Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Atlases of cognition with large-scale human brain mapping

238 Aufrufe

Veröffentlicht am

Cognitive neuroscience uses neuroimaging to identify brain systems engaged in specific cognitive tasks. However, linking unequivocally brain systems with cognitive functions is difficult: each task probes only a small number of facets of cognition, while brain systems are often engaged in many tasks. We develop a new approach to generate a functional atlas of cognition, demonstrating brain systems selectively associated with specific cognitive functions. This approach relies upon an ontology that defines specific cognitive functions and the relations between them, along with an analysis scheme tailored to this ontology. Using a database of thirty neuroimaging studies, we show that this approach provides a highly-specific atlas of mental functions, and that it can decode the mental processes engaged in new tasks.

Veröffentlicht in: Wissenschaft
  • Choose nowtofree downloadwith pdf format http://freetosebooks.xyz/Miaou.html
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • How can I improve my memory book? How can I improve my memory recall? visit to learn...♥♥♥ https://tinyurl.com/brainpill101
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Gehören Sie zu den Ersten, denen das gefällt!

Atlases of cognition with large-scale human brain mapping

  1. 1. Altases of cognition T592 with large-scale human brain imaging Gaël Varoquaux Calculation Other visual Objects Scrambled pics Saccade Horizontal checkerboard Vertical checkerboard Faces Places Words [Varoquaux et al, PLOS Comp Bio, 2018]
  2. 2. Dividing up the brain Broadman areas Looking at the brain and seeing parcels G Varoquaux 2
  3. 3. Dividing up the brain Broadman areas Looking at the brain and seeing parcels Functional areas? Many possible contrasts Much overlap vertical checkerboard calculations vs sentences left vs right click cognitive vs motor audio vs video G Varoquaux 2
  4. 4. Dividing up the brain Broadman areas Looking at the brain and seeing parcels Functional areas? Many possible contrasts Much overlap vertical checkerboard calculations vs sentences left vs right click cognitive vs motor audio vs video Central challenge of functional specificity G Varoquaux 2
  5. 5. Probing mental processes with cognitive neuroimaging 1 Craft an experimental condition that recruits it G Varoquaux 3
  6. 6. Probing mental processes with cognitive neuroimaging 1 Craft an experimental condition that recruits it 2 Do an elementary psychological manipulation G Varoquaux 3
  7. 7. Probing mental processes with cognitive neuroimaging - - Isolate mental processes A contrast: Study by oppositionsG Varoquaux 3
  8. 8. Probing mental processes with cognitive neuroimaging - - Results tied to a simple psychological manipulation a cognitive model the task bound to a paradigm G Varoquaux 3
  9. 9. Direction of inference in neuroimaging Our goal An atlas of regions unequivocally linked to mental processes 4
  10. 10. Direction of inference in neuroimaging Our goal An atlas of regions unequivocally linked to mental processes Standard (forward) inference Activity implied by manipulation Reverse [Poldrack 2006] inference Activity implies mental process 4
  11. 11. Large-scale decoding for reverse inference Cat Dog Ouaf Miaou G Varoquaux 5
  12. 12. Large-scale decoding for reverse inference Cat Dog Ouaf Miaou Across studies Variability: an opportunity and a challenge Technical heterogeneity (scanner, stimulus modality...) Paradigmatic isolation (cognition) [Newell 1973] G Varoquaux 5
  13. 13. Large-scale decoding for reverse inference Cat Dog Ouaf Miaou Across studies Variability: an opportunity and a challenge Technical heterogeneity (scanner, stimulus modality...) Paradigmatic isolation (cognition) [Newell 1973] Generalization across paradigms grounds broader functional associations Paradigm 1: Seen G Varoquaux 5
  14. 14. Large-scale decoding for reverse inference Cat Dog Ouaf Miaou Across studies Variability: an opportunity and a challenge Technical heterogeneity (scanner, stimulus modality...) Paradigmatic isolation (cognition) [Newell 1973] Generalization across paradigms grounds broader functional associations Paradigm 1: Seen Paradigm 2: Imagined G Varoquaux 5
  15. 15. Describing arbitrary paradigms Describing cognitive components of all paradigms Episodic memory working memory lexical memory Syntax comprehension Reading Mental calculation Shape recognition Face recognition Language G Varoquaux 6
  16. 16. Describing arbitrary paradigms Describing cognitive components of all paradigms In a cognitive paradigm ontology [Turner and Laird 2012] Episodic memory working memory lexical memory Syntax comprehension Reading Mental calculation Shape recognition Face recognition Memory Language Vision G Varoquaux 6
