SlideShare ist ein Scribd-Unternehmen logo
1 von 109
Downloaden Sie, um offline zu lesen
Progettazione Strutturale Antincendio
La Robustezza Strutturale in caso di eventi LP-HC e nello
specifico caso di incendio
Prof. Ing. F. Bontempi
Ing. Mattia Francioli, Ph.D. 1
PROGETTAZIONE STRUTTURALE ANTINCENDIO A.A. 2022/2023
Robustezza
Strutturale
Introduzione e definizione
Requisiti strutturali
• Condizioni di esercizio:
• Rigidezza
• Condizioni ultime:
• Resistenza
• Stabilita’
• Duttilita’
• Durabilita’
• Condizioni estreme:
• Robustezza
• Resilienza
• Configurazione nominale
della struttura
• Configurazione danneggiata
della struttura
33
3
Progettazione Strutturale Antincendio Robustezza strutturale
Levels of Structural Crisis
Usual
ULS
&
SLS
Verification
Format
Structural Robustness
Assessment
1st level:
Material
Point
2nd level:
Element
Section
3rd level:
Structural
Element
4th level:
Structural
System 4
Robustezza / Durabilità
55
5
Progettazione Strutturale Antincendio Robustezza strutturale
Aloha Boeing 737, April 1988
6 6
Progettazione Strutturale Antincendio Robustezza strutturale
77
7
Progettazione Strutturale Antincendio Robustezza strutturale
8
8
8
Es.
99
9
Progettazione Strutturale Antincendio Robustezza strutturale
10
Es.
10
10
Progettazione Strutturale Antincendio Robustezza strutturale
11
11
11
Progettazione Strutturale Antincendio Robustezza strutturale
12
12
12
Progettazione Strutturale Antincendio Robustezza strutturale
https://en.wikipedia.org/wiki/B-
25_Empire_State_Building_crash
13
13
Progettazione Strutturale Antincendio Robustezza strutturale
http://galleryhip.com/plane-crashes-into-empire-state-building.html
15
15
Progettazione Strutturale Antincendio Robustezza strutturale
16
16
Progettazione Strutturale Antincendio Robustezza strutturale
17
17
Progettazione Strutturale Antincendio Robustezza strutturale
https://en.wikipedia.org/wiki/2002_Pirelli
_Tower_airplane_crash
18
18
Progettazione Strutturale Antincendio Robustezza strutturale
19
19
Progettazione Strutturale Antincendio Robustezza strutturale
20
20
Progettazione Strutturale Antincendio Robustezza strutturale
21
21
Progettazione Strutturale Antincendio Robustezza strutturale
22
22
Progettazione Strutturale Antincendio Robustezza strutturale
23
23
Progettazione Strutturale Antincendio Robustezza strutturale
• Capacity of a construction to exhibit regular
decrease of its structural quality as a consequence
of negative causes.
• It implies:
a) some smoothness of the decrease of
structural performance due to negative
events (intensive feature);
b) some limited spatial spread of the
rupture (extensive feature).
Structural Robustness
24 24
Progettazione Strutturale Antincendio Robustezza strutturale
QUALITY
DAMAGE or ERROR
REQUIRED PERFORMANCE
NOMINAL
PERFORMANCE
NOMINAL SITUATION
Structural Robustness
25 25
Progettazione Strutturale Antincendio Robustezza strutturale
Qualitative definitions of structural robustness
[EN 1991-1-7: 2006 ]: ability of a structure to withstand actions due
to fires, explosions, impacts or consequences
of human errors, without suffering damages
disproportionate to the triggering causes
[SEI 2007,
Beton Kalender 2008]: insensitivity of the structure to local failure
structure B
d
P
s
STRUCTURE B:
P
s
ROBUSTNESS CURVES
P (performance)
structure A
STRUCTURE A
damaged
integer
DP
damaged
more performant, less resistant
integer
(damage level)
DP
DP
more performant, less robust less performant, more robust
Structural Robustness
A B
26 26
Progettazione Strutturale Antincendio Robustezza strutturale
STRUCTURE
& LOADS
Collapse
Mechanism
NO SWAY
“IMPLOSION”
OF THE
STRUCTURE
“EXPLOSION”
OF THE
STRUCTURE
is a process in which
objects are destroyed by
collapsing on themselves
is a process
NOT CONFINED
SWAY
Bad VS Good collapse
27 27
Progettazione Strutturale Antincendio Robustezza strutturale
Bowing effect ed Effetto catenaria
28 28
Progettazione Strutturale Antincendio Robustezza strutturale
Initial load-bearing element failure that
triggers the rigid fall of a part of the
structure onto another and leads to a
sequential impacts on the rest of the
structure, that collapses on itself.
Characteristic feature is the force
redistribution into alternative paths,
impulsive loading due to sudden element
failure and force concentration in elements
to fail next.
Zipper Domino
Section Instability Mixed
Pancake
Initial cross-section cut and stress
concentration that cause the rupture of
further cross-sectional parts (fast fracture)
and failure progression throughout the
entire section.
Initial element rigid overturning and
falling over another element, that, by
means of transformation of potential into
kinetic energy, trigger the overturning of
the following element.
The destabilization of some load-carrying
elements in compression due to an initial
failure of stabilizing elements can trigger a
failure progression throughout the
structure.
Some collapses are less amenable to
generalization because the relative
importance of the contributing basic
categories of collapse can vary and
combine in progression of failures.
- DOMINO + PANCAKE
(e.g. A.P.Murrah Building, Building
during Izmit Earquake)
- ZIPPER + INSTABILITY
(e.g. cable-stayed bridges)
Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse
susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica)
Collapse types
29 29
Progettazione Strutturale Antincendio Robustezza strutturale
Initial load-bearing element failure that
triggers the rigid fall of a part of the
structure onto another and leads to a
sequential impacts on the rest of the
structure, that collapses on itself.
Characteristic feature is the force
redistribution into alternative paths,
impulsive loading due to sudden element
failure and force concentration in elements
to fail next.
Zipper Domino
Section Instability Mixed
Pancake
Initial cross-section cut and stress
concentration that cause the rupture of
further cross-sectional parts (fast fracture)
and failure progression throughout the
entire section.
Initial element rigid overturning and
falling over another element, that, by
means of transformation of potential into
kinetic energy, trigger the overturning of
the following element.
The destabilization of some load-carrying
elements in compression due to an initial
failure of stabilizing elements can trigger a
failure progression throughout the
structure.
Some collapses are less amenable to
generalization because the relative
importance of the contributing basic
categories of collapse can vary and
combine in progression of failures.
- DOMINO + PANCAKE
(e.g. A.P.Murrah Building, Building
during Izmit Earquake)
- ZIPPER + INSTABILITY
(e.g. cable-stayed bridges)
Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse
susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica)
Collapse types
Islamabad Earthquake 2005
Münsterland, 2005
Viaduct after earthquake
Izmit Earthquake
1999
Tanker S.S. Schenectady, 1941
30
Progettazione Strutturale Antincendio Robustezza strutturale francesco.petrini@uniroma1.it
30 30
Progettazione Strutturale Antincendio Robustezza strutturale
References:
(EN 1991-1-7 2006): "Eurocode 1 – Actions on structures, Part 1-7: General actions – accidental actions." Comité
European de Normalization (CEN).
(Bontempi F, Giuliani L, Gkoumas K, 2007): "Handling the exceptions: robustness assessment of a complex structural
system.“, Invited Lecture, Structural Engineering, Mechanics and Computation (SEMC) 3, 1747-1752.
(Starossek U, 2009): “Progressive collapse of structures.” London: Thomas Telford Publishing, 2009.
Definitions:
1- "The ability of a structure to withstand events like fire, explosions,
impact or the consequences of human error without being damaged to an
extent disproportionate to the original cause." (EN 1991-1-7 2006)
2- "The robustness of a structure, intended as its ability not to suffer
disproportionate damages as a result of limited initial failure, is an
intrinsic requirement, inherent to the structural system organization."
(Bontempi F, Giuliani L, Gkoumas K, 2007)
3- “Robustness is defined as insensitivity to local failure." (Starossek U,
2009)
Structural Robustness
31 31
Progettazione Strutturale Antincendio Robustezza strutturale
References:
(ASCE 7-05 2005): "Minimum design loads for buildings and other structures." American Society of Civil Engineers
(ASCE).
(GSA 2003): "Progressive collapse analysis and design guidelines for new federal office buildings and major
modernization projects." General Services Administration (GSA).
(UFC 4-010-01 2003): "DoD minimum antiterrorism standards for buildings." Department of Defense (DoD).
Progressive Collapse
Definitions:
1-"Progressive collapse is defined as the spread of an initial local failure
from element to element resulting, eventually, in the collapse of an entire
structure or a disproportionate large part of it." (ASCE 7-05 2005)
2- "A progressive collapse is a situation where local failure of a primary
structural component leads to the collapse of adjoining members which, in
turn, leads to additional collapse. Hence, the total collapse is
disproportionate to the original cause." (GSA 2003)
3-"Progressive collapse: a chain reaction failure of building members to an
extent disproportionate to the original localized damage." (UFC 4-010-01
2003)
32 32
Progettazione Strutturale Antincendio Robustezza strutturale
References:
Arup (2011), Review of international research on structural robustness and disproportionate collapse, London,
Department for Communities and Local Government.
Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr.
Fac., 24(6), 519-528.
Observations:
− A progressive collapse is one which develops in a progressive manner akin to the collapse
of a row of dominos.
− A disproportionate collapse is one which is judged (by some measure defined by the
observer) to be disproportionate to the initial cause. This is merely a judgement made on
observations of the consequences of the damage which results from the initiating events.
− A collapse may be progressive in nature but not necessarily disproportionate in its extents,
for example if arrested after it progresses through a number of structural bays. Vice versa, a
collapse may be disproportionate but not necessarily progressive if, for example, the
collapse is limited in its extents to a single structural bay but the structural bays are large.
− The terms of disproportionate collapse and progressive collapse are often used
interchangeably because disproportionate collapse often occurs in a progressive manner
and progressive collapse can be disproportionate.
Progressive Collapse VS Disproportionate Collapse
33 33
Progettazione Strutturale Antincendio Robustezza strutturale
Robustezza
Strutturale
Strategie progettuali
The Boeing B-17 Flying Fortress collided with another aircraft during World War II and, although
sustaining large amount of structural damage, landed safely, due to the high redundancy of the
fuselage connections.
Design Strategy #1: Continuity (robust behavior-redundancy)
35 35
Progettazione Strutturale Antincendio Robustezza strutturale
On July 1945 a B-25 bomber crashed into the Empire State Building, The impact of the plane
created a 5.5x6 m hole in the side of the tower. This crash caused extensive damage to the
masonry exterior and the interior steel structure of the building.
The 278 m building was rocked by the impact but resist the impact in consequence of the
intrinsic redundancy of its framed system.
Plane crash on the Empire
State Building, 1945
Design Strategy #1: Continuity (robust behavior-redundancy)
36 36
Progettazione Strutturale Antincendio Robustezza strutturale
Design Strategy #2: Segmentation (Compartmentalization)
A service-induced damage led to explosive decompression and loss of large portion of fuselage
