Diese Präsentation wurde erfolgreich gemeldet.

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
×

1 von 11 Anzeige

# Linear Equation In Two Variable

This covers the basics of linear equation in two variable.

This covers the basics of linear equation in two variable.

Anzeige
Anzeige

## Weitere Verwandte Inhalte

Anzeige

### Linear Equation In Two Variable

1. 1. LINEAR EQUATION IN TWO VARIABLE
2. 2. Let’s start with the journey with some basics here: (+,+)(-,+) (-,-) (+,-) Learning the Cartesian sign is important . This is the origin The Quadrants
3. 3. The word LINEAR originates from: Today we will study the equation for lines. In a Graph, these equations are used To get the position of a line
4. 4. Linear equation in two variable THE STANDARD FORM: ax+by+c=0 Here, a and b are the constants that cannot be 0 Example: 47x+7y=9c can be zero
5. 5. There are 2 methods to solve A Pair of Linear equation 1  Graphical method 2  Algebraic method ax+by+c=0
6. 6. Lets solve some examples quickly: Q. We need to plot the diagram for 5x+4y+20=0 and check whether (0,-5) lies in it. STEP 1: Assume a value for x and find the value of y x y We will take three observation to plot the point. Lets take the points -1,0,1 for x When x=-1 5(-1)+4y+20=0 .’.-5+4y=-20 .’.4y=-20+5 y=-15/4=-3.75 When x=0 5(0)+4y+20=0 .’.4y=-20 .’.y=-20/4 y=-5 When x=-1 5(1)+4y+20=0 .’.5+4y=-20 .’.4y=-20-5 y=-25/4=-6.25 -1 -3.75 0 -5 1 -6.25
7. 7. x -1 0 1 y -3.75 -5 -6.25 From this observation We come to know that (0,-5) Lies on the line Now lets plot our graph This is our graph based on Cartesian sign Remember to label The points and the line (0,-5) (-1,-3.75) (1,-6.25) (0,0) And we are done!
8. 8. The standard form: ax+bx+c=0 x+y=5 x+y-5=0 3x+7y-66=0 8y-4x=-12  -4x+8y+12=0 2x+ 𝟐 𝟑 𝐲 = 𝟕  2x+ 𝟐 𝟑 𝐲 − 𝟕 =0 Lets do some quick activity: Determine the coefficints and the constants from the given expressions a b c 1 1 -5 3 7 -66 8 -4 12 2 𝟐 𝟑 -7
9. 9. Quick facts: For the equations like: x=n, where n can be any integer. The line on the graph will always be Parallel to y-axis Examples: X=-5 X=3 X=6 X=-2 They’re parallel to y-axis Y-axis X-axis
10. 10. Quick facts: For the equations like: y=n, where n can be any integer. The line on the graph will always be Parallel to x-axis Examples: y=-5 y=3 y=6 y=-2 They’re parallel to x-axis Y-axis X-axis
11. 11. THANK YOU