Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
By: F.A
4/1/2014
AUTOMATA CHAPTER 2: LANGUAGES (PROBLEMS)
Chapter 2:
LANGUAGES
Problems:
1. Consider the language S*, where S = {a, b}. How many words does this
language have of le...
bbbb, bbbaa, bbaaaa, bbaab, baabb, baabaa, baaaaaa, baaaab, aaaaaaaaaa,
…….}
 So words of length 4 = 24 = 16
Of length 5 ...
abababbabaabba, abababbabababa, abababbababaab, ababbaabababab,
ababbaabababba, ababbaababbaba, ababbaababbaab, ababbaabba...
 No, No words can contain aaa or bbb because the first a in string ab and the a in
ba never allow to make aaa or bbb.
 T...
aabbababa, abaaaa, abaaaab, abaaaba, abaaaba, abaaabab, abaaabba, abaabaa,
abaabaab, abaababa, abaabaa, abaabaab, abaababa...
Nächste SlideShare
Wird geladen in …5
×

Introduction to Computer theory (Automata Theory) 2nd Edition By Denial I.A. COHEN. Chapter 2 Problems

23.153 Aufrufe

Veröffentlicht am

solution to some problems of Automata

Veröffentlicht in: Daten & Analysen
  • What if you had a printing press that could spit out hundred dollar bills on demand? Do you think that would change your life? ●●● http://t.cn/AisJWYf4
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Making a living taking surveys at home! I have been a stay at home mom for almost 5 years and I am so excited to be able to still stay home, take care of my children and make a living taking surveys on my own computer! It's so easy to get started and I plan to make enough money each week so that my husband can actuallly quit his second job!!! Thank you so much! ●●● https://bit.ly/2Ruzr8s
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://tinyurl.com/qvvcx4e } ......................................................................................................................... Download Full EPUB Ebook here { https://tinyurl.com/qvvcx4e } ......................................................................................................................... Download Full doc Ebook here { https://tinyurl.com/qvvcx4e } ......................................................................................................................... Download PDF EBOOK here { https://tinyurl.com/qvvcx4e } ......................................................................................................................... Download EPUB Ebook here { https://tinyurl.com/qvvcx4e } ......................................................................................................................... Download doc Ebook here { https://tinyurl.com/qvvcx4e } ......................................................................................................................... .........................................................................................................................
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • please upload solution n0 9 and 17 thanks
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier
  • Please Upload the pdf
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier

Introduction to Computer theory (Automata Theory) 2nd Edition By Denial I.A. COHEN. Chapter 2 Problems