skin when small fatigue crack suddenly linked together. The subsequent fracture was eventually
arrested by fuselage frame structure and the craft landed safely.
Aloha Boeing 737, April 1988
(compartmentalization by strengthening)
37 37
Progettazione Strutturale Antincendio Robustezza strutturale
Design Strategy #2: Segmentation (Compartmentalization)
The partial collapse, started in the roof and due design and execution errors, stopped at the two joints
which separated the collapsing section from the adjacent structures.
A higher continuity could have unlikely sustained the forces during collapse, since the construction
deficiencies affected also adjacent sections.
Charles De Gaulle Airport
(compartmentalization by isolation)
38 38
Progettazione Strutturale Antincendio Robustezza strutturale
39
39
Progettazione Strutturale Antincendio Robustezza strutturale
Design Strategy #2: Segmentation (Compartmentalization)
40
40
Progettazione Strutturale Antincendio Robustezza strutturale
Design Strategy #2: Segmentation (Compartmentalization)
Stiffener, bulkhead & deck layout
41
41
41
Progettazione Strutturale Antincendio Robustezza strutturale
Hull sections with and without
the outer hull
42
42
42
Progettazione Strutturale Antincendio Robustezza strutturale
USS San Francisco after collision
with an underwater mountain
43
43
43
Progettazione Strutturale Antincendio Robustezza strutturale
44
44
Progettazione Strutturale Antincendio Robustezza strutturale
Design Strategy #2: Segmentation (Compartmentalization)
45
45
Progettazione Strutturale Antincendio Robustezza strutturale
Design Strategy #2: Segmentation (Compartmentalization)
Robustezza
Strutturale
Calcolo robustezza
The currently available design strategies and methods to
prevent disproportionate collapse are as follows:
− Prevent local failure of key elements (direct design)
− Specific local resistance
− Non-structural protective measures
− Presume local failure (direct design)
− Alternative load paths
− Isolation by segmentation
− Prescriptive design rules (indirect design)
Reference:
Starossek, U. 2008. Collapse resistance and robustness of bridges. IABMAS’08: 4th International Conference on
Bridge Maintenance, Safety, and Management Seoul, Korea, July 13-17, 2008
Measures against disproportionate collapse
48 48
Progettazione Strutturale Antincendio Robustezza strutturale
ROBUSTEZZA NEI
CONFRONTI DELLE
ESPLOSIONI
49 49
Progettazione Strutturale Antincendio Robustezza strutturale
EFFECTS OF EXPLOSIONS ON STEEL
BUILDINGS
Department of Structural and Geotechnical Engineering,
Sapienza University of Rome, Italy
Pierluigi Olmati*
Ph.D. student
pierluigi.olmati@uniroma1.it
Francesco Petrini
Associate Professor, Ph.D
francesco.petrini@uniroma1.it
Franco Bontempi
Full Professor, Ph.D.
franco.bontempi@uniroma1.it
ESPLOSIONI E ROBUSTEZZA STRUTTURALE - 11 October 2011
chairman: Walter Salvatore
50
50
Progettazione Strutturale Antincendio Robustezza strutturale
Terroristic bomb attack
Low Probability – High Consequences Event
19 May 1995 - Oklahoma City
25 June 1996 - Ali Khobar
22 July 2011 - Oslo
Main goals and benefits of the blast design
• Reduce loss of life.
• Economic benefits.
• Minor psychological impact on the community of a bomb attack (social benefits).
• In military sense, strategic benefits.
• Rational urban architecture.
1.8 ton TNT 9 ton TNT
1
2
3
4
5
51
51
51
Progettazione Strutturale Antincendio Robustezza strutturale
Protection strategies from terrorist bomb attack
FEMA 426:
Reference Manual to
mitigate potential terrorist
attacks against buildings.
UFC 4-023-03:
Design of buildings to
resist progressive collapse.
NISTIR 7396:
Best Practice for reducing
the potential for
progressive collapse in
buildings.
IITK-GSDMA:
Guidelines on measures to
mitigate effects of terrorist
attacks on buildings.
References:
Deception: misdirect the attacker about: i) critical portions of the building, ii)
importance of the building, iii) …
Intelligence: understanding, preventing, and pre-empting terrorist attacks.
Physical & Operational Protection: fence barriers, claddings, surveillance, …
Structural Hardening: preventing: collapse of the building, failure of structural
elements.
1
2
3
4
5
52
52
52
Progettazione Strutturale Antincendio Robustezza strutturale
DISASTER
Protection strategies from terrorist bomb attack
White hole: known weakness
Dark hole: unknown weakness
Dark zone: unknown zone
White zone: known zone
1
2
3
4
5
FEMA 426:
Reference Manual to
mitigate potential terrorist
attacks against buildings.
UFC 4-023-03:
Design of buildings to
resist progressive collapse.
NISTIR 7396:
Best Practice for reducing
the potential for
progressive collapse in
buildings.
IITK-GSDMA:
Guidelines on measures to
mitigate effects of terrorist
attacks on buildings.
References:
53
53
53
Progettazione Strutturale Antincendio Robustezza strutturale
DISASTER IS
PREVENTED
Protection strategies from terrorist bomb attack
White hole: known weakness
Dark hole: unknown weakness
Dark zone: unknown zone
White zone: known zone
1
2
3
4
5
FEMA 426:
Reference Manual to
mitigate potential terrorist
attacks against buildings.
UFC 4-023-03:
Design of buildings to
resist progressive collapse.
NISTIR 7396:
Best Practice for reducing
the potential for
progressive collapse in
buildings.
IITK-GSDMA:
Guidelines on measures to
mitigate effects of terrorist
attacks on buildings.
References:
54
54
54
Progettazione Strutturale Antincendio Robustezza strutturale
Procedure for obtaining Robustness
curves under blast damage scenarios.
Main topic:
FEMA 426
UFC 4-023-03
NISTIR 7396
IITK-GSDMA
References:
Protection strategies from terrorist bomb attack
DISASTER IS
PREVENTED
- Robustness
- Local resistance
1
2
3
4
5
55
55
55
Progettazione Strutturale Antincendio Robustezza strutturale
LOAD STRUCTURE RESPONSE
Truck bomb
1.8 ton TNT
A. P. M. Building
Before 19/05/95
A. P. M. Building
After 19/05/95
HAZARD COLLAPSE RESISTENCE
Truck bomb
1.8 ton TNT
1
2
3
4
5
EXPOSURE
VULNERABILITY
ROBUSTESS
Exposure: position of structural elements with respect to the explosion source.
Vulnerability: damaging of structural elements with respect to blast loads.
Robustness: ability of a structure to withstand actions without suffering damages disproportionate to the
triggering causes.
Progressive collapse: spread of an initial local failure from element to element resulting, eventually, in the
collapse of an entire structure or a disproportionate large part of it.
Key elements: hierarchically most important elements of the structure, concerning: blast action and structural
typology.
Principle of the procedure for obtaining robustness curves under blast damage scenarios
56
56
56
Progettazione Strutturale Antincendio Robustezza strutturale
P
u(t)
c1 c2 c3
u
0
50
100
0 1 2 3 4
Local Damage Level
Residual
strength
λ
%
(i;
j)
Robustness curves under
blast damage scenarios
LD level + 1 Location + 1
Location
LD + 1
LD : Local Damage
1
2
3
4
5
Procedure outline
Pushover analysis
? Dynamic analysis ?
Success Collapse
λ% =
λ damaged
λ undamaged
100
57
57
57
P
u(t)
c1 c2 c3
u
Robustness curves under
blast damage scenarios
LD level + 1 Location + 1
Location
LD + 1
LD : Local Damage
1
2
3
4
5
Procedure outline
0
50
100
0 1 2 3 4
Local Damage Level
Residual
strength
λ
%
(i;
j)
Success Collapse
Pushover analysis
? Dynamic analysis ?
λ% =
λ damaged
λ undamaged
100
58
P
u(t)
c1 c2 c3
u
Pushover analysis
Robustness curves under
blast damage scenarios
? Dynamic analysis ?
LD level + 1 Location + 1
Location
LD + 1
LD : Local Damage
1
2
3
4
5
Procedure outline
0
50
100
0 1 2 3 4
Local Damage Level
Residual
strength
λ
%
(i;
j)
Success Collapse
λ% =
λ damaged
λ undamaged
100
59
Increase damage level by
removing the critical element for
the D-scenario (i;j)
Does failure
spontaneously
occur to another
key element?
YES
D-scenario (i;j)
Structural
response
evaluation by
NDA
Progressive collapse is presumed
(no residual strength)
λ%
(i;j)
= 0
Residual strength (pushover)
analysis
λ%
(i;j)
>0
Key elements: columnsat the
ground floor.
Damage level (N): numberof key
elements instantly removed.
Location (L): position of the first
key element removed (≡ blast
location).
NL: number of locations.
D-scenario (i; j): location (i) and
damage level (j).
NDA: non linear dynamic
analysis implementing large
displacements and inelastic
materials.
λ%
(i;j)
: ratio between the damaged
and undamaged ultimate load
multiplier (pushover analysis).
i = NL ?
YES
Select NL
locations
L
=
i
+
1
N
=
j
+
1
(i,j) Robustness
curve under blast
damage
Setof Robustness
curves under
blastdamage
START
STOP
NO
NO
Arrested
damage
response
Propagated
damage
response
D-scenario (i; j=1)
1
2
3
4
5
Procedure outline
P. Olmati, F. Petrini, F. Bontempi, "Advanced
numerical analyses for the assessment of structural
response of buildings under explosions", Engineering
structures, Elsevier, submitted.
References:
60
60
60
Progettazione Strutturale Antincendio Robustezza strutturale
Presentation outline
Introduction: protection strategies from terrorist
bomb attack.
1
Principle of the procedure for obtaining robustness
curves under blast damage scenarios.
2
Outline of the procedure for obtaining robustness
curves under blast damage scenarios.
3
Application in a tall steel building.
4
Conclusions and remarks.
5
1
2
3
4
5
61
61
61
Progettazione Strutturale Antincendio Robustezza strutturale
Z
Y
X
70
m
15 m
15 m
15 m
5 m
y
x
Braced wall
15
m
1
2
3
4
5
Application
62
62
62
Progettazione Strutturale Antincendio Robustezza strutturale
Z
Y
X
70
m
15 m
15 m
15 m
5 m
DS(1;1)
DS(2;1)
DS(3;1)
DS(4;1)
DS(5;1)
DS(6;1) DS(7;1)
DS(8;1)
y
x
Key element instantly removed
DS(i;j)
Braced wall
Blast Damage Scenario:
(L= i location; N= j local damage level)
15
m
1
2
3
4
5
Application
63
63
63
Progettazione Strutturale Antincendio Robustezza strutturale
Blast Damage Scenario:
(L= i location; N= j local damage level)
DS(L;1)
DS(i;j)
1
1
15 m
15 m
15 m
5 m
y
x
Braced wall
15
m
DS(4;2)
DS(2;2)
DS(8;2) DS(3;2)
1
1
1
1
1
2
3
4
5
Application
Z
Y
X
70
m
64
64
64
Progettazione Strutturale Antincendio Robustezza strutturale
Damage Scenario (6, 1) – vertical displacement of the top removed column node
1
2
3
4
5
Application
Displacement
[m]
-1.8
-1.2
-0.6
0.0
24 25 26 27
Time [sec]
Displacement
under
collapse
15 m
15 m
15 m
5 m
DS(1;1)
DS(2;1)
DS(3;1)
DS(4;1)
DS(5;1)
DS(6;1) DS(7;1)
DS(8;1)
y
x
Key element instantly removed
DS(i;j)
Braced wall
Blast Damage Scenario:
(L= i location; N= j local damage level)
15
m
65
65
65
Progettazione Strutturale Antincendio Robustezza strutturale
1
2
3
4
5
15 m
15 m
15 m
5 m
DS(1;1)
DS(2;1)
DS(3;1)
DS(4;1)
DS(5;1)
DS(6;1) DS(7;1)
DS(8;1)
y
x
Key element instantly removed
DS(i;j)
Braced wall
Blast Damage Scenario:
(L= i location; N= j local damage level)
15
m
-3000
-2500
-2000
-1500
-1000
24 24,5 25 25,5 26
Axial
force
[kN]
Time [sec]
Application
Damage Scenario (6, 1) – axial force of the column near the removed
66
66
66
Progettazione Strutturale Antincendio Robustezza strutturale
1
2
3
4
5
Application
-20
-16
-12
-8
-4
0
20 22 24 26 28 30 32 34
-15
-12
-9
25 25.5
High frequency
oscillations
response
extinction
Residual
displacement
Max
displacement
Time [sec]
Displacement
[mm]
15 m
15 m
15 m
5 m
DS(1;1)
DS(2;1)
DS(3;1)
DS(4;1)
DS(5;1)
DS(6;1) DS(7;1)
DS(8;1)
y
x
Key element instantly removed
DS(i;j)
Braced wall
Blast Damage Scenario:
(L= i location; N= j local damage level)
15
m
Damage Scenario (5, 1) – vertical displacement of the top removed column node
67
67
67
Progettazione Strutturale Antincendio Robustezza strutturale
1
2
3
4
5
Application
15 m
15 m
15 m
5 m
DS(1;1)
DS(2;1)
DS(3;1)
DS(4;1)
DS(5;1)
DS(6;1) DS(7;1)
DS(8;1)
y
x
Key element instantly removed
DS(i;j)
Braced wall
Blast Damage Scenario:
(L= i location; N= j local damage level)
15
m
Damage Scenario (6, 1) – axial force of the column near the removed
-4000
-3000
-2000
-1000
20 22 24 26 28 30
