First key element: Lax-Hopf formula
Computations only for the characteristics
X(NT , T) = min
(N0,r0,t0)
T
t0
M(N, ∂rW(N, r, t), t)dt + ξ(N0, t0),
˙N(t) = ∂rW(N, r, t)
˙r(t) = −∂N W(N, r, t)
N(t0) = N0, r(t0) = r0, N(T) = NT
(N0, r0, t0) ∈ K
(14)
K is the set of initial/boundary values
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 35 / 49
Numerical method Methodology
General ideas
(continued)
Second key element: inf-morphism prop. [Aubin et al, 2011]
Consider a union of sets (initial and boundary conditions)
K =
l
Kl,
then the global minimum is
X(NT , T) = min
l
Xl(NT , T), (15)
with Xl partial solution to sub-problem Kl.
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 36 / 49
Numerical method Elementary blocks
Assumptions
Piecewise affine value conditions
the initial condition: positions of vehicles at time t = t0,
the “upstream” boundary condition: trajectory of the first vehicle
N = N0 traveling on the section,
and internal boundary conditions: cumulative vehicles counts at fixed
location X = x0.
Finite horizon problems (N, t) ∈ [N0, Nmax] × [t0, tmax]
No relaxation ϕ = 0
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 37 / 49
Numerical method Elementary blocks
Initial conditions
Discretize the set of N into [np, np+1] of length ∆n
Assume that ∆n small enough such that
Simplified dynamic
ϕ(N, I, t) = ϕp(I, t), for any N ∈ [np, np+1].
Initial data are piecewise constant
I(N, t0) = I0,p,
r(N, t0) = r0,p.
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 38 / 49
Numerical method Elementary blocks
Sub-algorithm for initial block [np, np+1] × {t0}
(i) Initialize X to +∞
(ii) Number of characteristics to compute
(iii) Compute N(t) of each characteristic while t ≤ tmax and N ≤ Nmax
(iv) Calculate the (exact) solution Xp all along each characteristic
(v) Compute the exact value at any point within the characteristics fan
(simple translation)
(vi) In a rarefaction interpolate the value of X at each point within the
influence domain.
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 39 / 49
Numerical method Elementary blocks
PWA initial conditions
Domain of influence of the initial condition
Couples for initial conditions (N, r0(N))
r0,p
0
I0,p
N0
N
np np+1 Nmax
t
tmax
2
1
t0
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 40 / 49
Numerical method Elementary blocks
Upstream boundary conditions
Domain of influence of the upstream boundary condition
Couples for initial conditions (N0, r0(t))
N0
t0 N
Nmax
t
tmax
2 1
0
r0,q
tq+1
tq
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 41 / 49
Numerical method Elementary blocks
Internal boundary conditions
Domain of influence of the internal boundary condition
Triplet for initial conditions (N(t), r0(t), v0(t))
r0,p
1
0
2
np np+1N0
N
Nmax
t
tmax
t0
r0,p
2
0
1
np np+1N0
N
Nmax
t
tmax
t0
Under-critical case Over-critical case
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 42 / 49
Numerical method Numerical example
Fundamental Diagram and Driver Attribute
0 20 40 60 80 100 120 140 160 180 200
−5
0
5
10
15
20
25
30
35
Headway r (m)
SpeedW(m/s)
Fundamental diagram W(N,r,t)
I(N,t)=1
I(N,t)=2
I(N,t)=3
0 5 10 15 20 25 30
1
1.5
2
2.5
3
Label N
Initial conditions I(N,t
0
)
DriverattributeI
0
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 43 / 49
Numerical method Numerical example
Initial and Boundaries Conditions
0 5 10 15 20 25 30
15
20
25
30
35
40
45
50
55
60
Label N
Initial conditions r(N,t
0
)Headwayr
0
(m)
0 5 10 15 20 25 30
−800
−700
−600
−500
−400
−300
−200
−100
0
Label N
Initial positions X(N,t
0
)
PositionX(m)
0 50 100 150 200 250 300
10
20
30
40
50
60
70
80
90
Time t (s)
Headwayr
0
(m)
Headway r(N0
,t)
0 50 100 150 200 250 300
0
1000
2000
3000
4000
5000
Time t (s)
Position X(N
0
,t)
PositionX
0
(m)
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 44 / 49
Numerical method Numerical example
Numerical result
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 45 / 49
Conclusion
Outline
1 Macroscopic traffic flow models
2 Variational principles in traffic
3 Numerical method
4 Conclusion
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 46 / 49
Conclusion
High interest of variational theory in trafic
Semi-explicit computational algorithms
Data assimilation
Difficulty when Hamiltonian depends on time / space / vehicle
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 47 / 49
Conclusion
High interest of variational theory in trafic
Semi-explicit computational algorithms
Data assimilation
Difficulty when Hamiltonian depends on time / space / vehicle
Open questions:
Extend the algorithm for non-zero dynamics ϕ(I) = 0
Confront the algorithm with real data (NGSIM/MOCoPo datasets)
“Simple” formula for time/space dependent Hamiltonians?
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 47 / 49
Conclusion
The End
Thanks for your attention
guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 48 / 49
Complements
Some references
G. Costeseque, J.P. Lebacque, A variational formulation for higher
order macroscopic traffic flow models: numerical investigation,
Working paper, (2013).
C.F. Daganzo, On the variational theory of traffic flow:
well-posedness, duality and applications, Networks and Heterogeneous
Media, AIMS, 1 (2006), pp. 601-619.
J.A. Laval, L. Leclercq, The Hamilton-Jacobi partial differential
equation and the three representations of traffic flow, Transportation
Research Part B, 52 (2013), pp. 17-30.
J.P. Lebacque, M.M. Khoshyaran, A variationnal formulation for
higher order macroscopic traffic flow model of the GSOM family,
Procedia-Social and Behavioral Sciences, 80 (2013), pp. 370-394.
G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 49 / 49

