Diese Präsentation wurde erfolgreich gemeldet.

# Geometric Mean

5

Teilen

Nächste SlideShare
Infinite Geometric Series
×
1 von 9
1 von 9

# Geometric Mean

5

Teilen

For more instructional resources CLICK me here and please DON'T FORGET TO SUBSCRIBE. 
https://tinyurl.com/y9muob6q

https://tinyurl.com/y9hhtqux

LIKE and FOLLOW us on Slideshare!
https://www.slideshare.net/FreeMathVi...
https://www.slideshare.net/ArielRogon2

References:
Nivera, G. C. (2015), Grade 10 Mathematics: Pattern and Practicalities. Don Bosco Press Inc. Makati City, Philippines.

Mathematics Grade 10 Learner's Module (2015). Department of Education

For more instructional resources CLICK me here and please DON'T FORGET TO SUBSCRIBE. 
https://tinyurl.com/y9muob6q

https://tinyurl.com/y9hhtqux

LIKE and FOLLOW us on Slideshare!
https://www.slideshare.net/FreeMathVi...
https://www.slideshare.net/ArielRogon2

References:
Nivera, G. C. (2015), Grade 10 Mathematics: Pattern and Practicalities. Don Bosco Press Inc. Makati City, Philippines.

Mathematics Grade 10 Learner's Module (2015). Department of Education

## Weitere Verwandte Inhalte

### Ähnliche Bücher

Kostenlos mit einer 14-tägigen Testversion von Scribd

Alle anzeigen

### Ähnliche Hörbücher

Kostenlos mit einer 14-tägigen Testversion von Scribd

Alle anzeigen

### Geometric Mean

1. 1. Grade 10 – Mathematics Quarter I GEOMETRIC MEAN
2. 2. FINDING THE GEOMETRIC MEAN The geometric mean between any two positive numbers 𝒂 and 𝒃 is the square root of their product. 𝒂𝒃 positive geometric mean of 𝒂 and 𝒃 - 𝒂𝒃 negative geometric mean of 𝒂 and 𝒃
3. 3. Find the positive geometric mean of the following: 4 and 25 𝐆𝐌 = 𝟒 ∙ 𝟐𝟓 = 𝟏𝟎𝟎 = 𝟏𝟎 -3 and -12 𝐆𝐌 = (−𝟑)(−𝟏𝟐) = 𝟑𝟔 = 𝟔
4. 4. Insert 3 geometric means between 5 and 1280. 5, ____, ____, _____, 1280 = 𝟓 ∙ 𝟏𝟐𝟖𝟎 = 𝟔𝟒𝟎𝟎 = 𝟖𝟎 𝟖𝟎 = 𝟓 ∙ 𝟖𝟎 = 𝟒𝟎𝟎 = 𝟐𝟎 𝟐𝟎 = 𝟖𝟎 ∙ 𝟏𝟐𝟖𝟎 = 𝟏𝟎𝟐𝟒𝟎𝟎 = 𝟑𝟐𝟎 𝟑𝟐𝟎
5. 5. Insert 3 geometric means between 16 and 81. 16, ____, ____, ____, 81 = 𝟏𝟔 ∙ 𝟖𝟏 = 𝟏𝟐𝟗𝟔 = 𝟑𝟔 𝟑𝟔 = 𝟏𝟔 ∙ 𝟑𝟔 = 𝟓𝟕𝟔 = 𝟐𝟒 𝟐𝟒 = 𝟑𝟔 ∙ 𝟖𝟏 = 𝟐𝟗𝟏𝟔 = 𝟓𝟒 𝟓𝟒
6. 6. Insert 3 geometric means between 256 and 1. 𝑎 𝑛 = 𝑎1 𝑟 𝑛−1 𝑎1 = 256 𝑎5 = 256𝑟4 Given: 1= 256𝑟4 𝑟4 = 1 256 = ± 4 1 256 = ± 1 4 𝑟 = 1 4 256, ____, ____, __, 1 𝟐𝟓𝟔 ∙ 𝟏 𝟒 𝟔𝟒 64∙ 𝟏 𝟒 𝟏𝟔 𝑟 = − 1 4 256, ____, ___, ___, 1 𝟐𝟓𝟔 ∙ − 𝟏 𝟒 −𝟔𝟒 -64∙ − 𝟏 𝟒 𝟏𝟔 16∙ 𝟏 𝟒 𝟒 16∙ − 𝟏 𝟒 -𝟒 𝑎5 = 1
7. 7. Insert 2 geometric means between -32 and 4. 𝑎 𝑛 = 𝑎1 𝑟 𝑛−1 𝑎1 = −32 𝑎4 = −32𝑟3 Given: 4 = −32𝑟3 𝑟3 = − 4 32 = − 3 1 8 𝑟 = − 1 2 −32, ____, ____, 4 -32∙ − 𝟏 𝟐 𝟏𝟔 16∙ − 𝟏 𝟐 −𝟖 =− 1 8 𝑎4 = 4
8. 8. If 2 and 3 are two geometric means between 𝑚 and 𝑛, find the values of 𝑚 and 𝑛. m, 2, 3, n 𝒓 = 𝟑 𝟐 𝑚 = 2 ÷ 3 2 = 2 ∙ 2 3 𝒎 = 𝟒 𝟑 𝑛 = 3 ∙ 3 2 = 9 2 𝒏 = 𝟗 𝟐
9. 9. REFERENCES: ❖ Nivera, G.C. (2015). Grade 10 Mathematics Pattern and Practicalities. Don Bosco Press, Inc. Makati City, Philippines. ❖ Mathematics Grade 10 Learner’s Module. Department of Education. Pasig City, Philippines.