Axial
force
[kN] Time [sec]
68
68
68
Progettazione Strutturale Antincendio Robustezza strutturale
0
25
50
75
100
0 1 2
Local Damage level
D-scenario (1;N) D-scenario (2;N) D-scenario (3;N)
D-scenario (4;N) D-scenario (5;N) D-scenario (6;N)
D-scenario (7;N) D-scenario (8;N)
Residual
strength
λ
%
(i;
j)
1
2
3
4
5
Application
Robustness curves under blast damage scenarios
15 m
15 m
15 m
5 m
DS(1;1)
DS(2;1)
DS(3;1)
DS(4;1)
DS(5;1)
DS(6;1) DS(7;1)
DS(8;1)
y
x
Key element instantly removed
DS(i;j)
Braced wall
Blast Damage Scenario:
(L= i location; N= j local damage level)
15
m
69
69
69
Progettazione Strutturale Antincendio Robustezza strutturale
ROBUSTEZZA NEI
CONFRONTI DELLO
INCENDIO
70 70
Progettazione Strutturale Antincendio Robustezza strutturale
Optimization of the tall buildings structural system
for reliability against progressive collapse
filippo.gentili1@gmail.com
Filippo Gentili
Post-doc Fellow, Ph.D.
francesco.petrini@uniroma1.it
Associate Professor, Ph.D.
Francesco Petrini
franco.bontempi@uniroma1.it
Full Professor, Ph.D.
Franco Bontempi
Introduction
Part
I
Conclusions
Part
II
Introduction
Robustness of high-rise
buildings in case of fire
72 72
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Introduction
time
Temperature PREVENTION PROTECTION
Passive
Measures
Ignition
Flashover
Active
Measures
ROBUSTNESS
Ineffectiveness
of measures
Robustness role in case of fire
Joelma Building,
Sao Paulo (1974)
Mandarin Oriental
Hotel, Beijing (2009)
Windsor Tower,
Madrid (2005)
73 73
Progettazione Strutturale Antincendio Robustezza strutturale
Continuity (robust behavior-redundancy) and FIRE DESIGN
74 74
Progettazione Strutturale Antincendio Robustezza strutturale
The redundancy concept often means IPERSTATIC BEHAVIOUR, but this is IN CONTRAST
with the general concept that IN FIRE STRUCTURAL ENGINEERING, a structural element is
subjected to additional stressess if it is more restrained
Psd1
Msd1
T2>T1
T=Tcrit-y>T2
Mp
Py
-Mp
Mp
-Mp
Psd2
Psd_crit(M variab)
T1=20°C
(vincola solo allungamento)
P
ΔPsd2
ΔPsd_crit
ΔPsd2
ΔPsd_crit
ecc
Psd1
Msd=Psd1*ecc
PE1
PE2
PE3
75 75
Progettazione Strutturale Antincendio Robustezza strutturale
In addition to this, the redundancy implies occurring of complex interactions between structural
elements, something that does nt allow the use of simplified methods
2° Scenario
3° Scenario
1° Scenario
NON-redundant structure HIGHLY-redundant structure
Simplified methods for fire-resistant
analysis may works
Simplified methods for fire-resistant
analysis DO NOT works
Continuity (robust behavior-redundancy) and FIRE DESIGN
Introduction
Part
I
Conclusions
Part
II Case study: 40 floors, 160 m heigth, 35 m x 35 m floor, office building
RENDERING STRUCTURAL SYSTEM FEM MODEL
Introduction
76 76
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Outrigger
Bracing
System
Frame B
Frame A
Frame B
Frame A
Case study: 40 floors, 160 m heigth, 35 m x 35 m floor, office building
Introduction
77 77
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
I
The role of the outrigger and
of the lateral bracing
78 78
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
I Progressive collapse assessment
Frame A Assumptions
- Collapse for displacement of 1 meter on the top
- Exposure to 180 minutes of ISO Curve
- 30 cases of fire changing initial fire location and number of
involved columns
Frame B
Col.
54
Col.
49
Col.
40
Col.
32
Col
24
Col.
15
Col.
9
Col.
1
28
Z[m]
24
20
16
Beam
91
Beam
83
Beam
63
Beam
49
Beam
33
Beam
19
Beam
9
Col.
23
Col.
24
Col.
25
Col.
26
Col
27
Col.
28
Col.
29
Col.
30
28
Z[m]
24
20
16
Beam
42
Beam
43
Beam
44
Beam
45
Beam
46
Beam
47
Beam
48
FIRE LOCATION 6th floor
t
T
Nominal
ISO 8344
0
200
400
600
800
1000
0 10 20 30 40 50 60
ISO 834
θ ipe 270
θ ipe 300
θ hem 260
θ hea 240
θ hem280
79 79
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
I Progressive collapse assessment
Frame A Assumptions
- Collapse for displacement of 1 meter on the top
- Exposure to 180 minutes of ISO Curve
- 30 cases of fire changing initial fire location and number of
involved columns
Frame B
Col.
54
Col.
49
Col.
40
Col.
32
Col
24
Col.
15
Col.
9
Col.
1
28
Z[m]
24
20
16
Beam
91
Beam
83
Beam
63
Beam
49
Beam
33
Beam
19
Beam
9
80 80
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II Steel Behaviour at high temperatures
Introduction
81 81
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
•Compartment Geometry
•Fuel Properties
•Fire Characterization
•Geometric Elements
•Thermal Properties
•Heat Transfer Coefficient
•Structural Elements
•Mechanical Properties
•Load Applied
Structural Fire Analysis (I)
Introduction
82 82
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Introduction Structural Fire Analysis
t
T
Nominal
ISO 8344
0
200
400
600
800
1000
0 10 20 30 40 50 60
ISO 834
θ ipe 270
θ ipe 300
θ hem 260
θ hea 240
θ hem280
83 83
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
I Frame A - Worst case scenarios
1 Heated
Column
2 Heated
Columns
3 Heated
Columns
4 Heated
Columns
5 Heated
Columns
26 min - 640°C 28 min - 680°C 29 min - 690°C 30 min - 696°C 31 min - 705°C
84 84
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
I Progressive Collapse
1 Heated
Column
2 Heated
Columns
3 Heated
Columns
4 Heated
Columns
5 Heated
Columns
After 180 min After 180 min After 144 min After 88 min After 68 min
85 85
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
I Outrigger role
VMises Deformation
Without Fire
1 Heated
Column
2 Heated
Columns
3 Heated
Columns
4 Heated
Columns
5 Heated
Columns
195
235 156 117 78 39 0 plastic elastic
86 86
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II Progressive Collapse
Frame B
Frame A
Part
I
SWAY COLLAPSE NO-SWAY COLLAPSE
87 87
Progettazione Strutturale Antincendio Robustezza strutturale
Frame A
Frame B
Introduction
Part
I
Conclusions
Part
II
Multi-hazard considerations
88 88
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
II Lateral Force: Dir. +Z
SCENARIO
Without Wind Wind Γ=0.5 Wind Γ=1.0 Wind Γ=1.5
89 89
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
II Lateral Force: Dir. -Z
SCENARIO
Without Wind Wind Γ=0.5 Wind Γ=1.0 Wind Γ=1.5
90 90
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
II Lateral Force: Dir. +Z
DEFORMED SHAPE
Without Wind Wind Γ=0.5 Wind Γ=1.0 Wind Γ=1.5
After 180 min After 140 min After 152 min After 82 min
88 min
Vertical
69 min
Outwards
16 min
Outwards
<10 min
Outwards
91 91
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Structural system optimization
92 92
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
II Configurations: position of the outrigger
CONFIGURATIONS
G A B C
STEEL MASS [TON]
877 857 877 877
93 93
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Part
II Configurations: vertical brace system
CONFIGURATIONS
G D E F
STEEL MASS [TON]
877 817 994 939
94 94
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
Multi-hazard analyses – 3 heated columns
Part
II
95 95
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
Initial
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
Part
II Multi-hazard analyses – 3 heated columns
96 96
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
Part
II
Initial
Multi-hazard analyses – 3 heated columns
97 97
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
Part
II
Initial
D
A
C
B
G
F
E
0
30
60
90
120
150
180
γ=0.0
+Z γ=0.5
-Z γ=0.5
+Z γ=1.0
-Z γ=1.0
+Z γ=1.5
-Z γ=1.5
Fire Resistance
[min]
Scenario [-]
D
A
C
B
G
F
E
Multi-hazard analyses – 3 heated columns
98 98
Progettazione Strutturale Antincendio Robustezza strutturale
Introduction
Part
I
Conclusions
Part
II
Conclusions Conclusions
• For high-rise buildings, structural robustness in case of fire can be last
barriere in order to avoid severe collapses;
• Outrigger systems improved the global behavior of the strutture,
determining a delayed collapse;
• Although the Italian code allows to not consider the simultaneous
presence of fire and wind, the resistance to fire is strongly influenced
by wind;
• Structural System influence: position of vertical and horizontal bracing
system.
99 99
Progettazione Strutturale Antincendio Robustezza strutturale
DALLA ROBUSTEZZA
ALLA RESILIENZA
(disaster) resilience
Definition (not univocal):
A resilient community is defined as the one having the ability to absorb disaster
impacts and rapidly return to normal socioeconomic activity.
MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at
http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf
NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical
report.Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf
MCEER framework for resilience evaluation:
Initial losses Recovery time, depending on:
• Resourcefulness
• Rapidity
Disaster strikes
Systemic
Robustness
101 101
Progettazione Strutturale Antincendio Robustezza strutturale
(disaster) resilience
Definition (not univocal):
A resilient community is defined as the one having the ability to absorb disaster
impacts and rapidly return to normal socioeconomic activity.
MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at
http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf
NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical
report.Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf
MCEER framework for resilience evaluation:
Resilience is inversely proportional to the area A.
(dQ/dt)
L0
TR
(dQ/dt)0
A
102 102
Progettazione Strutturale Antincendio Robustezza strutturale
Combined effect of discrete events and continuous deterioration
- Aftermath of
the event
-
i. historical - political - decisions (e.g. local governance) influence the initial system quality
Q0. This parameter is related to the initial system state.
103 103
Progettazione Strutturale Antincendio Robustezza strutturale
- Aftermath of
the event
-
ii. urban and social service planning is relevant for the pre-event system integrity and it is one
of the factors determining the trend of system quality before the event (dQ/dt) and the
amount of immediate losses (ΔQ). The first parameter is by a statistical correlation
between the political decision and the quality trend, while the second parameter can be
modeled by the system fragility.
Combined effect of discrete events and continuous deterioration
104 104
Progettazione Strutturale Antincendio Robustezza strutturale
- Aftermath of
the event
-
iii. fast decisions are taken during the event or a disaster (on the basis of knowledge and
experience from similar past events - if any - and the system properness knowledge); the
decisions in this phase influence the initial slope of the recovery phase (dQR/dt), a
parameter that can be modeled by a statistical correlation between the political decision
and the quality trend.
Combined effect of discrete events and continuous deterioration
105 105
Progettazione Strutturale Antincendio Robustezza strutturale
- Aftermath of
the event
-
iv. emergency plans and prioritization of recovery actions are relevant in the aftermath of the
event (recovery phase). In addition, the declaration of a state of emergency can have a
substantial short and long-term effect on the local economy. The actions in this phase
influence the shape of the recovery function fR(t).
Combined effect of discrete events and continuous deterioration
106 106
Progettazione Strutturale Antincendio Robustezza strutturale
- Aftermath of
the event
-
v. urban and social service re-planning on the basis of the consequences of the occurred event
are relevant in the long run (influencing the losses and the recovery for the next discrete
event).
Combined effect of discrete events and continuous deterioration
107 107
Progettazione Strutturale Antincendio Robustezza strutturale
Combined effect of discrete events and continuous deterioration
108 108
Progettazione Strutturale Antincendio Robustezza strutturale
Progettazione Strutturale Antincendio Robustezza strutturale (39