Weitere ähnliche Inhalte

Was ist angesagt?

short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018Christian Robert
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaGuillaume Costeseque
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkGuillaume Costeseque
 
Metropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short TutorialMetropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short TutorialRalph Schlosser
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferenceChristian Robert
 
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithmno U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithmChristian Robert
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Christian Robert
 
Introduction to MCMC methods
Introduction to MCMC methodsIntroduction to MCMC methods
Introduction to MCMC methodsChristian Robert
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Guillaume Costeseque
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010Christian Robert
 
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsMarkov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsFrancesco Casalegno
 
A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...
A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...
A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...Carlo Lancia
 
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-CalculusA Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculussmennicke
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Guillaume Costeseque
 

Was ist angesagt? (20)

short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a network
 
Metropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short TutorialMetropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short Tutorial
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conference
 
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithmno U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
no U-turn sampler, a discussion of Hoffman & Gelman NUTS algorithm
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010
 
Introduction to MCMC methods
Introduction to MCMC methodsIntroduction to MCMC methods
Introduction to MCMC methods
 
Shanghai tutorial
Shanghai tutorialShanghai tutorial
Shanghai tutorial
 
Jere Koskela slides
Jere Koskela slidesJere Koskela slides
Jere Koskela slides
 
ABC in Roma
ABC in RomaABC in Roma
ABC in Roma
 
mcmc
mcmcmcmc
mcmc
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010
 
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsMarkov Chain Monte Carlo Methods
Markov Chain Monte Carlo Methods
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...
A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...
A Markov Chain Monte Carlo approach to the Steiner Tree Problem in water netw...
 
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-CalculusA Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
 

Ähnlich wie Numerical methods for variational principles in traffic

Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachGuillaume Costeseque
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsGuillaume Costeseque
 
Review of Optimum speed model
Review of Optimum speed modelReview of Optimum speed model
Review of Optimum speed modelIbrahim Tanko Abe
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...SYRTO Project
 
Differential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow ModellingDifferential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow ModellingSerge Hoogendoorn
 
Numerical method for pricing american options under regime
Numerical method for pricing american options under regime Numerical method for pricing american options under regime
Numerical method for pricing american options under regime Alexander Decker
 
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...Tracy Morgan
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingGuillaume Costeseque
 
The role of kalman filter in improving the accuracy of gps kinematic technique
The role of kalman filter in improving the accuracy of gps kinematic techniqueThe role of kalman filter in improving the accuracy of gps kinematic technique
The role of kalman filter in improving the accuracy of gps kinematic techniqueIAEME Publication
 
