Diese Präsentation wurde erfolgreich gemeldet.

Universal Set and Subset using Venn Diagram

1

Teilen

Nächste SlideShare
Sets, subsets, compliments
×
1 von 15
1 von 15

Universal Set and Subset using Venn Diagram

1

Teilen

For more instructional resources, CLICK me here and DON'T FORGET TO SUBSCRIBE! 
https://tinyurl.com/y9muob6q

LIKE and FOLLOW me here! 
https://tinyurl.com/ycjp8r7u
https://tinyurl.com/ybo27k2u

Reference:
Nivera, G. C. (2013), Grade 7 Mathematics: Pattern and Practicalities. Don Bosco Press Inc. Makati City, Philippines.

For more instructional resources, CLICK me here and DON'T FORGET TO SUBSCRIBE! 
https://tinyurl.com/y9muob6q

LIKE and FOLLOW me here! 
https://tinyurl.com/ycjp8r7u
https://tinyurl.com/ybo27k2u

Reference:
Nivera, G. C. (2013), Grade 7 Mathematics: Pattern and Practicalities. Don Bosco Press Inc. Makati City, Philippines.

Weitere Verwandte Inhalte

Ähnliche Bücher

Kostenlos mit einer 14-tägigen Testversion von Scribd

Alle anzeigen

Ähnliche Hörbücher

Kostenlos mit einer 14-tägigen Testversion von Scribd

Alle anzeigen

Universal Set and Subset using Venn Diagram

1. 1. Grade 7 – Mathematics Quarter I UNIVERSAL SET SUBSETS and VENN DIAGRAM
2. 2. •define universal set, subset and proper subset; •illustrate subset and universal set using Venn Diagram; and •list all the possible subsets of a given set;
3. 3. Consider these cards. Form the following sets using the numbers in the cards. 1. A = {numbers less than 5} A = {1,2,3,4} 2. B = {even numbers less than 5} B = {2,4}
4. 4. Consider these cards. 3. C = {prime numbers} C = {2,3,5,7} 4. D = {odd numbers} D = {1,3,5,7,9} 5. E = {numbers from 1 to 4} E = {1,2,3,4}
5. 5. - denoted by U, contains all the elements. U = {1,2,3,4,5,6,7,8,9,10}
6. 6. U = {1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4} B = {2,4} C = {2,3,5,7} D = {1,3,5,7,9} E = {1,2,3,4}
7. 7. Subset U Venn Diagram
8. 8. Dogs Poodles U “all poodles are dogs” B⊆A A B U A = { 1, 2, 3 } B = { 1 } poodles ⊆ dogs
9. 9. - denoted by ⊆, if and only if every element of set A is also an element of set B. - an empty set is always a subset of every set.
10. 10. - denoted by ⊂, if and only if every element of set A is also an element of set B, and set B contains at least one element that is not in A. - a proper subset is always a subset.
11. 11. Example. {3} _____ {1,2,3}⊂ {1,2,3} ___ {1,2,3}⊆ 2 ___ {1,2,3}∈ 5 ___ {1,2,3}∉ {7, 8} ___ {1,2,3}⊂ Proper Subset Subset Not a Subset Element Not an element
12. 12. Let’s Try! Fill in each blank with ⊂, ⊆, ∈, ∉, ⊂. 1. {2} _____ {1,2,3} 2. {g} _____ {a,b,c,d,e} 3. 4 _____ {odd number} 4. {3,2,1} _____ {1,2,3} 5. 1 _____ {1,2,3} ⊆ ⊂ ∉ ⊂ ∈
13. 13. NUMBER OF SUBSETS 2. {1,2,3} { } {1}, {2}, {3} {1,2}, {2,3}, {1,3} {1,2,3} 8 subsets 1. {a,b} { } {a}, {b} {a,b} 4 subsets
14. 14. 3. {l,o,v,e} { } {l}, {o}, {v}, {e} {l,o}, {l,v}, {l,e}, {o,v}, {o,e}, {v,e} {l,o,v}, {l,o,e}, {l,v,e}, {o,v,e} {l,o,v,e} 16 subsets
15. 15. Checking. 𝟐 𝒏 = 𝟐 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 1. {a,b} = 4 subsets 𝟐 𝒏 = 𝟐 𝟐 = 2 x 2 2. {1,2,3} = 8 subsets 3. {l,o,v,e} = 16 subsets 𝟐 𝟑 = 𝟐 𝟑 = 2 x 2 x 2 𝟐 𝟒 = 𝟐 𝟒 = 2 x 2 x 2 x 2