  1. 1. By: F.A 4/1/2014 AUTOMATA CHAPTER 2: LANGUAGES (PROBLEMS)
  2. 2. Chapter 2: LANGUAGES Problems: 1. Consider the language S*, where S = {a, b}. How many words does this language have of length 2? Of length 3? Of length n? Solution: S = {a, b} S* = {, a, b, aa, ab, bb, ba, aaa, aab, aba, abb, bbb, bba, bab, baa,…. }  So this language have words of length 2 = 4 Of length 3 = 8 Of length n = 2n  We can solve this question in the following way too Let number of words = nm Then words of length 2 = 22 = 4 Of length 3 = 23 = 8 Of length n = 2n 2. Consider the language S*, where S = {aa, b}. how many words does this language have of length 4? Of length 5? Of length 6? What can be said in general? Solution: S = {aa, b} S* = {, aa, b, aaaa, aab, bb, baa, aaaaaa, aaaab, aabb, aabaa, baaaa, baab, bbb, bbaa, aaaaaaaa, aaaaaab, aaaabb, aaaabaa, aabaaaa, aabaab, aabbb, aabbaa,
  3. 3. bbbb, bbbaa, bbaaaa, bbaab, baabb, baabaa, baaaaaa, baaaab, aaaaaaaaaa, …….}  So words of length 4 = 24 = 16 Of length 5 = 25 = 32 Of length 5 = 26 = 64 In general: In general we can say that 3. Consider the language S*, where S = {ab, ba}. Write out all the words in S* that have seven or fewer letters. Can any word in this language contain the substrings aaa or bbb? What is the smallest word that is not in this language? Solution: S = {ab, ba} S* = {, ab, ba, abab, abba, baba, baab, ababab, ababba, abbaba, abbaab, baabab, baabba, bababa, babaab, abababab, abababba, ababbaba, ababbaab, abbaabab, abbaabba, abbababa, abbabaab, baababab, baababba, baabbaba, baabbaab, babaabab, babaabba, babababa, bababaab, ababababab, ababababba, abababbaba, abababbaab, ababbaabab, ababbaabba, ababbababa, ababbabaab, abbaababab, abbaababba, abbaabbaba, abbaabbaab, abbabaabab, abbabaabba, abbabababa, abbababaab, baabababab, baabababba, baababbaba, baababbaab, baabbaabab, baabbaabba, baabbababa, baabbabaab, babaababab, babaababba, babaabbaba, babaabbaab, bababaabab, bababaabba, bababababa, babababaab, abababababab, abababababba, ababababbaba, ababababbaab, abababbaabab, abababbaabba, abababbababa, abababbabaab, ababbaababab, ababbaababba, ababbaabbaba, ababbaabbaab, ababbabaabab, ababbabaabba, ababbabababa, ababbababaab, abbaabababab, abbaabababba, abbaababbaba, abbaababbaab, abbaabbaabab, abbaabbaabba, abbaabbababa, abbaabbabaab, abbabaababab, abbabaababba, abbabaabbaba, abbabaabbaab, abbababaabab, abbababaabba, abbababababa, abbabababaab, ababababababab, ababababababba, abababababbaba, abababababbaab, ababababbaabab, ababababbaabba, ababababbababa, ababababbabaab, abababbaababab, abababbaababba, ababbaabbaba, ababbaabbaab, ababbabaabab,
  4. 4. abababbabaabba, abababbabababa, abababbababaab, ababbaabababab, ababbaabababba, ababbaababbaba, ababbaababbaab, ababbaabbaabab, ababbaabbaabba, ababbaabbababa, ababbaabbabaab, ababbabaababab, ababbabaababba, ababbabaabbaba, ababbabaabbaab, ababbababaabab, ababbababaabba, ababbababababa, ababbabababaab, baabababababab, baabababababba, baababababbaba, baababababbaab, baabababbaabab, baabababbaabba, baabababbababa, baabababbabaab, baababbaababab, baababbaababba, baababbaabbaba, baababbaabbaab, baababbabaabab, baababbabaabba, baababbabababa, baababbababaab, baabbaabababab, baabbaabababba, baabbaababbaba, baabbaababbaab, baabbaabbaabab, baabbaabbaabba, baabbaabbababa, baabbaabbabaab, baabbabaababab, baabbabaababba, baabbabaabbaba, baabbabaabbaab, baabbababaabab, baabbababaabba, baabbababababa, baabbabababaab,…}  All words in S* that have seven or fewer letters: S* = { abababababab, abababababba, ababababbaba, ababababbaab, abababbaabab, abababbaabba, abababbababa, abababbabaab, ababbaababab, ababbaababba, ababbaabbaba, ababbaabbaab, ababbabaabab, ababbabaabba, ababbabababa, ababbababaab, abbaabababab, abbaabababba, abbaababbaba, abbaababbaab, abbaabbaabab, abbaabbaabba, abbaabbababa, abbaabbabaab, abbabaababab, abbabaababba, abbabaabbaba, abbabaabbaab, abbababaabab, abbababaabba, abbababababa, abbabababaab, ababababababab, ababababababba, abababababbaba, abababababbaab, ababababbaabab, ababababbaabba, ababababbababa, ababababbabaab, abababbaababab, abababbaababba, ababbaabbaba, ababbaabbaab, ababbabaabab, abababbabaabba, abababbabababa, abababbababaab, ababbaabababab, ababbaabababba, ababbaababbaba, ababbaababbaab, ababbaabbaabab, ababbaabbaabba, ababbaabbababa, ababbaabbabaab, ababbabaababab, ababbabaababba, ababbabaabbaba, ababbabaabbaab, ababbababaabab, ababbababaabba, ababbababababa, ababbabababaab, baabababababab, baabababababba, baababababbaba, baababababbaab, baabababbaabab, baabababbaabba, baabababbababa, baabababbabaab, baababbaababab, baababbaababba, baababbaabbaba, baababbaabbaab, baababbabaabab, baababbabaabba, baababbabababa, baababbababaab, baabbaabababab, baabbaabababba, baabbaababbaba, baabbaababbaab, baabbaabbaabab, baabbaabbaabba, baabbaabbababa, baabbaabbabaab, baabbabaababab, baabbabaababba, baabbabaabbaba, baabbabaabbaab, baabbababaabab, baabbababaabba, baabbababababa, baabbabababaab }