Learning from (dis)similarity data
Learning from (dis)similarity dataLearning from (dis)similarity data
Learning from (dis)similarity datatuxette
 
Fir 05 dynamics 2-dof
Fir 05 dynamics 2-dofFir 05 dynamics 2-dof
Fir 05 dynamics 2-dofnguyendattdh
 
A Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentA Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentKelly Taylor
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridorsGuillaume Costeseque
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Modelsahmad bassiouny
 

Ähnlich wie Numerical methods for variational principles in traffic (20)

Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
 
Review of Optimum speed model
Review of Optimum speed modelReview of Optimum speed model
Review of Optimum speed model
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
Differential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow ModellingDifferential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow Modelling
 
Numerical method for pricing american options under regime
Numerical method for pricing american options under regime Numerical method for pricing american options under regime
Numerical method for pricing american options under regime
 
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
The role of kalman filter in improving the accuracy of gps kinematic technique
The role of kalman filter in improving the accuracy of gps kinematic techniqueThe role of kalman filter in improving the accuracy of gps kinematic technique
The role of kalman filter in improving the accuracy of gps kinematic technique
 
Learning from (dis)similarity data
Learning from (dis)similarity dataLearning from (dis)similarity data
Learning from (dis)similarity data
 
Fir 05 dynamics 2-dof
Fir 05 dynamics 2-dofFir 05 dynamics 2-dof
Fir 05 dynamics 2-dof
 
Fir 05 dynamics
Fir 05 dynamicsFir 05 dynamics
Fir 05 dynamics
 
2012 cvpr gtw
2012 cvpr gtw2012 cvpr gtw
2012 cvpr gtw
 
A Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentA Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic Assignment
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridors
 
intro
introintro
intro
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Models
 

Mehr von Guillaume Costeseque

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Guillaume Costeseque
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésGuillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...Guillaume Costeseque
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Guillaume Costeseque
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierGuillaume Costeseque
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionGuillaume Costeseque
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationGuillaume Costeseque
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsGuillaume Costeseque
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowGuillaume Costeseque
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Dynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsDynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsGuillaume Costeseque
 
ORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamGuillaume Costeseque
 

Mehr von Guillaume Costeseque (14)

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulation
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Dynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsDynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elements
 
ORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated team
 

Kürzlich hochgeladen

UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringJuanCarlosMorales19600
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 

Kürzlich hochgeladen (20)

UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineering
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 