  17. 17. Mapping regions specific to a mental process Forward inference: Non-specific associations Mapping “place recognition” Forward term effect Brain response to tasks with the “place” concept G Varoquaux 7
  18. 18. Mapping regions specific to a mental process Forward inference: Contrasts Mapping “place recognition” Forward term effect Brain response to tasks with the “place” concept Forward ontology contrast Contrasting responses to “place” and related concepts G Varoquaux 7
  19. 19. Mapping regions specific to a mental process Forward inference: Contrasts reject confounds Reverse inference: Decoding Mapping “place recognition” Forward term effect Brain response to tasks with the “place” concept Forward ontology contrast Contrasting responses to “place” and related concepts Reverse decoder map Regions that predict a place- recognition task G Varoquaux 7
  20. 20. Mapping regions specific to a mental process Forward inference: Contrasts reject confounds Reverse inference: Decoding ⇒ Consensus to define regions Mapping “place recognition” Forward ontology contrast Contrasting responses to “place” and related concepts Reverse decoder map Regions that predict a place- recognition task Consensus forward & reverse Regions selected by forward and reverse inference z = −16 R Mapping place recognition Replaces the careful crafting of control conditions G Varoquaux 7
  21. 21. A decoding mega-analysis 30 studies 837 subjects 196 experimental conditions 6919 activation maps Different labs Dehaene Poldrack Wager ... Various cognitive domains Language Vision Decision making Mathematics ... All manually preprocessed, labeled, and curated G Varoquaux 8
  22. 22. A decoding mega-analysis 30 studies 837 subjects 196 experimental conditions 6919 activation maps Different labs Dehaene Poldrack Wager ... Various cognitive domains Language Vision Decision making Mathematics ... All manually preprocessed, labeled, and curated Decoding arbitrary new paradigms visualauditoryVcheckerboardHcheckerboard objectsscramble faces places digits wordsrighthandlefthandrightfootleftfootlanguagehumansoundnon-humansound 0.2 0.4 0.6 0.8 1.0 Predictionscore ontology decoder logistic regression naive Bayes neurosynth a ontologydecoder logisticregression naive Bayes neurosynth -0.3 -0.2 -0.1 0.0 +0.1 +0.2 +0.3 Relativescore b G Varoquaux 8
  23. 23. A functional atlas: ventral visual Neurosynth Reverse inference (Logistic regression) Decoding in an ontology z = -15 visual faces places objects scrambled words digits horizontal - vertical checkerboard Visual regions Contrasts -based analysis Neurosynth reverse inference Decoding and ontology G Varoquaux 9
  24. 24. A functional atlas A full-brain atlas of cognition 19 mental functions Regions support across-paradigm reverse inference https://neurovault.org/collections/4563 G Varoquaux 10
  25. 25. @GaelVaroquaux Mapping brain function across paradigms Prediction for broader theories Explicit generalization across paradigms Cat Dog Ouaf Miaou 11
  26. 26. @GaelVaroquaux Mapping brain function across paradigms Prediction for broader theories Explicit generalization across paradigms Beyond oppositions Decoding multiple facets of cognitions 11
  27. 27. @GaelVaroquaux Mapping brain function across paradigms Prediction for broader theories Explicit generalization across paradigms Beyond oppositions Decoding multiple facets of cognitions Predictive models can broaden theories by generalizing brain-mind associations to arbitrary new tasks and stimuli [Varoquaux and Poldrack 2018] 11
  28. 28. @GaelVaroquaux Atlases of cognition [Varoquaux, PLoS Comp Bio 2018] Functional regions that decode 19 mental processes across 30 studies Functionally specific Support principled reverse inference Characterize mental process rather than experimental manipulations 12
  29. 29. @GaelVaroquaux Atlases of cognition [Varoquaux, PLoS Comp Bio 2018] Functional regions that decode 19 mental processes across 30 studies Functionally specific Support principled reverse inference Characterize mental process rather than experimental manipulations Open science Atlas: available on neurovault Data: preprocessed & labeled data on neurovault Software: nilearn http://nilearn.github.io ni 12
  30. 30. References I A. Newell. You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. 1973. R. Poldrack. Can cognitive processes be inferred from neuroimaging data? Trends in cognitive sciences, 10:59, 2006. J. Turner and A. Laird. The cognitive paradigm ontology: design and application. Neuroinformatics, 10:57, 2012. G. Varoquaux and R. A. Poldrack. Predictive models can overcome reductionism in cognitive neuroimaging. In rev, 2018. 13

×