Weitere ähnliche Inhalte

Ähnlich wie Progettazione Strutturale Antincendio Robustezza strutturale (39

IRJET- Study of Literature on Seismic Response of RC Irregular Structure
IRJET-  	  Study of Literature on Seismic Response of RC Irregular StructureIRJET-  	  Study of Literature on Seismic Response of RC Irregular Structure
IRJET- Study of Literature on Seismic Response of RC Irregular StructureIRJET Journal
 
REVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDING
REVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDINGREVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDING
REVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDINGIRJET Journal
 
Descriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid jointDescriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid jointYousuf Dinar
 
Lecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiLecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiUrsachi Răzvan
 
IRJET- A Review on Progressive Collapse of Composites Structures
IRJET- A Review on Progressive Collapse of Composites StructuresIRJET- A Review on Progressive Collapse of Composites Structures
IRJET- A Review on Progressive Collapse of Composites StructuresIRJET Journal
 
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...IRJET Journal
 
Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...
Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...
Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...IRJET Journal
 
IRJET - Study on Lateral Structural System on Different Height on Asymmet...
IRJET -  	  Study on Lateral Structural System on Different Height on Asymmet...IRJET -  	  Study on Lateral Structural System on Different Height on Asymmet...
IRJET - Study on Lateral Structural System on Different Height on Asymmet...IRJET Journal
 
Seismic analysis of reinforced concrete frame with steel bracings
Seismic analysis of reinforced concrete frame with steel bracingsSeismic analysis of reinforced concrete frame with steel bracings
Seismic analysis of reinforced concrete frame with steel bracingsTin Bui Van
 
Back-analysis of the collapse of a metal truss structure
Back-analysis of the collapse of a metal truss structureBack-analysis of the collapse of a metal truss structure
Back-analysis of the collapse of a metal truss structureFranco Bontempi
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...IRJET Journal
 
Progressive Collapse Analysis of RC Buildings with consideration of Effect of...
Progressive Collapse Analysis of RC Buildings with consideration of Effect of...Progressive Collapse Analysis of RC Buildings with consideration of Effect of...
Progressive Collapse Analysis of RC Buildings with consideration of Effect of...ijsrd.com
 
Performance Levels of RC Structures by Non-Linear Pushover Analysis
Performance Levels of RC Structures by Non-Linear Pushover AnalysisPerformance Levels of RC Structures by Non-Linear Pushover Analysis
Performance Levels of RC Structures by Non-Linear Pushover AnalysisIJERA Editor
 
Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...
Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...
Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...P. Pravin Kumar Venkat Rao
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...
Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...
Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...IRJET Journal
 
IRJET- A Study on Seismic Performance of Reinforced Concrete Frame with L...
IRJET-  	  A Study on Seismic Performance of Reinforced Concrete Frame with L...IRJET-  	  A Study on Seismic Performance of Reinforced Concrete Frame with L...
IRJET- A Study on Seismic Performance of Reinforced Concrete Frame with L...IRJET Journal
 
Progressive collapse analysis of reinforced concrete framed structure
Progressive collapse analysis of reinforced concrete framed structureProgressive collapse analysis of reinforced concrete framed structure
Progressive collapse analysis of reinforced concrete framed structureeSAT Journals
 
Progressive collapse analysis of reinforced concrete
Progressive collapse analysis of reinforced concreteProgressive collapse analysis of reinforced concrete
Progressive collapse analysis of reinforced concreteeSAT Publishing House
 
Strengthening of R.C Framed Structure Using Energy Dissipating Devices
Strengthening of R.C Framed Structure Using Energy Dissipating DevicesStrengthening of R.C Framed Structure Using Energy Dissipating Devices
Strengthening of R.C Framed Structure Using Energy Dissipating Devicespaperpublications3
 

Ähnlich wie Progettazione Strutturale Antincendio Robustezza strutturale (39 (20)

IRJET- Study of Literature on Seismic Response of RC Irregular Structure
IRJET-  	  Study of Literature on Seismic Response of RC Irregular StructureIRJET-  	  Study of Literature on Seismic Response of RC Irregular Structure
IRJET- Study of Literature on Seismic Response of RC Irregular Structure
 
REVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDING
REVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDINGREVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDING
REVIEW STUDY ON IMPACT OF BLAST LOAD ON R.C.C. BUILDING
 
Descriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid jointDescriptive study of pushover analysis in rcc structures of rigid joint
Descriptive study of pushover analysis in rcc structures of rigid joint
 
Lecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiLecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 1 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
 
IRJET- A Review on Progressive Collapse of Composites Structures
IRJET- A Review on Progressive Collapse of Composites StructuresIRJET- A Review on Progressive Collapse of Composites Structures
IRJET- A Review on Progressive Collapse of Composites Structures
 
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
Seismic Evaluation of RC Building with Various Infill Thickness at Different ...
 
Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...
Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...
Comparative Study on Masonry Infill, Friction Dampers and Bare Frame Structur...
 
IRJET - Study on Lateral Structural System on Different Height on Asymmet...
IRJET -  	  Study on Lateral Structural System on Different Height on Asymmet...IRJET -  	  Study on Lateral Structural System on Different Height on Asymmet...
IRJET - Study on Lateral Structural System on Different Height on Asymmet...
 
Seismic analysis of reinforced concrete frame with steel bracings
Seismic analysis of reinforced concrete frame with steel bracingsSeismic analysis of reinforced concrete frame with steel bracings
Seismic analysis of reinforced concrete frame with steel bracings
 
Back-analysis of the collapse of a metal truss structure
Back-analysis of the collapse of a metal truss structureBack-analysis of the collapse of a metal truss structure
Back-analysis of the collapse of a metal truss structure
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
Progressive Collapse Analysis of RC Buildings with consideration of Effect of...
Progressive Collapse Analysis of RC Buildings with consideration of Effect of...Progressive Collapse Analysis of RC Buildings with consideration of Effect of...
Progressive Collapse Analysis of RC Buildings with consideration of Effect of...
 
Performance Levels of RC Structures by Non-Linear Pushover Analysis
Performance Levels of RC Structures by Non-Linear Pushover AnalysisPerformance Levels of RC Structures by Non-Linear Pushover Analysis
Performance Levels of RC Structures by Non-Linear Pushover Analysis
 
Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...
Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...
Effect of Seismic Zone and Story Height on Response Reduction Factor for SMRF...
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...
Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...
Progressive Collapse Analysis of Low Rise Steel Frame Structure With and With...
 
IRJET- A Study on Seismic Performance of Reinforced Concrete Frame with L...
IRJET-  	  A Study on Seismic Performance of Reinforced Concrete Frame with L...IRJET-  	  A Study on Seismic Performance of Reinforced Concrete Frame with L...
IRJET- A Study on Seismic Performance of Reinforced Concrete Frame with L...
 
Progressive collapse analysis of reinforced concrete framed structure
Progressive collapse analysis of reinforced concrete framed structureProgressive collapse analysis of reinforced concrete framed structure
Progressive collapse analysis of reinforced concrete framed structure
 
Progressive collapse analysis of reinforced concrete
Progressive collapse analysis of reinforced concreteProgressive collapse analysis of reinforced concrete
Progressive collapse analysis of reinforced concrete
 
Strengthening of R.C Framed Structure Using Energy Dissipating Devices
Strengthening of R.C Framed Structure Using Energy Dissipating DevicesStrengthening of R.C Framed Structure Using Energy Dissipating Devices
Strengthening of R.C Framed Structure Using Energy Dissipating Devices
 

Mehr von Franco Bontempi

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdfFranco Bontempi
 
PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfFranco Bontempi
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfFranco Bontempi
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneFranco Bontempi
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.Franco Bontempi
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSFranco Bontempi
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiFranco Bontempi
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfFranco Bontempi
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfFranco Bontempi
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfFranco Bontempi
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'Franco Bontempi
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioFranco Bontempi
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFranco Bontempi
 
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneGestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneFranco Bontempi
 
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfPGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfFranco Bontempi
 
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfPGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfFranco Bontempi
 
Calcoli per grandi ponti ad arco.
Calcoli per grandi ponti ad arco.Calcoli per grandi ponti ad arco.
Calcoli per grandi ponti ad arco.Franco Bontempi
 

Mehr von Franco Bontempi (20)

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf
 
PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdf
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdf
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzione
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi ponti
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdf
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdf
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdf
 
PSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdfPSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdf
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdf
 
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneGestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
 
Esplosioni.
Esplosioni.Esplosioni.
Esplosioni.
 
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfPGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
 
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfPGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
 
INCENDIO
INCENDIOINCENDIO
INCENDIO
 
Calcoli per grandi ponti ad arco.
Calcoli per grandi ponti ad arco.Calcoli per grandi ponti ad arco.
Calcoli per grandi ponti ad arco.
 

Kürzlich hochgeladen

NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...Amil Baba Dawood bangali
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptNarmatha D
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadaditya806802
 

Kürzlich hochgeladen (20)

NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 
Industrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.pptIndustrial Safety Unit-IV workplace health and safety.ppt
Industrial Safety Unit-IV workplace health and safety.ppt
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasad
 