Numerical methods for variational principles in traffic

  • 1. Numerical methods for variational principles in traffic Guillaume Costeseque joint work with J-P. Lebacque Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA S´eminaire Mod´elisation des r´eseaux de transport October 16, 2013 - Marne-la-Vall´ee G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 1 / 49
  • 2. Introduction Variational principles in physical systems Evolutionary systems in time and space Position Starting point (x0, t0) Time Target (xT , T) Which is the (good) physical evolution? G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 2 / 49
  • 3. Introduction Variational principles in physical systems Evolutionary systems in time and space Variational methods ⇔ calculus of variations Calculus of variations Minimum principle (Pontryagin) Hamilton−Jacobi−Bellman equation Dynamic programming (Bellman) Fermat principle in geometrical optics (1657) Maupertuis principle in mechanics (1740) ... Euler-Lagrange-Jacobi principle of least action (1755-1840) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 3 / 49
  • 4. Introduction Breakthrough in traffic monitoring Traffic monitoring from GPS enabled devices Floating car data (probe vehicles) Cheaper (no dedicated infrastructure) Increasing number (dense situations) Accurate Scientific challenge ⇒ data assimilation [Mobile Millenium, 2008] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 4 / 49
  • 5. Introduction Outline 1 Macroscopic traffic flow models 2 Variational principles in traffic 3 Numerical method 4 Conclusion G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 5 / 49
  • 6. Macroscopic traffic flow models Outline 1 Macroscopic traffic flow models 2 Variational principles in traffic 3 Numerical method 4 Conclusion G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 6 / 49
  • 7. Macroscopic traffic flow models First order model LWR model Traffic state: density of vehicles ρ(t, x) at time t and location x flow speed v (mean spatial velocity of vehicles) x x + ∆x ρ(x, t)∆x Q(x, t)∆t Q(x + ∆x, t)∆t Scalar one dimensional conservation law ∂tρ + ∂x(ρv) = 0 Conservation of vehicles, v = I(ρ, x) Fundamental diagram. (1) [Lighthill and Whitham, 1955], [Richards, 1956] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 7 / 49
  • 8. Macroscopic traffic flow models First order model Fundamental diagram (FD) Flow-density fundamental diagram F : ρ → ρI(ρ) Empirical function with ρmax the maximal or jam density, ρc the critical density Flux is increasing for ρ ≤ ρc: free-flow phase Flux is decreasing for ρ ≥ ρc: congestion phase 0 Flow, F ρmax Density, ρ 0 Flow, F ρmax Density, ρ 0 Flow, F ρmax Density, ρ [Garavello and Piccoli, 2006] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 8 / 49
  • 9. Macroscopic traffic flow models First order model Kinematic waves theory Conservation law ∂tρ + ∂xρ (∂ρF) = −∂xF Characteristics= curves such that ˙x(t) = ∂ρF along such curve, density evolves such that ˙ρ(t) = −∂xF G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 9 / 49
  • 10. Macroscopic traffic flow models Second order models Motivation for higher order models Experimental evidences fundamental diagram: multi-valued in congested case [S. Fan, U. Illinois], NGSIM dataset G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 10 / 49
  • 11. Macroscopic traffic flow models Second order models Motivation for higher order models Experimental evidences fundamental diagram: multi-valued in congested case phenomena not accounted for: bounded acceleration, capacity drop... Need for models able to integrate measurements of different traffic quantities (acceleration, fuel consumption, noise) First order models: “mass” conservation but what about conservation of momentum or energy? G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 11 / 49
  • 12. Macroscopic traffic flow models Second order models GSOM family Generic Second Order Models (GSOM) family    ∂tρ + ∂x(ρv) = 0 Conservation of vehicles, ∂t(ρI) + ∂x(ρvI) = ρϕ(I) Dynamics of the driver attribute I, v = I(ρ, I) Fundamental diagram, (2) Specific driver attribute I the driver aggressiveness, the driver origin / destination, the vehicle class, ... Flow-density fundamental diagram F : (ρ, I) → ρI(ρ, I). G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 12 / 49
  • 13. Macroscopic traffic flow models Second order models Kinematic waves or 1-waves: similar to the seminal LWR model density variations at speed ν = ∂ρI(ρ, I) driver attribute I is continuous Contact discontinuities or 2-waves: variations of driver attribute I at speed ν = I(ρ, I) the flow speed v is constant. [Lebacque et al., 2007] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 13 / 49