  5. 5.  No, No words can contain aaa or bbb because the first a in string ab and the a in ba never allow to make aaa or bbb.  The smallest word is of length zero (0) that is  (capital lambda) and it is present in the language so other than it there is no smallest word that is not in the language. 4. Consider the language S*, where S = {a, ab, ba}. Is the string (abbba) a word in this language? Write out all the words in this language with six or fewer letters. What is another way in which to describe the words in this language? Be careful this is not simply the language of all words without bbb. Solution:  No, the string abbba a word is not present in the language, because b individually does not exist in the given string S, so (ab b ba) can’t exist in this language.  All the words with six or fewer letters in this language are written below: S* = {, a, ab, ba, aa, aab, aba, aba, abab, abba, baa, baab, baba, aaa, aaab, aaba, aaba, aabab, aabba, abaa, abaab, ababa, abaa, abaab, ababa, ababa, ababab, ababba, abbaa, abbaab, abbaba, baaa, baaab, baaba, baaba, baabab, baabba, babaa, babaab, bababa, aaaa, aaaab, aaaba, aaaba, aaabab, aaabba, aabaa, aabaab, aababa, aabaa, aabaab, aababa, aababa, aababab, aababba, aabbaa, aabbaab, aabbaba, abaaa, abaaab, abaaba, abaaba, abaabab, abaabba, ababaa, ababaab, abababa, abaaa, abaaab, abaaba, abaaba, abaabab, abaabba, ababaa, ababaab, abababa, ababaa, ababaab, abababa, abababa, abababab, abababba, ababbaa, ababbaab, ababbaba, abbaaa, abbaaab, abbaaba, abbaaba, abbaabab, abbaabba, abbabaa, abbabaab, abbababa, baaaa, baaaab, baaaba, baaaba, baaabab, baaabba, baabaa, baabaab, baababa, baabaa, baabaab, baababa, baababa, baababab, baababba, baabbaa, baabbaab, baabbaba, babaaa, babaaab, babaaba, babaaba, babaabab, babaabba, bababaa, bababaab, babababa, aaaaa, aaaaab, aaaaba, aaaaba, aaaabab, aaaabba, aaabaa, aaabaab, aaababa, aaabaa, aaabaab, aaababa, aaababa, aaababab, aaababba, aaabbaa, aaabbaab, aaabbaba, aabaaa, aabaaab, aabaaba, aabaaba, aabaabab, aabaabba, aababaa, aababaab, aabababa, aabaaa, aabaaab, aabaaba, aabaaba, aabaabab, aabaabba, aababaa, aababaab, aabababa, aababaa, aababaab, aabababa, aabababa, aabababab, aabababba, aababbaa, aababbaab, aababbaba, aabbaaa, aabbaaab, aabbaaba, aabbaaba, aabbaabab, aabbaabba, aabbabaa, aabbabaab,
  6. 6. aabbababa, abaaaa, abaaaab, abaaaba, abaaaba, abaaabab, abaaabba, abaabaa, abaabaab, abaababa, abaabaa, abaabaab, abaababa, abaababa, abaababab, abaababba, abaabbaa, abaabbaab, abaabbaba, ababaaa, ababaaab, ababaaba, ababaaba, ababaabab, ababaabba, abababaa, abababaab, ababababa, abaaaa, abaaaab, abaaaba, abaaaba, abaaabab, abaaabba, abaabaa, abaabaab, abaababa, abaabaa, abaabaab, abaababa, abaababa, abaababab, abaababba, abaabbaa, abaabbaab, abaabbaba, ababaaa, ababaaab, ababaaba, ababaaba, ababaabab, ababaabba, abababaa, abababaab, ababababa, ababaaa, ababaaab, ababaaba, ababaaba, ababaabab, ababaabba, abababaa, abababaab, ababababa, abababaa, abababaab, ababababa, ababababa, ababababab, ababababba, abababbaa, abababbaab, abababbaba, ababbaaa, ababbaaab, ababbaaba, ababbaaba, ababbaabab, ababbaabba, ababbabaa, ababbabaab, ababbababa, abbaaaa, abbaaaab, abbaaaba, abbaaaba, abbaaabab, abbaaabba, abbaabaa, abbaabaab, abbaababa, abbaabaa, abbaabaab, abbaababa, abbaababa, abbaababab, abbaababba, abbaabbaa, abbaabbaab, abbaabbaba, abbabaaa, abbabaaab, abbabaaba, abbabaaba, abbabaabab, abbabaabba, abbababaa, abbababaab, abbabababa,…} [upto six letters]  Another way…. 5. Consider the language S*, where S = {xx, xxx}. In how many ways can x 19 be written as the product of words in S? This means: How many different factorizations are there of x 19 into xx and xxx? Solution: (xx) (xx) (xx) (xx) (xx) (xx) (xx) (xx) + (xxx) = x16 + x3 = x19 x19 can consist of 8 double xx combinations and 1 triple xxx combination i.e = 8 * 2 + 1 * 3 = 19 x19 can consist of 5 double xx combinations and 3 triples xxx combinations = 5 * 2 + 3 * 3 = 19 x19 can consist of 2 double xx combinations and 5 triples xxx combinations = 2 * 2 + 5 * 3 = 19 3 double xx combinations can be replaced by 2 triple xxx combinations like (xx)(xx)(xx) = (xxx)(xxx)

×