Progettazione Strutturale Antincendio Robustezza strutturale (39

  • 1. Progettazione Strutturale Antincendio La Robustezza Strutturale in caso di eventi LP-HC e nello specifico caso di incendio Prof. Ing. F. Bontempi Ing. Mattia Francioli, Ph.D. 1 PROGETTAZIONE STRUTTURALE ANTINCENDIO A.A. 2022/2023
  • 3. Requisiti strutturali • Condizioni di esercizio: • Rigidezza • Condizioni ultime: • Resistenza • Stabilita’ • Duttilita’ • Durabilita’ • Condizioni estreme: • Robustezza • Resilienza • Configurazione nominale della struttura • Configurazione danneggiata della struttura 33 3 Progettazione Strutturale Antincendio Robustezza strutturale
  • 4. Levels of Structural Crisis Usual ULS & SLS Verification Format Structural Robustness Assessment 1st level: Material Point 2nd level: Element Section 3rd level: Structural Element 4th level: Structural System 4
  • 5. Robustezza / Durabilità 55 5 Progettazione Strutturale Antincendio Robustezza strutturale
  • 6. Aloha Boeing 737, April 1988 6 6 Progettazione Strutturale Antincendio Robustezza strutturale
  • 24. • Capacity of a construction to exhibit regular decrease of its structural quality as a consequence of negative causes. • It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). Structural Robustness 24 24 Progettazione Strutturale Antincendio Robustezza strutturale
  • 25. QUALITY DAMAGE or ERROR REQUIRED PERFORMANCE NOMINAL PERFORMANCE NOMINAL SITUATION Structural Robustness 25 25 Progettazione Strutturale Antincendio Robustezza strutturale
  • 26. Qualitative definitions of structural robustness [EN 1991-1-7: 2006 ]: ability of a structure to withstand actions due to fires, explosions, impacts or consequences of human errors, without suffering damages disproportionate to the triggering causes [SEI 2007, Beton Kalender 2008]: insensitivity of the structure to local failure structure B d P s STRUCTURE B: P s ROBUSTNESS CURVES P (performance) structure A STRUCTURE A damaged integer DP damaged more performant, less resistant integer (damage level) DP DP more performant, less robust less performant, more robust Structural Robustness A B 26 26 Progettazione Strutturale Antincendio Robustezza strutturale
  • 27. STRUCTURE & LOADS Collapse Mechanism NO SWAY “IMPLOSION” OF THE STRUCTURE “EXPLOSION” OF THE STRUCTURE is a process in which objects are destroyed by collapsing on themselves is a process NOT CONFINED SWAY Bad VS Good collapse 27 27 Progettazione Strutturale Antincendio Robustezza strutturale
  • 28. Bowing effect ed Effetto catenaria 28 28 Progettazione Strutturale Antincendio Robustezza strutturale
  • 29. Initial load-bearing element failure that triggers the rigid fall of a part of the structure onto another and leads to a sequential impacts on the rest of the structure, that collapses on itself. Characteristic feature is the force redistribution into alternative paths, impulsive loading due to sudden element failure and force concentration in elements to fail next. Zipper Domino Section Instability Mixed Pancake Initial cross-section cut and stress concentration that cause the rupture of further cross-sectional parts (fast fracture) and failure progression throughout the entire section. Initial element rigid overturning and falling over another element, that, by means of transformation of potential into kinetic energy, trigger the overturning of the following element. The destabilization of some load-carrying elements in compression due to an initial failure of stabilizing elements can trigger a failure progression throughout the structure. Some collapses are less amenable to generalization because the relative importance of the contributing basic categories of collapse can vary and combine in progression of failures. - DOMINO + PANCAKE (e.g. A.P.Murrah Building, Building during Izmit Earquake) - ZIPPER + INSTABILITY (e.g. cable-stayed bridges) Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica) Collapse types 29 29 Progettazione Strutturale Antincendio Robustezza strutturale
  • 30. Initial load-bearing element failure that triggers the rigid fall of a part of the structure onto another and leads to a sequential impacts on the rest of the structure, that collapses on itself. Characteristic feature is the force redistribution into alternative paths, impulsive loading due to sudden element failure and force concentration in elements to fail next. Zipper Domino Section Instability Mixed Pancake Initial cross-section cut and stress concentration that cause the rupture of further cross-sectional parts (fast fracture) and failure progression throughout the entire section. Initial element rigid overturning and falling over another element, that, by means of transformation of potential into kinetic energy, trigger the overturning of the following element. The destabilization of some load-carrying elements in compression due to an initial failure of stabilizing elements can trigger a failure progression throughout the structure. Some collapses are less amenable to generalization because the relative importance of the contributing basic categories of collapse can vary and combine in progression of failures. - DOMINO + PANCAKE (e.g. A.P.Murrah Building, Building during Izmit Earquake) - ZIPPER + INSTABILITY (e.g. cable-stayed bridges) Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica) Collapse types Islamabad Earthquake 2005 Münsterland, 2005 Viaduct after earthquake Izmit Earthquake 1999 Tanker S.S. Schenectady, 1941 30 Progettazione Strutturale Antincendio Robustezza strutturale francesco.petrini@uniroma1.it 30 30 Progettazione Strutturale Antincendio Robustezza strutturale
  • 31. References: (EN 1991-1-7 2006): "Eurocode 1 – Actions on structures, Part 1-7: General actions – accidental actions." Comité European de Normalization (CEN). (Bontempi F, Giuliani L, Gkoumas K, 2007): "Handling the exceptions: robustness assessment of a complex structural system.“, Invited Lecture, Structural Engineering, Mechanics and Computation (SEMC) 3, 1747-1752. (Starossek U, 2009): “Progressive collapse of structures.” London: Thomas Telford Publishing, 2009. Definitions: 1- "The ability of a structure to withstand events like fire, explosions, impact or the consequences of human error without being damaged to an extent disproportionate to the original cause." (EN 1991-1-7 2006) 2- "The robustness of a structure, intended as its ability not to suffer disproportionate damages as a result of limited initial failure, is an intrinsic requirement, inherent to the structural system organization." (Bontempi F, Giuliani L, Gkoumas K, 2007) 3- “Robustness is defined as insensitivity to local failure." (Starossek U, 2009) Structural Robustness 31 31 Progettazione Strutturale Antincendio Robustezza strutturale
  • 32. References: (ASCE 7-05 2005): "Minimum design loads for buildings and other structures." American Society of Civil Engineers (ASCE). (GSA 2003): "Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects." General Services Administration (GSA). (UFC 4-010-01 2003): "DoD minimum antiterrorism standards for buildings." Department of Defense (DoD). Progressive Collapse Definitions: 1-"Progressive collapse is defined as the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionate large part of it." (ASCE 7-05 2005) 2- "A progressive collapse is a situation where local failure of a primary structural component leads to the collapse of adjoining members which, in turn, leads to additional collapse. Hence, the total collapse is disproportionate to the original cause." (GSA 2003) 3-"Progressive collapse: a chain reaction failure of building members to an extent disproportionate to the original localized damage." (UFC 4-010-01 2003) 32 32 Progettazione Strutturale Antincendio Robustezza strutturale
  • 33. References: Arup (2011), Review of international research on structural robustness and disproportionate collapse, London, Department for Communities and Local Government. Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac., 24(6), 519-528. Observations: − A progressive collapse is one which develops in a progressive manner akin to the collapse of a row of dominos. − A disproportionate collapse is one which is judged (by some measure defined by the observer) to be disproportionate to the initial cause. This is merely a judgement made on observations of the consequences of the damage which results from the initiating events. − A collapse may be progressive in nature but not necessarily disproportionate in its extents, for example if arrested after it progresses through a number of structural bays. Vice versa, a collapse may be disproportionate but not necessarily progressive if, for example, the collapse is limited in its extents to a single structural bay but the structural bays are large. − The terms of disproportionate collapse and progressive collapse are often used interchangeably because disproportionate collapse often occurs in a progressive manner and progressive collapse can be disproportionate. Progressive Collapse VS Disproportionate Collapse 33 33 Progettazione Strutturale Antincendio Robustezza strutturale
  • 35. The Boeing B-17 Flying Fortress collided with another aircraft during World War II and, although sustaining large amount of structural damage, landed safely, due to the high redundancy of the fuselage connections. Design Strategy #1: Continuity (robust behavior-redundancy) 35 35 Progettazione Strutturale Antincendio Robustezza strutturale
  • 36. On July 1945 a B-25 bomber crashed into the Empire State Building, The impact of the plane created a 5.5x6 m hole in the side of the tower. This crash caused extensive damage to the masonry exterior and the interior steel structure of the building. The 278 m building was rocked by the impact but resist the impact in consequence of the intrinsic redundancy of its framed system. Plane crash on the Empire State Building, 1945 Design Strategy #1: Continuity (robust behavior-redundancy) 36 36 Progettazione Strutturale Antincendio Robustezza strutturale
  • 37. Design Strategy #2: Segmentation (Compartmentalization) A service-induced damage led to explosive decompression and loss of large portion of fuselage skin when small fatigue crack suddenly linked together. The subsequent fracture was eventually arrested by fuselage frame structure and the craft landed safely. Aloha Boeing 737, April 1988 (compartmentalization by strengthening) 37 37 Progettazione Strutturale Antincendio Robustezza strutturale
  • 38. Design Strategy #2: Segmentation (Compartmentalization) The partial collapse, started in the roof and due design and execution errors, stopped at the two joints which separated the collapsing section from the adjacent structures. A higher continuity could have unlikely sustained the forces during collapse, since the construction deficiencies affected also adjacent sections. Charles De Gaulle Airport (compartmentalization by isolation) 38 38 Progettazione Strutturale Antincendio Robustezza strutturale
  • 39. 39 39 Progettazione Strutturale Antincendio Robustezza strutturale Design Strategy #2: Segmentation (Compartmentalization)
  • 40. 40 40 Progettazione Strutturale Antincendio Robustezza strutturale Design Strategy #2: Segmentation (Compartmentalization)
  • 41. Stiffener, bulkhead & deck layout 41 41 41 Progettazione Strutturale Antincendio Robustezza strutturale
  • 42. Hull sections with and without the outer hull 42 42 42 Progettazione Strutturale Antincendio Robustezza strutturale
  • 43. USS San Francisco after collision with an underwater mountain 43 43 43 Progettazione Strutturale Antincendio Robustezza strutturale
  • 44. 44 44 Progettazione Strutturale Antincendio Robustezza strutturale Design Strategy #2: Segmentation (Compartmentalization)
