Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Linear Equation In Two Variable

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 11 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (19)

Ähnlich wie Linear Equation In Two Variable (20)

Anzeige

Aktuellste (20)

Linear Equation In Two Variable

  1. 1. LINEAR EQUATION IN TWO VARIABLE
  2. 2. Let’s start with the journey with some basics here: (+,+)(-,+) (-,-) (+,-) Learning the Cartesian sign is important . This is the origin The Quadrants
  3. 3. The word LINEAR originates from: Today we will study the equation for lines. In a Graph, these equations are used To get the position of a line
  4. 4. Linear equation in two variable THE STANDARD FORM: ax+by+c=0 Here, a and b are the constants that cannot be 0 Example: 47x+7y=9c can be zero
  5. 5. There are 2 methods to solve A Pair of Linear equation 1  Graphical method 2  Algebraic method ax+by+c=0
  6. 6. Lets solve some examples quickly: Q. We need to plot the diagram for 5x+4y+20=0 and check whether (0,-5) lies in it. STEP 1: Assume a value for x and find the value of y x y We will take three observation to plot the point. Lets take the points -1,0,1 for x When x=-1 5(-1)+4y+20=0 .’.-5+4y=-20 .’.4y=-20+5 y=-15/4=-3.75 When x=0 5(0)+4y+20=0 .’.4y=-20 .’.y=-20/4 y=-5 When x=-1 5(1)+4y+20=0 .’.5+4y=-20 .’.4y=-20-5 y=-25/4=-6.25 -1 -3.75 0 -5 1 -6.25
  7. 7. x -1 0 1 y -3.75 -5 -6.25 From this observation We come to know that (0,-5) Lies on the line Now lets plot our graph This is our graph based on Cartesian sign Remember to label The points and the line (0,-5) (-1,-3.75) (1,-6.25) (0,0) And we are done!
  8. 8. The standard form: ax+bx+c=0 x+y=5 x+y-5=0 3x+7y-66=0 8y-4x=-12  -4x+8y+12=0 2x+ 𝟐 𝟑 𝐲 = 𝟕  2x+ 𝟐 𝟑 𝐲 − 𝟕 =0 Lets do some quick activity: Determine the coefficints and the constants from the given expressions a b c 1 1 -5 3 7 -66 8 -4 12 2 𝟐 𝟑 -7
  9. 9. Quick facts: For the equations like: x=n, where n can be any integer. The line on the graph will always be Parallel to y-axis Examples: X=-5 X=3 X=6 X=-2 They’re parallel to y-axis Y-axis X-axis
  10. 10. Quick facts: For the equations like: y=n, where n can be any integer. The line on the graph will always be Parallel to x-axis Examples: y=-5 y=3 y=6 y=-2 They’re parallel to x-axis Y-axis X-axis
  11. 11. THANK YOU

×