  • 14. Macroscopic traffic flow models Second order models Examples of GSOM models LWR model= a GSOM model with no specific driver attribute The LWR model with bounded acceleration [Lebacque, 2002-2003], [Leclercq, 2007] = a GSOM model with driver attribute the speed of vehicles. The ARZ model (for Aw, Rascle and Zhang) with driver attribute I = v − Ve(ρ) and I(ρ, I) = I + Ve(ρ) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 14 / 49
  • 15. Macroscopic traffic flow models Second order models Examples of GSOM models (continued) Multi-commodity models (multi-class, multi-lanes) [Jin and Zhang, 2004], [Bagnerini and Rascle, 2003], [Herty, Kirchner, Moutari and Rascle, 2008], [Klar, Greenberg and Rascle, 2003]. The Colombo 1-phase model with no driver attribute in fluid situation and driver attribute I a non-trivial scalar in congested situation. The stochastic GSOM model of [Khoshyaran and Lebacque, 2009] with driver attribute I a random variable such that I = I(N, t, ω). G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 15 / 49
  • 16. Variational principles in traffic Outline 1 Macroscopic traffic flow models 2 Variational principles in traffic LWR model GSOM family 3 Numerical method 4 Conclusion G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 16 / 49
  • 17. Variational principles in traffic LWR model Key surface Three-dimensional representation of traffic flow Eulerian (x, t), Lagrangian (n, t), T-coordinates (x, n) See [Makigami et al, 1971], [Laval and Leclercq, 2013] Moskowitz surface [Leclercq, Th´eorie du trafic, ENTPE] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 17 / 49
  • 18. Variational principles in traffic LWR model LWR in Eulerian (x, t) Cumulative vehicles count (CVC) or Moskowitz surface N(x, t) f = ∂tN and ρ = −∂xN If density ρ satisfies the scalar (LWR) conservation law ∂tρ + ∂xF(ρ) = 0 Then N satisfies the first order Hamilton-Jacobi equation ∂tN − F(−∂xN) = 0 (3) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 18 / 49
  • 19. Variational principles in traffic LWR model LWR in Eulerian (x, t) Legendre-Fenchel transform with F concave (relative capacity) M(q) = sup ρ [F(ρ) − ρq] M(q) u w Density ρ q q Flow F w u q Transform M −wρmax G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 19 / 49
  • 20. Variational principles in traffic LWR model LWR in Eulerian (x, t) (continued) Lax-Hopf formula (representation formula) [Daganzo, 2006] N(T, xT ) = min u(.),(t0,x0) T t0 M(u(τ))dτ + N(t0, x0), ˙X = u u ∈ U X(t0) = x0, X(T ) = xT (t0, x0) ∈ J (4) Time Space J (T, xT )˙X(τ) (t0, x0) Viability theory [Claudel and Bayen, 2010] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 20 / 49
  • 21. Variational principles in traffic LWR model LWR in Eulerian (x, t) (Historical note) Dynamic programming [Daganzo, 2006] for triangular FD (u and w free and congested speeds) Flow, F w u 0 ρmax Density, ρ u x w t Time Space (t, x) Minimum principle [Newell, 1993] N(t, x) = min N t − x − xu u , xu , N t − x − xw w , xw + ρmax(xw − x) , (5) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 21 / 49
  • 22. Variational principles in traffic LWR model LWR in Lagrangian (n, t) Consider X(t, n) the location of vehicle n at time t ≥ 0 v = ∂tX and r = −∂nX If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.) ∂tr + ∂nV(r) = 0 with the speed-spacing FD V : r → I (1/r) , Then X satisfies the first order Hamilton-Jacobi equation ∂tX − V(−∂nX) = 0. (6) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 22 / 49
  • 23. Variational principles in traffic LWR model LWR in Lagrangian (n, t) (continued) Legendre-Fenchel transform with V concave M(u) = sup r [V(r) − ru] . Lax-Hopf formula X(T, nT ) = min u(.),(t0,n0) T t0 M(u(τ))dτ + X(t0, n0), ˙N = u u ∈ U N(t0) = n0, N(T) = nT (t0, n0) ∈ J (7) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 23 / 49
  • 24. Variational principles in traffic LWR model LWR in Lagrangian (n, t) (continued) Dynamic programming for triangular FD 1/ρcrit Speed, V u −wρmax Spacing, r 1/ρmax −wρmax n t (t, n) Time Label Minimum principle ⇒ car following model [Newell, 2002] X(t, n) = min X(t0, n) + u(t − t0), X(t0, n + wρmax(t − t0)) + w(t − t0) . (8) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 24 / 49
  • 25. Variational principles in traffic LWR model Numerical methods for LWR Dynamic programming [Daganzo, 2006] Minimization of a cost function over a computational grid Computational cost proportional to the complexity of the grid u w Position Time ∆x ∆t G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 25 / 49