  • 45. 45 45 Progettazione Strutturale Antincendio Robustezza strutturale Design Strategy #2: Segmentation (Compartmentalization)
  • 46.
  • 48. The currently available design strategies and methods to prevent disproportionate collapse are as follows: − Prevent local failure of key elements (direct design) − Specific local resistance − Non-structural protective measures − Presume local failure (direct design) − Alternative load paths − Isolation by segmentation − Prescriptive design rules (indirect design) Reference: Starossek, U. 2008. Collapse resistance and robustness of bridges. IABMAS’08: 4th International Conference on Bridge Maintenance, Safety, and Management Seoul, Korea, July 13-17, 2008 Measures against disproportionate collapse 48 48 Progettazione Strutturale Antincendio Robustezza strutturale
  • 49. ROBUSTEZZA NEI CONFRONTI DELLE ESPLOSIONI 49 49 Progettazione Strutturale Antincendio Robustezza strutturale
  • 50. EFFECTS OF EXPLOSIONS ON STEEL BUILDINGS Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Italy Pierluigi Olmati* Ph.D. student pierluigi.olmati@uniroma1.it Francesco Petrini Associate Professor, Ph.D francesco.petrini@uniroma1.it Franco Bontempi Full Professor, Ph.D. franco.bontempi@uniroma1.it ESPLOSIONI E ROBUSTEZZA STRUTTURALE - 11 October 2011 chairman: Walter Salvatore 50 50 Progettazione Strutturale Antincendio Robustezza strutturale
  • 51. Terroristic bomb attack Low Probability – High Consequences Event 19 May 1995 - Oklahoma City 25 June 1996 - Ali Khobar 22 July 2011 - Oslo Main goals and benefits of the blast design • Reduce loss of life. • Economic benefits. • Minor psychological impact on the community of a bomb attack (social benefits). • In military sense, strategic benefits. • Rational urban architecture. 1.8 ton TNT 9 ton TNT 1 2 3 4 5 51 51 51 Progettazione Strutturale Antincendio Robustezza strutturale
  • 52. Protection strategies from terrorist bomb attack FEMA 426: Reference Manual to mitigate potential terrorist attacks against buildings. UFC 4-023-03: Design of buildings to resist progressive collapse. NISTIR 7396: Best Practice for reducing the potential for progressive collapse in buildings. IITK-GSDMA: Guidelines on measures to mitigate effects of terrorist attacks on buildings. References: Deception: misdirect the attacker about: i) critical portions of the building, ii) importance of the building, iii) … Intelligence: understanding, preventing, and pre-empting terrorist attacks. Physical & Operational Protection: fence barriers, claddings, surveillance, … Structural Hardening: preventing: collapse of the building, failure of structural elements. 1 2 3 4 5 52 52 52 Progettazione Strutturale Antincendio Robustezza strutturale
  • 53. DISASTER Protection strategies from terrorist bomb attack White hole: known weakness Dark hole: unknown weakness Dark zone: unknown zone White zone: known zone 1 2 3 4 5 FEMA 426: Reference Manual to mitigate potential terrorist attacks against buildings. UFC 4-023-03: Design of buildings to resist progressive collapse. NISTIR 7396: Best Practice for reducing the potential for progressive collapse in buildings. IITK-GSDMA: Guidelines on measures to mitigate effects of terrorist attacks on buildings. References: 53 53 53 Progettazione Strutturale Antincendio Robustezza strutturale
  • 54. DISASTER IS PREVENTED Protection strategies from terrorist bomb attack White hole: known weakness Dark hole: unknown weakness Dark zone: unknown zone White zone: known zone 1 2 3 4 5 FEMA 426: Reference Manual to mitigate potential terrorist attacks against buildings. UFC 4-023-03: Design of buildings to resist progressive collapse. NISTIR 7396: Best Practice for reducing the potential for progressive collapse in buildings. IITK-GSDMA: Guidelines on measures to mitigate effects of terrorist attacks on buildings. References: 54 54 54 Progettazione Strutturale Antincendio Robustezza strutturale
  • 55. Procedure for obtaining Robustness curves under blast damage scenarios. Main topic: FEMA 426 UFC 4-023-03 NISTIR 7396 IITK-GSDMA References: Protection strategies from terrorist bomb attack DISASTER IS PREVENTED - Robustness - Local resistance 1 2 3 4 5 55 55 55 Progettazione Strutturale Antincendio Robustezza strutturale
  • 56. LOAD STRUCTURE RESPONSE Truck bomb 1.8 ton TNT A. P. M. Building Before 19/05/95 A. P. M. Building After 19/05/95 HAZARD COLLAPSE RESISTENCE Truck bomb 1.8 ton TNT 1 2 3 4 5 EXPOSURE VULNERABILITY ROBUSTESS Exposure: position of structural elements with respect to the explosion source. Vulnerability: damaging of structural elements with respect to blast loads. Robustness: ability of a structure to withstand actions without suffering damages disproportionate to the triggering causes. Progressive collapse: spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionate large part of it. Key elements: hierarchically most important elements of the structure, concerning: blast action and structural typology. Principle of the procedure for obtaining robustness curves under blast damage scenarios 56 56 56 Progettazione Strutturale Antincendio Robustezza strutturale
  • 57. P u(t) c1 c2 c3 u 0 50 100 0 1 2 3 4 Local Damage Level Residual strength λ % (i; j) Robustness curves under blast damage scenarios LD level + 1 Location + 1 Location LD + 1 LD : Local Damage 1 2 3 4 5 Procedure outline Pushover analysis ? Dynamic analysis ? Success Collapse λ% = λ damaged λ undamaged 100 57 57 57
  • 58. P u(t) c1 c2 c3 u Robustness curves under blast damage scenarios LD level + 1 Location + 1 Location LD + 1 LD : Local Damage 1 2 3 4 5 Procedure outline 0 50 100 0 1 2 3 4 Local Damage Level Residual strength λ % (i; j) Success Collapse Pushover analysis ? Dynamic analysis ? λ% = λ damaged λ undamaged 100 58
  • 59. P u(t) c1 c2 c3 u Pushover analysis Robustness curves under blast damage scenarios ? Dynamic analysis ? LD level + 1 Location + 1 Location LD + 1 LD : Local Damage 1 2 3 4 5 Procedure outline 0 50 100 0 1 2 3 4 Local Damage Level Residual strength λ % (i; j) Success Collapse λ% = λ damaged λ undamaged 100 59
  • 60. Increase damage level by removing the critical element for the D-scenario (i;j) Does failure spontaneously occur to another key element? YES D-scenario (i;j) Structural response evaluation by NDA Progressive collapse is presumed (no residual strength) λ% (i;j) = 0 Residual strength (pushover) analysis λ% (i;j) >0 Key elements: columnsat the ground floor. Damage level (N): numberof key elements instantly removed. Location (L): position of the first key element removed (≡ blast location). NL: number of locations. D-scenario (i; j): location (i) and damage level (j). NDA: non linear dynamic analysis implementing large displacements and inelastic materials. λ% (i;j) : ratio between the damaged and undamaged ultimate load multiplier (pushover analysis). i = NL ? YES Select NL locations L = i + 1 N = j + 1 (i,j) Robustness curve under blast damage Setof Robustness curves under blastdamage START STOP NO NO Arrested damage response Propagated damage response D-scenario (i; j=1) 1 2 3 4 5 Procedure outline P. Olmati, F. Petrini, F. Bontempi, "Advanced numerical analyses for the assessment of structural response of buildings under explosions", Engineering structures, Elsevier, submitted. References: 60 60 60 Progettazione Strutturale Antincendio Robustezza strutturale
  • 61. Presentation outline Introduction: protection strategies from terrorist bomb attack. 1 Principle of the procedure for obtaining robustness curves under blast damage scenarios. 2 Outline of the procedure for obtaining robustness curves under blast damage scenarios. 3 Application in a tall steel building. 4 Conclusions and remarks. 5 1 2 3 4 5 61 61 61 Progettazione Strutturale Antincendio Robustezza strutturale
  • 62. Z Y X 70 m 15 m 15 m 15 m 5 m y x Braced wall 15 m 1 2 3 4 5 Application 62 62 62 Progettazione Strutturale Antincendio Robustezza strutturale
  • 63. Z Y X 70 m 15 m 15 m 15 m 5 m DS(1;1) DS(2;1) DS(3;1) DS(4;1) DS(5;1) DS(6;1) DS(7;1) DS(8;1) y x Key element instantly removed DS(i;j) Braced wall Blast Damage Scenario: (L= i location; N= j local damage level) 15 m 1 2 3 4 5 Application 63 63 63 Progettazione Strutturale Antincendio Robustezza strutturale
  • 64. Blast Damage Scenario: (L= i location; N= j local damage level) DS(L;1) DS(i;j) 1 1 15 m 15 m 15 m 5 m y x Braced wall 15 m DS(4;2) DS(2;2) DS(8;2) DS(3;2) 1 1 1 1 1 2 3 4 5 Application Z Y X 70 m 64 64 64 Progettazione Strutturale Antincendio Robustezza strutturale
  • 65. Damage Scenario (6, 1) – vertical displacement of the top removed column node 1 2 3 4 5 Application Displacement [m] -1.8 -1.2 -0.6 0.0 24 25 26 27 Time [sec] Displacement under collapse 15 m 15 m 15 m 5 m DS(1;1) DS(2;1) DS(3;1) DS(4;1) DS(5;1) DS(6;1) DS(7;1) DS(8;1) y x Key element instantly removed DS(i;j) Braced wall Blast Damage Scenario: (L= i location; N= j local damage level) 15 m 65 65 65 Progettazione Strutturale Antincendio Robustezza strutturale
  • 66. 1 2 3 4 5 15 m 15 m 15 m 5 m DS(1;1) DS(2;1) DS(3;1) DS(4;1) DS(5;1) DS(6;1) DS(7;1) DS(8;1) y x Key element instantly removed DS(i;j) Braced wall Blast Damage Scenario: (L= i location; N= j local damage level) 15 m -3000 -2500 -2000 -1500 -1000 24 24,5 25 25,5 26 Axial force [kN] Time [sec] Application Damage Scenario (6, 1) – axial force of the column near the removed 66 66 66 Progettazione Strutturale Antincendio Robustezza strutturale
  • 67. 1 2 3 4 5 Application -20 -16 -12 -8 -4 0 20 22 24 26 28 30 32 34 -15 -12 -9 25 25.5 High frequency oscillations response extinction Residual displacement Max displacement Time [sec] Displacement [mm] 15 m 15 m 15 m 5 m DS(1;1) DS(2;1) DS(3;1) DS(4;1) DS(5;1) DS(6;1) DS(7;1) DS(8;1) y x Key element instantly removed DS(i;j) Braced wall Blast Damage Scenario: (L= i location; N= j local damage level) 15 m Damage Scenario (5, 1) – vertical displacement of the top removed column node 67 67 67 Progettazione Strutturale Antincendio Robustezza strutturale
  • 68. 1 2 3 4 5 Application 15 m 15 m 15 m 5 m DS(1;1) DS(2;1) DS(3;1) DS(4;1) DS(5;1) DS(6;1) DS(7;1) DS(8;1) y x Key element instantly removed DS(i;j) Braced wall Blast Damage Scenario: (L= i location; N= j local damage level) 15 m Damage Scenario (6, 1) – axial force of the column near the removed -4000 -3000 -2000 -1000 20 22 24 26 28 30 Axial force [kN] Time [sec] 68 68 68 Progettazione Strutturale Antincendio Robustezza strutturale
  • 69. 0 25 50 75 100 0 1 2 Local Damage level D-scenario (1;N) D-scenario (2;N) D-scenario (3;N) D-scenario (4;N) D-scenario (5;N) D-scenario (6;N) D-scenario (7;N) D-scenario (8;N) Residual strength λ % (i; j) 1 2 3 4 5 Application Robustness curves under blast damage scenarios 15 m 15 m 15 m 5 m DS(1;1) DS(2;1) DS(3;1) DS(4;1) DS(5;1) DS(6;1) DS(7;1) DS(8;1) y x Key element instantly removed DS(i;j) Braced wall Blast Damage Scenario: (L= i location; N= j local damage level) 15 m 69 69 69 Progettazione Strutturale Antincendio Robustezza strutturale
  • 70. ROBUSTEZZA NEI CONFRONTI DELLO INCENDIO 70 70 Progettazione Strutturale Antincendio Robustezza strutturale
  • 71. Optimization of the tall buildings structural system for reliability against progressive collapse filippo.gentili1@gmail.com Filippo Gentili Post-doc Fellow, Ph.D. francesco.petrini@uniroma1.it Associate Professor, Ph.D. Francesco Petrini franco.bontempi@uniroma1.it Full Professor, Ph.D. Franco Bontempi
  • 72. Introduction Part I Conclusions Part II Introduction Robustness of high-rise buildings in case of fire 72 72 Progettazione Strutturale Antincendio Robustezza strutturale