  • 26. Variational principles in traffic LWR model Numerical methods for LWR Dynamic programming [Daganzo, 2006] Minimization of a cost function over a computational grid Computational cost proportional to the complexity of the grid Exact for piecewise affine (PWA) value conditions and piecewise affine FD (but not for arbitrary concave FDs) Possibility to integrate internal boundary conditions but uneasy Possibility to integrate space/time dependent FDs (space/time dependent cost) [Mazar´e et al, 2012] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 26 / 49
  • 27. Variational principles in traffic LWR model Numerical methods for LWR (continued) Lax-Hopf algorithm [Claudel and Bayen, 2010] Minimization of closed form partial solutions (grid-free) Computational cost proportional to the number of initial and boundary condition blocks Exact for PWA value conditions and arbitrary concave FDs Possible integration of internal boundary conditions Integration of space-time varying fundamental diagrams: to be done [Mazar´e et al, 2012] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 27 / 49
  • 28. Variational principles in traffic LWR model Examples of data assimilation Eulerian coordi- nates (x, t) [Mazar´e et al, 2012] Lagrangian coordinates (n, t) [Han et al, 2012] G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 28 / 49
  • 29. Variational principles in traffic GSOM family GSOM in Eulerian (x, t) From [Li and Zhang, 2013], system of coupled scalar conservation laws ∂tρ + ∂xf(ρ, s) = 0 Conservation of vehicles, ∂ts + ∂xg(ρ, s) = 0 Dynamics around the equilibrium. (9) GSOM family for s = ρI and ϕ = 0 Variational representations for cumulative quantities Nρ := +∞ x ρ(y, t)dy and Ns := +∞ x s(y, t)dy, if characteristics system (coupled ODEs) is satisfied... G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 29 / 49
  • 30. Variational principles in traffic GSOM family GSOM in Lagrangian (n, t) From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian    ∂tr + ∂N v = 0 Conservation of vehicles, ∂tI = ϕ(N, I, t) Dynamics of I, v = W(N, r, t) := V(r, I(N, t)) Fundamental diagram. (10) Position X(N, t) := t −∞ v(N, τ)dτ satisfies the HJ equation ∂tX − W(N, −∂N X, t) = 0, (11) And I(N, t) solves the ODE ∂tI(N, t) = ϕ(N, I, t), I(N, 0) = i0(N), for any N. G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 30 / 49
  • 31. Variational principles in traffic GSOM family GSOM in Lagrangian (n, t) (continued) Legendre-Fenchel transform of W according to r M(N, c, t) = sup r∈R {W(N, r, t) − cr} M(N, p, t) pq W(N, q, t) W(N, r, t) q r p p u c Transform M G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 31 / 49
  • 32. Variational principles in traffic GSOM family GSOM in Lagrangian (n, t) (continued) Lax-Hopf formula X(NT , T) = min u(.),(N0,t0) T t0 M(N, u, t)dt + ξ(N0, t0), ˙N = u u ∈ U N(t0) = N0, N(T) = NT (N0, t0) ∈ J (12) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 32 / 49
  • 33. Variational principles in traffic GSOM family GSOM in Lagrangian (n, t) (continued) Optimal trajectories = characteristics ˙N = ∂rW(N, r, t), ˙r = −∂N W(N, r, t), (13) System of ODEs to solve Difficulty: not straight lines in the general case G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 33 / 49
  • 34. Numerical method Outline 1 Macroscopic traffic flow models 2 Variational principles in traffic 3 Numerical method Methodology Elementary blocks Numerical example 4 Conclusion G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 34 / 49
  • 35. Numerical method Methodology General ideas First key element: Lax-Hopf formula Computations only for the characteristics X(NT , T) = min (N0,r0,t0) T t0 M(N, ∂rW(N, r, t), t)dt + ξ(N0, t0), ˙N(t) = ∂rW(N, r, t) ˙r(t) = −∂N W(N, r, t) N(t0) = N0, r(t0) = r0, N(T) = NT (N0, r0, t0) ∈ K (14) K is the set of initial/boundary values G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 35 / 49
  • 36. Numerical method Methodology General ideas (continued) Second key element: inf-morphism prop. [Aubin et al, 2011] Consider a union of sets (initial and boundary conditions) K = l Kl, then the global minimum is X(NT , T) = min l Xl(NT , T), (15) with Xl partial solution to sub-problem Kl. G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 36 / 49
  • 37. Numerical method Elementary blocks Assumptions Piecewise affine value conditions the initial condition: positions of vehicles at time t = t0, the “upstream” boundary condition: trajectory of the first vehicle N = N0 traveling on the section, and internal boundary conditions: cumulative vehicles counts at fixed location X = x0. Finite horizon problems (N, t) ∈ [N0, Nmax] × [t0, tmax] No relaxation ϕ = 0 G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 37 / 49
  • 38. Numerical method Elementary blocks Initial conditions Discretize the set of N into [np, np+1] of length ∆n Assume that ∆n small enough such that Simplified dynamic ϕ(N, I, t) = ϕp(I, t), for any N ∈ [np, np+1]. Initial data are piecewise constant I(N, t0) = I0,p, r(N, t0) = r0,p. G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 38 / 49
  • 39. Numerical method Elementary blocks Sub-algorithm for initial block [np, np+1] × {t0} (i) Initialize X to +∞ (ii) Number of characteristics to compute (iii) Compute N(t) of each characteristic while t ≤ tmax and N ≤ Nmax (iv) Calculate the (exact) solution Xp all along each characteristic (v) Compute the exact value at any point within the characteristics fan (simple translation) (vi) In a rarefaction interpolate the value of X at each point within the influence domain. G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 39 / 49
  • 40. Numerical method Elementary blocks PWA initial conditions Domain of influence of the initial condition Couples for initial conditions (N, r0(N)) r0,p 0 I0,p N0 N np np+1 Nmax t tmax 2 1 t0 G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 40 / 49
  • 41. Numerical method Elementary blocks Upstream boundary conditions Domain of influence of the upstream boundary condition Couples for initial conditions (N0, r0(t)) N0 t0 N Nmax t tmax 2 1 0 r0,q tq+1 tq G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 41 / 49
  • 42. Numerical method Elementary blocks Internal boundary conditions Domain of influence of the internal boundary condition Triplet for initial conditions (N(t), r0(t), v0(t)) r0,p 1 0 2 np np+1N0 N Nmax t tmax t0 r0,p 2 0 1 np np+1N0 N Nmax t tmax t0 Under-critical case Over-critical case G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 42 / 49
  • 43. Numerical method Numerical example Fundamental Diagram and Driver Attribute 0 20 40 60 80 100 120 140 160 180 200 −5 0 5 10 15 20 25 30 35 Headway r (m) SpeedW(m/s) Fundamental diagram W(N,r,t) I(N,t)=1 I(N,t)=2 I(N,t)=3 0 5 10 15 20 25 30 1 1.5 2 2.5 3 Label N Initial conditions I(N,t 0 ) DriverattributeI 0 G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 43 / 49
  • 44. Numerical method Numerical example Initial and Boundaries Conditions 0 5 10 15 20 25 30 15 20 25 30 35 40 45 50 55 60 Label N Initial conditions r(N,t 0 )Headwayr 0 (m) 0 5 10 15 20 25 30 −800 −700 −600 −500 −400 −300 −200 −100 0 Label N Initial positions X(N,t 0 ) PositionX(m) 0 50 100 150 200 250 300 10 20 30 40 50 60 70 80 90 Time t (s) Headwayr 0 (m) Headway r(N0 ,t) 0 50 100 150 200 250 300 0 1000 2000 3000 4000 5000 Time t (s) Position X(N 0 ,t) PositionX 0 (m) G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 44 / 49
  • 45. Numerical method Numerical example Numerical result G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 45 / 49
  • 46. Conclusion Outline 1 Macroscopic traffic flow models 2 Variational principles in traffic 3 Numerical method 4 Conclusion G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 46 / 49
  • 47. Conclusion High interest of variational theory in trafic Semi-explicit computational algorithms Data assimilation Difficulty when Hamiltonian depends on time / space / vehicle G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 47 / 49
  • 48. Conclusion High interest of variational theory in trafic Semi-explicit computational algorithms Data assimilation Difficulty when Hamiltonian depends on time / space / vehicle Open questions: Extend the algorithm for non-zero dynamics ϕ(I) = 0 Confront the algorithm with real data (NGSIM/MOCoPo datasets) “Simple” formula for time/space dependent Hamiltonians? G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 47 / 49
  • 49. Conclusion The End Thanks for your attention guillaume.costeseque@cermics.enpc.fr guillaume.costeseque@ifsttar.fr G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 48 / 49
  • 50. Complements Some references G. Costeseque, J.P. Lebacque, A variational formulation for higher order macroscopic traffic flow models: numerical investigation, Working paper, (2013). C.F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications, Networks and Heterogeneous Media, AIMS, 1 (2006), pp. 601-619. J.A. Laval, L. Leclercq, The Hamilton-Jacobi partial differential equation and the three representations of traffic flow, Transportation Research Part B, 52 (2013), pp. 17-30. J.P. Lebacque, M.M. Khoshyaran, A variationnal formulation for higher order macroscopic traffic flow model of the GSOM family, Procedia-Social and Behavioral Sciences, 80 (2013), pp. 370-394. G. Costeseque (Universit´e ParisEst) Variational principles: numerics Marne-la-Vall´ee, October 2013 49 / 49