  • 73. Introduction Part I Conclusions Part II Introduction time Temperature PREVENTION PROTECTION Passive Measures Ignition Flashover Active Measures ROBUSTNESS Ineffectiveness of measures Robustness role in case of fire Joelma Building, Sao Paulo (1974) Mandarin Oriental Hotel, Beijing (2009) Windsor Tower, Madrid (2005) 73 73 Progettazione Strutturale Antincendio Robustezza strutturale
  • 74. Continuity (robust behavior-redundancy) and FIRE DESIGN 74 74 Progettazione Strutturale Antincendio Robustezza strutturale The redundancy concept often means IPERSTATIC BEHAVIOUR, but this is IN CONTRAST with the general concept that IN FIRE STRUCTURAL ENGINEERING, a structural element is subjected to additional stressess if it is more restrained Psd1 Msd1 T2>T1 T=Tcrit-y>T2 Mp Py -Mp Mp -Mp Psd2 Psd_crit(M variab) T1=20°C (vincola solo allungamento) P ΔPsd2 ΔPsd_crit ΔPsd2 ΔPsd_crit ecc Psd1 Msd=Psd1*ecc PE1 PE2 PE3
  • 75. 75 75 Progettazione Strutturale Antincendio Robustezza strutturale In addition to this, the redundancy implies occurring of complex interactions between structural elements, something that does nt allow the use of simplified methods 2° Scenario 3° Scenario 1° Scenario NON-redundant structure HIGHLY-redundant structure Simplified methods for fire-resistant analysis may works Simplified methods for fire-resistant analysis DO NOT works Continuity (robust behavior-redundancy) and FIRE DESIGN
  • 76. Introduction Part I Conclusions Part II Case study: 40 floors, 160 m heigth, 35 m x 35 m floor, office building RENDERING STRUCTURAL SYSTEM FEM MODEL Introduction 76 76 Progettazione Strutturale Antincendio Robustezza strutturale
  • 77. Introduction Part I Conclusions Part II Outrigger Bracing System Frame B Frame A Frame B Frame A Case study: 40 floors, 160 m heigth, 35 m x 35 m floor, office building Introduction 77 77 Progettazione Strutturale Antincendio Robustezza strutturale
  • 78. Introduction Part I Conclusions Part II Part I The role of the outrigger and of the lateral bracing 78 78 Progettazione Strutturale Antincendio Robustezza strutturale
  • 79. Introduction Part I Conclusions Part II Part I Progressive collapse assessment Frame A Assumptions - Collapse for displacement of 1 meter on the top - Exposure to 180 minutes of ISO Curve - 30 cases of fire changing initial fire location and number of involved columns Frame B Col. 54 Col. 49 Col. 40 Col. 32 Col 24 Col. 15 Col. 9 Col. 1 28 Z[m] 24 20 16 Beam 91 Beam 83 Beam 63 Beam 49 Beam 33 Beam 19 Beam 9 Col. 23 Col. 24 Col. 25 Col. 26 Col 27 Col. 28 Col. 29 Col. 30 28 Z[m] 24 20 16 Beam 42 Beam 43 Beam 44 Beam 45 Beam 46 Beam 47 Beam 48 FIRE LOCATION 6th floor t T Nominal ISO 8344 0 200 400 600 800 1000 0 10 20 30 40 50 60 ISO 834 θ ipe 270 θ ipe 300 θ hem 260 θ hea 240 θ hem280 79 79 Progettazione Strutturale Antincendio Robustezza strutturale
  • 80. Introduction Part I Conclusions Part II Part I Progressive collapse assessment Frame A Assumptions - Collapse for displacement of 1 meter on the top - Exposure to 180 minutes of ISO Curve - 30 cases of fire changing initial fire location and number of involved columns Frame B Col. 54 Col. 49 Col. 40 Col. 32 Col 24 Col. 15 Col. 9 Col. 1 28 Z[m] 24 20 16 Beam 91 Beam 83 Beam 63 Beam 49 Beam 33 Beam 19 Beam 9 80 80 Progettazione Strutturale Antincendio Robustezza strutturale
  • 81. Introduction Part I Conclusions Part II Steel Behaviour at high temperatures Introduction 81 81 Progettazione Strutturale Antincendio Robustezza strutturale
  • 82. Introduction Part I Conclusions Part II •Compartment Geometry •Fuel Properties •Fire Characterization •Geometric Elements •Thermal Properties •Heat Transfer Coefficient •Structural Elements •Mechanical Properties •Load Applied Structural Fire Analysis (I) Introduction 82 82 Progettazione Strutturale Antincendio Robustezza strutturale
  • 83. Introduction Part I Conclusions Part II Introduction Structural Fire Analysis t T Nominal ISO 8344 0 200 400 600 800 1000 0 10 20 30 40 50 60 ISO 834 θ ipe 270 θ ipe 300 θ hem 260 θ hea 240 θ hem280 83 83 Progettazione Strutturale Antincendio Robustezza strutturale
  • 84. Introduction Part I Conclusions Part II Part I Frame A - Worst case scenarios 1 Heated Column 2 Heated Columns 3 Heated Columns 4 Heated Columns 5 Heated Columns 26 min - 640°C 28 min - 680°C 29 min - 690°C 30 min - 696°C 31 min - 705°C 84 84 Progettazione Strutturale Antincendio Robustezza strutturale
  • 85. Introduction Part I Conclusions Part II Part I Progressive Collapse 1 Heated Column 2 Heated Columns 3 Heated Columns 4 Heated Columns 5 Heated Columns After 180 min After 180 min After 144 min After 88 min After 68 min 85 85 Progettazione Strutturale Antincendio Robustezza strutturale
  • 86. Introduction Part I Conclusions Part II Part I Outrigger role VMises Deformation Without Fire 1 Heated Column 2 Heated Columns 3 Heated Columns 4 Heated Columns 5 Heated Columns 195 235 156 117 78 39 0 plastic elastic 86 86 Progettazione Strutturale Antincendio Robustezza strutturale
  • 87. Introduction Part I Conclusions Part II Progressive Collapse Frame B Frame A Part I SWAY COLLAPSE NO-SWAY COLLAPSE 87 87 Progettazione Strutturale Antincendio Robustezza strutturale Frame A Frame B
  • 89. Introduction Part I Conclusions Part II Part II Lateral Force: Dir. +Z SCENARIO Without Wind Wind Γ=0.5 Wind Γ=1.0 Wind Γ=1.5 89 89 Progettazione Strutturale Antincendio Robustezza strutturale
  • 90. Introduction Part I Conclusions Part II Part II Lateral Force: Dir. -Z SCENARIO Without Wind Wind Γ=0.5 Wind Γ=1.0 Wind Γ=1.5 90 90 Progettazione Strutturale Antincendio Robustezza strutturale
  • 91. Introduction Part I Conclusions Part II Part II Lateral Force: Dir. +Z DEFORMED SHAPE Without Wind Wind Γ=0.5 Wind Γ=1.0 Wind Γ=1.5 After 180 min After 140 min After 152 min After 82 min 88 min Vertical 69 min Outwards 16 min Outwards <10 min Outwards 91 91 Progettazione Strutturale Antincendio Robustezza strutturale
  • 92. Introduction Part I Conclusions Part II Structural system optimization 92 92 Progettazione Strutturale Antincendio Robustezza strutturale
  • 93. Introduction Part I Conclusions Part II Part II Configurations: position of the outrigger CONFIGURATIONS G A B C STEEL MASS [TON] 877 857 877 877 93 93 Progettazione Strutturale Antincendio Robustezza strutturale
  • 94. Introduction Part I Conclusions Part II Part II Configurations: vertical brace system CONFIGURATIONS G D E F STEEL MASS [TON] 877 817 994 939 94 94 Progettazione Strutturale Antincendio Robustezza strutturale
  • 95. Introduction Part I Conclusions Part II D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E Multi-hazard analyses – 3 heated columns Part II 95 95 Progettazione Strutturale Antincendio Robustezza strutturale
  • 96. Introduction Part I Conclusions Part II D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E Initial D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E Part II Multi-hazard analyses – 3 heated columns 96 96 Progettazione Strutturale Antincendio Robustezza strutturale
  • 97. Introduction Part I Conclusions Part II D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E Part II Initial Multi-hazard analyses – 3 heated columns 97 97 Progettazione Strutturale Antincendio Robustezza strutturale
  • 98. Introduction Part I Conclusions Part II D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E Part II Initial D A C B G F E 0 30 60 90 120 150 180 γ=0.0 +Z γ=0.5 -Z γ=0.5 +Z γ=1.0 -Z γ=1.0 +Z γ=1.5 -Z γ=1.5 Fire Resistance [min] Scenario [-] D A C B G F E Multi-hazard analyses – 3 heated columns 98 98 Progettazione Strutturale Antincendio Robustezza strutturale
  • 99. Introduction Part I Conclusions Part II Conclusions Conclusions • For high-rise buildings, structural robustness in case of fire can be last barriere in order to avoid severe collapses; • Outrigger systems improved the global behavior of the strutture, determining a delayed collapse; • Although the Italian code allows to not consider the simultaneous presence of fire and wind, the resistance to fire is strongly influenced by wind; • Structural System influence: position of vertical and horizontal bracing system. 99 99 Progettazione Strutturale Antincendio Robustezza strutturale
  • 101. (disaster) resilience Definition (not univocal): A resilient community is defined as the one having the ability to absorb disaster impacts and rapidly return to normal socioeconomic activity. MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical report.Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf MCEER framework for resilience evaluation: Initial losses Recovery time, depending on: • Resourcefulness • Rapidity Disaster strikes Systemic Robustness 101 101 Progettazione Strutturale Antincendio Robustezza strutturale
  • 102. (disaster) resilience Definition (not univocal): A resilient community is defined as the one having the ability to absorb disaster impacts and rapidly return to normal socioeconomic activity. MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical report.Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf MCEER framework for resilience evaluation: Resilience is inversely proportional to the area A. (dQ/dt) L0 TR (dQ/dt)0 A 102 102 Progettazione Strutturale Antincendio Robustezza strutturale
  • 103. Combined effect of discrete events and continuous deterioration - Aftermath of the event - i. historical - political - decisions (e.g. local governance) influence the initial system quality Q0. This parameter is related to the initial system state. 103 103 Progettazione Strutturale Antincendio Robustezza strutturale
  • 104. - Aftermath of the event - ii. urban and social service planning is relevant for the pre-event system integrity and it is one of the factors determining the trend of system quality before the event (dQ/dt) and the amount of immediate losses (ΔQ). The first parameter is by a statistical correlation between the political decision and the quality trend, while the second parameter can be modeled by the system fragility. Combined effect of discrete events and continuous deterioration 104 104 Progettazione Strutturale Antincendio Robustezza strutturale
  • 105. - Aftermath of the event - iii. fast decisions are taken during the event or a disaster (on the basis of knowledge and experience from similar past events - if any - and the system properness knowledge); the decisions in this phase influence the initial slope of the recovery phase (dQR/dt), a parameter that can be modeled by a statistical correlation between the political decision and the quality trend. Combined effect of discrete events and continuous deterioration 105 105 Progettazione Strutturale Antincendio Robustezza strutturale
  • 106. - Aftermath of the event - iv. emergency plans and prioritization of recovery actions are relevant in the aftermath of the event (recovery phase). In addition, the declaration of a state of emergency can have a substantial short and long-term effect on the local economy. The actions in this phase influence the shape of the recovery function fR(t). Combined effect of discrete events and continuous deterioration 106 106 Progettazione Strutturale Antincendio Robustezza strutturale
  • 107. - Aftermath of the event - v. urban and social service re-planning on the basis of the consequences of the occurred event are relevant in the long run (influencing the losses and the recovery for the next discrete event). Combined effect of discrete events and continuous deterioration 107 107 Progettazione Strutturale Antincendio Robustezza strutturale
  • 108. Combined effect of discrete events and continuous deterioration 108 108 Progettazione Strutturale Antincendio Robustezza strutturale